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Abstract

Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to 

investigate relationships between protein sequence, structure, function, evolutionary history, and 

patterns of disease-associated variants. However, their widespread application in systems biology 

research is currently hindered by the lack of user-friendly tools to simultaneously visualize, 

manipulate and query the information conceptualized in large sequence alignments, and the 

challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-

translational modifications, which are often stored in heterogeneous data sources and formats. 

Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a 

profile or consensus alignment in an ontological format. Subsets of the alignment are easily 

selected through the SPARQL Protocol and RDF Query Language for downstream statistical 

analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive 

integrative visualization that places eukaryotic protein kinase cancer variants in the context of 

natural sequence variation and experimentally determined post-translational modifications, which 

play central roles in the regulation of cellular signaling pathways. Using KinView, we identified 

differential phosphorylation patterns between tyrosine and serine/threonine kinases in the 

activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. 

We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show 

how KinView can be used as a comparative tool to identify differences and similarities in natural 

variation, cancer variants and post-translational modifications between kinase groups, families and 

subfamilies. Based on KinView comparisons, we identify and experimentally characterize a 

regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 
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loop. To further demonstrate the application of KinView in hypothesis generation and testing, we 

formulate and validate a hypothesis explaining a novel predicted loss-of-function variant 

(D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. 

KinView provides a novel, extensible interface for performing comparative analyses between 

subsets of kinases and for integrating multiple types of residue specific annotations in user friendly 

formats.
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Background

Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout 

comparative biology to investigate the relationships connecting protein sequence, structure, 

function, and evolutionary history. The patterns of conservation and variation in MSAs 

reflect functional similarities and differences between aligned sequences and often serve as a 

conceptual starting point for generating testable hypotheses regarding protein functions. 

MSAs are fundamental for structure prediction 1-3, domain identification, molecular 

evolution 4-6, and phylogenetic analysis 7-9. Recent studies have also employed MSAs to 

predict the structural and functional impact of disease mutations 10, 11, and for distinguishing 

disease variants from silent variants 12-14. In general, disease variants target moderate to 

highly conserved residues, while silent variants remain uniformly distributed with respect to 

residue conservation 12, 15. Thus accurate estimation of conservation in MSAs is critical for 

distinguishing disease-associated (‘driver’) from silent variants.

Residues involved in regulatory functions such as post-translational modifications 

(PTMs) 16-18, (reviewed in 19) can be identified by examining the patterns of conservation 

and variation in orthologous sequences. Phosphorylation, in particular, is a prevalent type of 

PTM that regulates protein functions through covalent modification of hydroxyl groups on 

targeted serine, threonine or tyrosine residues. Although large-scale proteomic studies have 

identified thousands of PTMs in protein domains, the functional significance of many of 

these PTMs are largely unknown, though analysis of PTMs in the context of conserved and 

variable residues in MSAs have provided new insights into speciation and functional 

specialization in signaling proteins 20, 21. More recently, PTMs have emerged as a valuable 

source of information for identifying mutations associated with complex disease 

signaling 22-24 and identifying novel drug targets 25. For example, cancer mutations can 

rewire signaling pathways by removing conserved phosphorylation sites or by introducing 

new phosphorylation sites 24, 26. To systematically identify and characterize such mutations, 

however, signaling and cancer variants need to be integrated and analyzed in the context of 

PTMs and evolutionary patterns.

Integrative analysis of cancer, PTM and evolutionary data, however, is a challenge because 

of the size and disparity of these data sources and formats. Consider, for example, the 

eukaryotic protein kinases (ePKs), a large family of proteins associated with cellular 
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regulation and disease that encode the complex phosphorylation events found in diverse 

signaling networks. Evolutionary data on ePKs is encoded in thousands of sequences from 

diverse organisms, and extracting this data requires construction and mining of large MSAs. 

Likewise, information on kinase PTMs and cancer variants are stored in databases such as 

dbPTM 27 and COSMIC 28, 29, respectively, and syntactic differences in the file formats of 

these data sources pose unique challenges in integrative data mining. Simple queries such as 

“what mutations alter conserved phosphorylation sites in the protein kinase domain”, 

currently requires a time consuming (and error-prone) procedure involving retrieval of 

information from different data sources (Figure 1A) and post-processing data through 

customized programs and scripts. Estimating conservation of amino acid residues from 

MSAs is especially challenging, because protein kinases have diversified into major groups, 

families and sub-families during the course of evolution and accurate estimation of 

conservation requires comparisons of sequences across various hierarchical categories 30-34. 

Finally, inconsistencies in MSAs due to the alignment method of choice, input sequences, 

and parameters pose additional challenges in data interpretation, reproducibility and sharing.

Ontologies have emerged as a powerful tool for addressing the data integration challenge. 

For example, the Gene Ontology 35 and the Protein Ontology (PRO) [Cite] have served as 

vehicles of knowledge for the biological community for nearly two decades, and domain 

ontologies, such as the Protein Kinase Ontology (ProKinO), have captured knowledge 

specific to the protein kinase domain 36, 37. While such domain-specific ontologies have 

enabled integrative mining of data and generated testable hypotheses for functional studies, 

they do not conceptualize information related to the patterns of conservation and variation in 

MSAs. To significantly enhance the application of ProKinO in systems biology analysis, we 

report the Multiple Sequence Alignment Ontology (MSAOnt). The advantage of 

representing protein kinase sequence alignments in the form of an ontology is that it (i) 

enables queries to examine the patterns of conservation and variation at each position within 

the protein kinase domain, (ii) allows rapid and consistent comparisons of protein kinase 

sequences based on their evolutionary grouping (group, family, sub-family etc.) and (iii) 

provides a framework for data sharing, annotation and reproducibility within the kinase 

community. MSAOnt is integrated with ProKinO 37, 38 and currently contains information 

on kinase sequences from 15 organisms (Figure 1B).

We have also created an accompanying integrative visualization tool, termed KinView, 

which enables experts and novices to perform comparative analyses of cancer variants in the 

context of natural sequence variation and post-translational modifications across 

evolutionary groups of kinases (Figure 1C). The integration of these orthogonal types of data 

provides new insight into functional effects of cancer variants and provides testable 

hypotheses for the vast numbers of experimental studies that contribute towards a 

biochemical, biophysical and mathematical understanding of kinome-responsive biosystems. 

As a new example, we identify and experimentally characterize a conserved tyrosine in the 

activation loop of the master centriole-regulating kinase Polo Like Kinase 4 (PLK4) and 

demonstrate its likely role in regulating kinase activity through dimerization and auto-

phosphorylation. Likewise, we identify and experimentally characterize a novel loss-of-

function mutation in the F-helix of the tumor suppressor Protein Kinase C Beta (PKCβ). 

These state-of-the art ontology and visualization tools are freely available online through the 
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ProKinO browser at http://vulcan.cs.uga.edu/prokino. A demo video showing basic KinView 

usage is available at https://www.youtube.com/watch?v=sLHC0yevAJo.

Results and Discussion

The development of MSAOnt and KinView provides a framework for integrating and 

relating evolutionary, disease variant and PTM data on kinases in an interactive and visually 

appealing way, which has the potential to support a scientific community that increasingly 

relies on evolutionary and disease-relevant changes in structure and function to 

understanding protein kinase signaling and its biological importance. Below, we highlight 

the application of KinView in knowledge discovery and hypothesis generation, by 

identifying several highly conserved phosphoacceptor sites in the activation segment (lying 

between the DFG and APE motifs) of STKs and experimentally characterizing a conserved 

tyrosine in the PLK4 P+1 loop that is associated with kinase regulation through 

autophosphorylation-dependent activation. We also demonstrate the application of KinView 

through correlative analysis of cancer, PTM, and evolutionary data in Fibroblast Growth 

Factor Receptor (FGFR) and Platelet-derived Growth Factor Receptor (PDGFR) kinases. 

Finally, we use KinView to identify kinases with cancer variants at the very highly 

conserved F-helix aspartate residue and experimentally validate a predicted loss of function 

mutation in the putative tumor suppressor kinase PKCβ.

KinView based comparison of PTK and STK activation segments reveal divergent patterns 
of phosphorylation

The activation segment is a functionally important flexible region of the catalytic domain 

that is post-translationally modified in diverse kinases. Modification of serine, threonine or 

tyrosine residues in the activation segment, typically through ‘upstream’ kinase-mediated 

phosphorylation, reversibly regulates catalytic activity in the majority of Protein Tyrosine 

Kinases (PTKs) and Serine/Threonine Kinases (STKs) 39-42. Since the activation segment is 

one of the most variable regions of the kinase domain, we used KinView to visualize the 

patterns of conservation and variation between PTKs and STKs, and observe correlations 

between publicly available cancer variants, PTMs and natural sequence variation. A 

snapshot of the PTK and STK KinView comparison is shown (Figure 2A). Nearly every 

residue in the activation segment is mutated in at-least one cancer type in both PTKs and 

STKs, as indicated in red circumscribing the residue numbers. In contrast, visualization of 

the PTMs, shown in green circles below the residue numbers, indicates interesting 

differences in the phosphorylation patterns. In PTKs, the major phosphorylation sites occur 

in the N-terminal activation segment, most commonly at residues prior to 194PKA. In 

contrast, STKs are phosphorylated across the entire activation segment, with major 

(sometimes combinatorial) phosphorylation sites described at conserved residues equivalent 

to T197PKA, T201PKA and Y204PKA.

While phosphorylation hotspots in the activation segment (from 194PKA to 198PKA) are 

expected based on decades of experimental data 43, the frequent conservation and 

modification of T201PKA and Y204PKA in STKs is rather surprising given the comparative 

lack of attention paid to studying this region amongst the ePKs. T201PKA and Y204PKA are 
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located in the substrate binding (P+1) pocket of the activation segment, and therefore 

phosphorylation of these residues is predicted to alter kinase activity and/or modulate 

substrate binding. Consistent with this view, T387CHK2 (201PKA) is a major auto-

phosphorylation site in CHK2 associated with cell cycle checkpoint regulation 44, 45. 

Likewise, phosphorylation of the equivalent residue in COT/Tpl2, T290COT (201PKA), 

regulates catalytic activity and is required for degradation by the proteasome 46. In the 

Microtubule Affinity Regulating Kinase 2 (MARK2), phosphorylation of T212MARK2 

(201PKA) by GSK3β kinase is reported to lead to inactivation 47. The functional significance 

of phosphorylation of a conserved Tyr, Y204PKA, has also been validated experimentally in 

several STKs that are regulated by ‘upstream’ kinases. For example, the phosphorylation of 

Y315AKT1 (204PKA), as well as Y326AKT1 (215PKA), is necessary for the activation of 

AKT1 by Src 48-50. This modification is distinct from the PDK1-mediated T-loop 

(T308AKT1) and mTORC2-mediated hydrophobic (S473AKT1) sites of Ser/Thr 

phosphorylation induced by insulin and growth factor downstream of PI3 kinases 51. IKKβ 
and PKCδ are also phosphorylated at the equivalent Tyr residue by Src and in H2O2 treated 

cells, respectively 52, 53. Interestingly, in the Extracellular Signal-Regulated Kinase 1 

(ERK1), phosphorylation of either T207ERK1 (201PKA) or Y210ERK1 (204PKA) reduces 

kinase activity 54. The preponderance of T201PKA and Y204PKA phosphorylation in STKs 

and the observed divergence in PTKs (where the Tyr is replaced by non-phosphorylatable 

hydrophobic residues) suggest that regulation by modification of P+1 pocket residues is a 

selective feature of STKs. Eleven kinase domains have been crystallized with 

phosphorylated P+1 pocket residues covering three STKs: the mitotic checkpoint serine/

threonine-protein kinase Bub1, the dual specificity protein kinase CLK1 and the dual 

specificity protein kinase TTK/MPS1. While P+1 pocket phosphorylation has been shown to 

increase the affinity of Bub1 towards its histone substrate55, 56, none of the crystallized 

activation segments adopt a canonical active conformation55-58. Indeed, the potent inhibitory 

effect of T686 mutations in the P+1 pocket of TTK/MPS1 are very well-documented in 

cells, and is an established method to inactivate TTK/MPS159. Moreover, X-Ray structure of 

an inactive (non-phosphorylated) T686A TTK/MPS1 P+1 loop mutant demonstrate that it 

also adopts and inactive conformation 60, 61. These observations have implications both for 

understanding the subset of protein kinases that are regulated by substrate-driven 

dimerization prior to autophosphorylation and activation, and for interpreting the large 

number of cancer variants observed in the activation segment (see below).

KinView based comparison of cancer variation in PTK and STK activation segments

Having identified the P+1 pocket as a novel evolutionary-conserved phosphorylation site in 

the STKs, we next sought to compare and contrast reported cancer variants observed in the 

activation segment using the KinView software. To identify changes occurring at equivalent 

positions without the use of MSAOnt and KinView currently requires identifying the native 

residue number corresponding to T201PKA and Y204PKA for each kinase, and subsequently 

filtering the COSMIC database to retrieve variants occurring at the equivalent positions. This 

is challenging, especially since amino acid numbering can vary between different databases, 

leading to confusion and the need for timely contextual analysis to confirm which amino 

acid is functionally implicated. However, using KinView, cancer variants mapping to 

positions T201PKA and Y204PKA can be readily identified and quantified by simply 
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hovering the mouse over the red circumscribed residue number (Figures 2B, 2C). 

Interestingly, cancer variants at 201PKA in STKs favor mutation to non-phosphorylated 

phenylalanine, isoleucine and methionine while those at 204PKA favor cysteine and histidine 

more strongly than hydrophobic residues (Figure 2C). Indeed, PTKs naturally conserve 

hydrophobic residues at 201PKA and 204PKA As both T201PKA and Y204PKA are frequently 

phosphorylated in STKs, one mechanism that tumor cells might utilize to deregulate these 

kinases is to abolish the possibility of phosphorylation through acceptor site mutation. 

Consistent with this view, the T387ACHK2 (201PKA) mutation in CHK2 abolishes catalytic 

activity 44, 45. The equivalent mutation in NEK6, T210ANEK6 (201PKA), not only decreases 

phosphorylation of STAT3, a NEK6 substrate, but also decreases cell proliferation and 

oncogenic transformation in mouse epidermal cells 62. Likewise, CHK2 harbors a recurrent 

Y390CCHK2 (204PKA) deleterious mutation in breast cancer that impairs p53 activation and 

DNA damage response 63, and the corresponding Y188FIKKβ (204PKA) in IKKβ is also 

associated with decreased kinase activity 52.

Prediction and characterization of a putative phosphorylation site (Y204PKA) in PLK4

The Ser/Thr protein kinase PLK4 is a master controller of centriole duplication, and PLK4 

mutations are associated with human cancer-associated pathologies 64. PLK4 catalytic 

activity is tightly regulated by autophosphorylation 65, and several lines of evidence suggest 

an in trans-mediated mechanism of autoregulation in cells that is also likely to be important 

for maintenance of genomic stability 66-68. Activated PLK4 regulates the phosphorylation of 

an expanding family of centriolar proteins, which control centrosome duplication and 

ciliogenesis. PLK4 autoactivation relieves PLK4 Polo box-mediated autoinhibition in cis, 

which helps promote dimerization 69, and in turn generates a PLK4 phosphodegron, which 

induces rapid PLK4 degradation through the ubiquitin proteasome pathway 70, 71. The 

phosphorylation of a conserved activation loop residue (T170PLK4) is associated with PLK4 

catalytic activity in transfected human cells 72, and several Ser/Thr residues in the activation 

segment (equivalent to human T170PLK4, T174PLK4 and S179PLK4) are the product of PLK4 

autophosphorylation 69, 71. Interestingly, the PLK4 activation segment also contains a highly 

conserved Tyr residue (Y177PLK4), at the equivalent position to Y204PKA, which we 

hypothesized might contribute to PLK4 regulation (Figure 3A). To investigate the effects of 

Y177PLK4 mutations, we expressed four truncated human PLK4 catalytic domain (PLK4 

1-269) proteins in bacteria, a simple model system for analyzing enzymatic and inhibitor 

parameters in PLK4 73. Y177FPLK4 PLK4 cannot be phosphorylated, and maintains a 

hydrophobic residue in the P+1 motif, whereas Y177EPLK4 PLK4 is designed to mimic a 

phosphorylated residue due to the constitutive negative charge on the acidic glutamate side 

chain. As shown in Figure 3B, WT and Y177FPLK4 PLK4 exhibited similar electrophoretic 

mobility after separation by SDS-PAGE. In contrast, the Y177EPLK4 substitution behaved 

like a ‘kinase-dead’ D154APLK4 PLK4 mutant, since electrophoretic mobility was increased, 

consistent with decreased PLK4 phosphorylation. Comprehensive tandem MS/MS analysis 

confirmed the presence of phosphorylated Y177PLK4 in trypsinized preparations of PLK4 

(1-269), suggesting that this was a bona fide phosphorylation site (Figure 3C). In addition, 

we found Y177PLK4 accompanying T170PLK4 phosphorylation in the same tryptic 

phosphopeptide, proving that phosphorylation on T-loop (T170PLK4) and P+1 loop 

(Y177PLK4) residues can occur simultaneously (Figure 3D). Phosphorylation at Y177PLK4 
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was previously identified in recombinant human PLK4 74, but peptide fragmentation spectra, 

or the effects of mutations at this P+1 loop site were not reported.

To assess whether Y177PLK4 mutations influenced PLK4 folding, stability or ATP binding, 

we assessed purified proteins by DSF and thermal denaturation (Table 1). DSF is a standard 

technique for analysis of catalytically active and inactive protein kinases and their 

interaction with ligands 34, 75. We found that PLK4 Y177EPLK4, Y177FPLK4 and 

D164APLK4 substitutions exhibited a narrow range of Tm values for unfolding, between 

35.8°C (Y177EPLK4, least stable) and 38.0°C (WT PLK4, most stable) (Table 1). In 

addition, the two Tyr mutants exhibited no defects in ATP binding when compared to WT 

PLK4, whereas the kinase-dead D154APLK4 mutation, which indirectly prevents ATP 

binding by blocking divalent cation binding 76, was unable to induce PLK4 stabilization. 

Next, we evaluated the effects of Y177PLK4 substitutions on PLK4 inhibitor binding. We 

found that the potent ATP-competitive PLK4 inhibitors VX-680 73 and staurosporine 77 

induced thermal stabilization amongst all three PLK4 proteins, whereas a negative control 

PLK1 inhibitor BI2536 77 did not. These data establish that mutations at Y177PLK4 do not 

profoundly affect ATP or small molecule binding susceptibility in the nucleotide-binding 

site. We next evaluated the activity and phosphorylation status of Y177PLK4 substitutions, 

including the critical T170PLK4 activation site of autophosphorylation (Figure 3A). To 

accomplish this, we generated a new polyclonal phosphospecific pT170PLK4 antibody and 

confirmed its phosphospecificity at this site using purified phosphorylated WT and 

D154APLK4 PLK4 proteins (Figure 4A). As shown in Figure 4B, a kinetic 

autophosphorylation assay demonstrated essentially identical incorporation into PLK4 by 

WT and Y177FPLK4 mutants, proving that conservation of an aromatic side chain did not 

affect autophosphorylation activity. In contrast, the PLK4 phosphomimic Y177EPLK4 

exhibited less than 5% of the activity of WT or Y177FPLK4 PLK4, and this residual activity 

was completely inhibited by the PLK4 inhibitor VX-680. Interestingly, the Y177EPLK4 

mutant did not contain any detectable Thr 170PLK4 phosphorylation when assessed with the 

phosphospecific antibody, suggesting that trans autophosphorylation had been abolished in 

this mutant, consistent with a role for the Y177PLK4 P+1 residue in regulating substrate 

binding. These data suggest the potential importance of a Tyr or Phe residue in the P+1 loop 

for promotion of substrate phosphorylation in PLK4, since mutation to Glu prevents 

autophosphorylation and completely abolishes PLK4 activity. Multiple Ser/Thr kinases that 

autoactivate in bacteria contain a conserved hydrophobic residue in the P+1 loop. The best 

understood of these is PKA 78, and experimental evidence suggests that an aromatic amino 

acid (Phe or Tyr) is needed for formation of an allosterically-connected conformational 

network, RI-subunit interaction and peptide substrate binding. Mutation of Y204APKA 

induces a 30-fold decrease in the rate of enzyme turnover, although the effects of 

phosphomimetics or installment of phosphotyrosine at Y204PKA were not reported 78. Our 

study suggests that prevention of autoactivation (presumably through substrate blockade) 

can be achieved in PLK4 by the simple introduction of a negative charge in the P+1 loop, as 

might occur reversibly should the Tyr side chain also become phosphorylated in vivo. We 

also find that phosphorylated Y177PLK4 co-exists alongside phosphorylated T170PLK4 

PLK4 in vitro, and it will be interesting to evaluate how Y177PLK4 phosphorylation affects 

the activity of T170PLK4 phosphorylated PLK4, although the resistance of pY177PLK4 in 
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PLK4 to dephosphorylation makes this experiment challenging 74. However, our finding that 

non-phosphorylatable Y177FPLK4 still maintained normal autophosphorylation compared to 

WT PLK4 suggests the presence of very low levels of pY177PLK4 in our WT PLK4 

preparations. It will be important to attempt the converse experiment by increasing the levels 

of pY177PLK4 and evaluating effects on substrate binding. These data might focus analysis 

of other Ser/Thr or dual-specificity protein kinases that are regulated by 

autophosphorylation, and it will be particularly interesting to observe the cellular effects of 

phosphomimics or tyrosine phosphorylation in the P+1 loops of PKA, Aurora kinases 79, 

GSK3 80 and DYRKs 81.

Comparisons of PTMs, natural and disease variants in the activation loop of FGFR and 
PDGFR

KinView enables comparative analysis of any subset of kinases, including comparisons of 

closely related families that are similar in sequence, but differ in their mechanisms of 

regulation. PDGFR and FGFR families within the PTK group are one such example. Both 

FGFR and PDGFR are frequently mutated in cancers, and while some of these mutations 

have been well-studied 82, 83, the structural/functional impacts of many others are largely 

unknown. We employed KinView to perform a comparative analysis of these two families by 

selecting the FGFR family on the top half of KinView and the PDGFR family on the bottom. 

As these families are closely related, there is less natural sequence variation between them, 

noted by similarities in their corresponding weblogos. The C-terminal activation segment is 

fairly well conserved between these families, though striking differences can be observed in 

the N-terminal segment (Figure 5A). Position S855PDGFRβ (193PKA) is a highly conserved 

phosphorylation site in the activation segment of PDGFR family members, displayed in 

KinView through both the maximal height of serine (S) at position 855 and the green circle 

below. The S855PDGFRβ equivalent residue in the FGFR family, 652FGFR1 (193PKA), is a 

highly conserved aspartate, which mimics the negative charge of a phosphorylated serine. 

Biochemical studies on PDGFR and FGFR have shown distinct roles for S855PDGFRβ and 

D652FGFR1, respectively. In PDGFR, phosphorylation of S855PDGFRβ (193PKA) by Ck1-γ2 

acts as a negative regulator of PDGFRβ activity 84, while in FGFR, D652FGFR1 (193PKA) 

contributes to substrate recognition and the formation of the trans-phosphorylating FGFR 

dimer 85. These functions are presumably altered by conserved cancer variants observed at 

these positions (Figure 5C).

KinView clearly shows the differing patterns of cancer variation between the FGFR and 

PDGFR families. The FGFR family, for example, is more sparsely altered than the PDGFR 

family, with approximately half as many residues (10 vs. 19, respectively) mutated in 

cancers (Figure 5A). Using KinView, we see that there is only a single N-terminal activation 

segment residue, R646, which is both universally conserved and mutated across both 

families. This arginine (R849PDGFRβ) is located at the DFG+3 position and is highly 

conserved throughout receptor tyrosine kinases (RTKs). In available FGFR crystal 

structures, R646FGFR1 coordinates with the phosphorylated residue in the activation loop 

and is associated with allosteric regulation of the kinase domain 86. Thus mutation of 

R646FGFR1 in squamous cell and adenocarcinomas (Figures 5B, 5C), is predicted to alter 

allosteric regulation of FGFR2 activity.
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KinView based hypothesis generation and experimental validation identifies a novel loss 
of function mutation in PKCβ

Conserved non-catalytic residues are often mutated in cancers and KinView based mining of 

such sites can provide new testable hypotheses for functional studies. By observing the letter 

height in the ePK alignment, for example, we can see that D220PKA, located in the R-spine 

stabilizing F-helix, is highly conserved across all ePKs. Some 97% of the kinases in 

ProKinO conserve an aspartate at 220PKA, which is even more highly conserved than the 

catalytically relevant HRD and DFG aspartate residues found at positions 166PKA (89.17%) 

and 184PKA (91.58%), respectively. D220PKA is highly mutated to an uncharged asparagine 

in a variety of cancers, particularly malignant melanoma. KinView-based identification of 

kinases that harbor the D220NPKA mutation revealed 33 kinases, 5 of which belong to the 

AGC family (Figure 6A). One kinase that harbors the D221NPKA mutation is PKCβ, a AGC 

kinase member of the conventional PKC subfamily. Although members of the PKC family 

of kinases have recently been shown to function as tumor suppressors through 

characterization of cancer variants 87, 88, the functional impact of D523NPKCβ (D220NPKA) 

has not been established. Since D220PKA anchors the regulatory spine to the αF-helix and 

plays a critical role in kinase functions 89, 90, we predicted that the D523NPKCβ would 

decrease PKC activity. To test this hypothesis, we first transfected mCherry tagged wild-type 

or D523NPKCβ PKCβII in COS7 cells and examined its phosphorylation status, a marker of 

correct processing and an event that requires the catalytic function of the enzyme 91. Western 

blot analysis revealed that the phosphorylation of the mutant PKCβII was impaired: the total 

PKCβII migrated primarily as a higher mobility band after SDS-PAGE (indicated by dash) 

that corresponds to unphosphorylated protein, and this species was not recognized by 

phospho-specific antibodies to any of the three priming phosphorylation events in the 

activation loop, the C-tail turn and hydrophobic motifs (Figure 6B). Importantly, this mutant 

was inactive in cells. By using a genetically-encoded fluorescence based reporter, C Kinase 

Activity Reporter, CKAR 92 to measure agonist-evoked activity in real time in live cells, we 

found that whereas overexpressed wild-type PKCβII caused an increase in reporter read-out 

(blue) relative to untransfected cells (yellow), the D523NPKCβ mutant did not (Figure 6C). 

Treatment with phorbol ester, to maximally activate PKC, resulted in some activity above 

endogenous levels for the D523NPKCβ, likely resulting from the small amount of 

phosphorylated enzyme. These data strongly support the hypothesis that the D523NPKCβ 

allele is loss-of-function.

Conclusion

We have described the formalization of multiple sequence alignments in an ontological 

format, which allows for diverse and novel methods of interrogating a sequence alignment. It 

is important to recognize that we are not describing new methods for generating an 

alignment, but rather encouraging their sharing and reuse by any researcher with an interest 

in protein kinases, disease-associated mutations and the systems analysis of cellular 

signaling. With the MSAOnt population tool, researchers can take any multiple sequence 

alignment and generate a public ontology that is available through standard web interfaces. 

As many gene families are currently described using MSAs, we expect these tools to 

encourage and simplify the process of generating a domain-specific ontology.
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The accuracy of MSAOnt data, and any subsequent analysis, is entirely dependent on the 

quality of the alignment from which it is created. Although we have used highly curated 

alignments, the possibility of misalignments in highly variable loop regions cannot be 

entirely ruled out. Such misalignments can obscure correlative analysis of cancer and natural 

variants using KinView and the resulting patterns from such variable regions should be 

interpreted with caution. The current analysis has been performed with kinases from 15 

species and limited to the modification of residues by phosphorylation, which is a central 

mechanism through which protein kinases are regulated enzymatically. Consistent with this 

description, we present mass spectrometric evidence that the P+1 loop Tyr residue in PLK4, 

whose diverse biological effects are driven through Ser/Thr-dependent autophosphoryation, 

is also phosphorylated. Indeed, the stoichiometric introduction of a negative charge at the P

+1 loop Tyr induces complete inactivation of PLK4 expressed in bacteria, driven through 

blockade of autoactivation by autophosphorylation at the activating T170PLK4 residue. Given 

that PLK4 activation occurs through an in trans mechanism in cells 69, 71, it is tempting to 

speculate that covalent modification of the equivalent Tyr residue might be important as an 

additional regulatory mechanism in Ser/Thr kinases that are regulated through Ser/Thr (or 

Tyr) autophosphorylation in the activation loop. Indeed, this mode of regulation has been 

suggested for the AGC kinase AKT as a novel mechanism for fine-tuning other 

phosphorylation events lying downstream of PDK1 and mTORC2 50, 51, and could also be 

relevant in dual-specificity kinases that undergo initial activation through 

autophosphorylation on the N-terminal activation loop, such as DYRK and GSK3β. 

Extending the analysis beyond the 15 species and inclusion of other types of PTMs such as 

ubiquitination and glycosolation could provide additional insights into disease and natural 

variants in the kinase domain relevant to catalytic regulation or complex formation.

The visualization tools we have developed will encourage the frequent construction and 

comparison of weblogos, a graphical interface for simultaneously considering both the 

relative frequency of amino acids and the information content contained in a position. They 

are also extensible and can incorporate any type of residue-level annotation stored in a 

compatible ontology, although we have initially focused on placing cancer variant data in the 

context of natural sequence variation and post-translational modifications, as way to 

generate experimentally testable hypotheses concerning potential effects on catalysis. As an 

example, we use KinView to identify and subsequently experimentally validate a suspected 

loss of function variant in PKCβ.

Finally, KinView provides a novel visual method for performing integrative comparative 

analyses between kinase groups, families and subfamilies. KinView is fundamentally 

different from other graphical visualization tools, like the molecular evolutionary genetics 

analysis (MEGA) toolkit 93, 94, as it does not rank order variants or provide mutation-impact 

scores. Instead, KinView lets the user make informed decisions by providing an interactive 

visualization framework for correlating natural, disease and PTM data all in one place. 

Although we focused our analysis on a subset of comparisons, tens of thousands of 

comparisons can be performed using KinView and the kinase domain evolutionary 

hierarchy. Thus, KinView-based comparisons spanning the entire kinase domain and 

incorporation of structural visualization such as JMoL or PyMoL will be critical in 

predicting and testing the functional impact of cancer variants. Finally, to expand the scope 
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of KinVieW and ProKinO in cancer kinome mining, integration with other ontologies such 

as the Protein Ontology95 will be essential.

Methods

The MSA Ontology

The MSAOnt ontology provides a simple schema for relating a set of sequences to a profile 

or consensus sequence (Figure 1B). The idea of representing multiple sequence alignment in 

the form of ontology, the multiple alignment ontology (MAO) 96 has been proposed 

previously. However, there are fundamental differences between (MAO) and MSAOnt. 

MSAOnt is a minimalist representation of the components of a profile or consensus 

alignment, and thus contains classes to handle insertions and deletions as single objects. 

MAO, in contrast, places equal significance on each residue position, even in insertion 

regions where only a handful of possibly thousands of sequences may be represented, which 

can drastically increase the number of instances when considering large protein families, 

like the eukaryotic protein kinases. The remaining sequences would need to instantiate a 

deletion character (‘-’) at each of the insertion positions, increasing the size of our ePK 

alignment from 241 residues to 17,789. Although the MAO is reported to be available 

through the Open Biomedical Ontology (OBO) Foundry 97 and hosted on a separate website 

(http://bips.u-strasbg.fr/LBGI/MAO/mao.html), OBO lists the ontology as deprecated and 

the published website no longer exists. Further, there is no software available which 

generates a populated instance of MAO.

In MSAOnt, subclasses of the MSAElement class provide the standard three alignment 

elements: AlignedResidue, Insertion and Deletion. The AlignedResidue class describes an 

individual residue, providing the position and amino acid found in the native sequence as 

well as the position to which it is aligned. Instances of the Deletion class contain a single 

data property, capturing the aligned position deleted in the given sequence. Finally, the 

Insertion class contains four data properties: one describing the aligned position prior to the 

insertion, the native sequence of the insertion segment, the native position of the first amino 

acid in the insertion and insertion length.

As the schema of MSAOnt is intended to be populated with instances, we also created an 

open-source Python program for populating MSAOnt given an MSA in CMA or aligned 

FASTA formats. The CMA format 98 distinguishes insertion segments using lowercase 

letters, while aligned residues are formatted in uppercase. As aligned FASTAs don't include 

this information, we infer it using the percentage of sequences lacking a residue at a given 

position. If it is greater than p%, we consider sequences with residues at that position to have 

an insertion relative to the consensus and no AlignedResidue instances are generated. 

Instead, a single Insertion element is instantiated. In contrast, if it is less than p%, sequences 

with no residue at that position have a Deletion element instantiated, while the remaining 

sequences are described using AlignedResidue instances. We have parameterized p and set a 

default value of 25. The output consists of the instantiated MSAOnt as an RDF graph, 

serialized to an output RDF file. This file can then be loaded into a triple store, such as 

Virtuoso, Jena or TopBraid, accessed through the associated SPARQL endpoint, easily 
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shared with others, and integrated with existing ontologies. It can also be loaded and queried 

programmatically on a local machine, using an ontology software package like RDFlib 99.

By semantically linking instances of the MSAElement class to the sequence in which they 

are contained, MSAOnt enables novel modes of querying MSA information. While some 

questions, such as “what is the amino acid distribution at position Y?”, can be answered in a 

straightforward manner by parsing or visualizing a standard MSA, MSAOnt provides a 

method for identifying sequences with desired characteristics. For example, sequences 

containing a specified amino acid at the gatekeeper position (121PKA), an aligned residue 

position in the kinase domain critical for inhibitor design and drug resistance, can be readily 

identified by querying MSAOnt, while performing the same task without MSAOnt would 

require writing specialized software to parse aligned sequences.

Incorporation of MSAOnt in ProKinO

The Protein Kinase Ontology (ProKinO) is a kinase-centric knowledgebase that integrates 

data from multiple manually curated information sources. It is located at http://

vulcan.cs.uga.edu/prokino and provides a wealth of data on kinases, including somatic 

cancer related variants (COSMIC) 28, reactions and pathways in which they participate 

(Reactome) 100, 101, post-translational modifications (dbPTM) 27, available sequences and 

crystal structures (KinBase, RCSB) 102, 103, general functional information (UniProt) 104, as 

well as internally generated and literature derived motif data. Conceptually, we separated the 

idea of sequence and protein domain into two classes: the Sequence class, which provides 

full protein sequences for a kinase, and the ProteinKinaseDomain class, which is a 

representation of the kinase domain alone. Some kinases, like the Jak family, contain 

multiple kinase domains, which we have labeled pk1 and pk2, following the convention in 

UniProt.

Previously, we loosely incorporated some MSA information into ProKinO by providing a 

PKA equivalent position for cancer variants and functionally relevant motifs, but the 

ProteinKinaseDomain class serves as an ideal anchor for the MSAElement instances, which 

describe our alignment of the kinase domain. Thus, for incorporation in ProKinO, we 

modified the MSAOnt schema to relate MSAElements to the ProteinKinaseDomain class in 

ProKinO. Further, to reduce the complexity of querying, the ProKinO namespace subsumes 

that of MSAOnt.

Visualization

When the number of aligned sequences is large, it can be difficult to visualize the entire 

alignment and accurately estimate conserved regions. Instead, we can collapse any number 

of aligned sequences to a single weblogo image that captures both the conservation and 

relative frequency of amino acids at each aligned position 105. The total height of a column 

is determined by its information content, while the height of each letter within a column is 

determined by the relative frequency of the amino acid it represents. Many weblogo 

visualization tools are available, both through the command line and web server interfaces, 

but they typically require a FASTA formatted input file containing the aligned sequences to 

be visualized. This prerequisite requires manual manipulation of sequence files, which 
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complicates and devalues the use of weblogos for comparative analyses. For example, we 

can easily provide a FASTA file containing the full kinome alignment and generate its 

corresponding weblogo. If we then want to see how conservation among tyrosine kinases 

(TKs) differs, we would first need to identify and extract the sequences of the PTKs and 

generate a new image. To narrow our focus to a specific family, another round of sequence 

identification and extraction is necessary. Instead of round after round of FASTA 

manipulation, we sought to leverage ProKinO's SPARQL endpoint to extract exactly those 

sequences we wish displayed.

SGVizler is a JavaScript wrapper developed to visualize the results of SPARQL queries in a 

web browser 106. It supports many of the charts available through Google Chart Tools, but 

can also generate complex visualizations through the manual manipulation of scalable vector 

graphics elements. To this end, we extended SGVizler by adding a new type of visualization: 

the weblogo, for visualizing the patterns of conservation and variation in MSAs 105. The 

SGVizler weblogo accepts the results of an aggregate SPARQL query containing three 

columns of data: a numeric representation of the aligned position, a string representing 

amino acids present and, lastly, their quantity. The conservation and relative frequencies are 

then calculated from these counts and displayed in a weblogo format, with amino acids 

colored by their biochemical properties. By altering the query, we can select sequence 

subsets for display.

KinView

To further exemplify the utility of MSAOnt and provide a tool for the rapid comparison of 

kinase sequences and residue level annotations, we created KinView, a web-based ProKinO 

specific kinase viewer written in JavaScript (Figure 1C). The display is split horizontally, 

allowing two sets of sequences to be simultaneously displayed. For each set, we utilize the 

hierarchical kinase domain classifications in ProKinO to allow the graphical selection of 

specific domain sequences, via a tree-based structure on the left side of the browser. We can 

update the residue numbering to match any human kinase UniProt sequence, using a pull-

down menu above the tree structure, though the default numbering is from the mouse PKA 

crystal structure 1atp. Every position in our alignment profiles is displayed, with insertions 

and deletions relative to the profile dependent on the numbering chosen. Insertions are 

displayed as two consecutive aligned columns with non-consecutive numbering. For 

example, epidermal growth factor receptor (EGFR) has an insertion relative to our profiles at 

native positions 752EGFR and 753EGFR in the β3-αC loop. Deletions, on the other hand, are 

displayed as aligned columns with no residue number shown beneath. In the activation 

segment, for example, PKA has a deletion relative to the profiles between residues 193PKA 

and 194PKA (Figure 2A). Upon loading, the top and bottom display a weblogo of the entire 

ePK alignment. Hovering the mouse over the weblogo displays the relative frequency of 

each amino acid at that position. Residues with associated cancer variants have their 

positions outlined in red, while the information is hidden until the mouse hovers over a 

particular residue number. Upon hovering, the cancer variants found at that position and the 

cancer type in which they are most commonly found, in the selected sequences, are 

displayed at the bottom. Similarly, residues with experimentally validated PTMs have an 

associated green circle, whose radius provides a rough measure of the number of 
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modifications observed at a given position. Hovering the mouse over the circle displays the 

exact number of kinases with experimentally validated modifications mapping to the 

position, which are normalized by kinase to remove multiplicities that arise when a 

modification is reported in more than one study. Secondary structure information is 

displayed between the logos, with β-strands denoted as blue arrows and α-helices as green 

rectangles.

We can also limit the results in several ways. By clicking on the weblogo, an amino acid 

selection interface appears. After clicking on and submitting the desired amino acids, 

MSAOnt is queried to identify in which kinases the selected amino acids are naturally 

conserved. Similarly, by clicking on the residue number or the green PTM circle, we can 

identify which kinases have selected mutant types or modified residues, respectively, at that 

position. After submission, the tree-based list of kinases is correspondingly updated, the 

weblogo is redrawn and the variant and PTM data is updated. For example, to identify which 

kinases naturally conserve a tyrosine at 204PKA, we can simply click on the weblogo above 

position 204, which displays a table of the residues naturally conserved at that position. By 

selecting ‘Y’ and clicking ‘Submit’, an MSAOnt query is submitted and the selection tree, 

natural sequence variation, cancer variants and post-translational modifications are updated 

to include information about kinases with Y204PKA. Similarly, if we want to identify kinases 

with experimentally validated phosphorylation events at 204PKA, we click on the green 

circle below position 204 and select the modified residue type. Again, the selection tree and 

integrated data is updated to reflect only those kinases that are known to be phosphorylated 

at 204PKA KinView has been successfully tested on the Chrome, Firefox and Safari web 

browsers.

Protein expression, Antibodies and Reagents

The pan anti-phospho-PKC activation loop antibody was described previously 107. The anti-

phospho-PKCα/βII (T638/641; 9375S) and pan anti-phospho-PKC (βII S660; 9371S) 

antibodies were purchased from Cell Signaling. Anti-PKCβ antibody was purchased from 

BD Transduction Laboratories. The anti-α-tubulin (T6074) antibody was from Sigma. 

Phorbol 12,13-dibutyrate (PDBu) and Uridine-5-triphosphate (UTP) were purchased from 

Sigma-Aldrich. 6His-N-terminally tagged human PLK4 (amino acids 1-269) was expressed 

and purified as described previously 108 and affinity purified using Ni-NTA agarose. Proteins 

were eluted from beads by incubation with 0.5 M imidazole. Described PLK4 mutations 

were introduced using standard PCR-based site-directed mutagenesis protocols and 

confirmed by sequencing the PLK4 1-269 coding region. pT170 PLK4 phosphospecific 

antibody was raised in rabbits against a phosphorylated PLK4 T-loop consensus peptide, and 

purified using standard affinity protocols prior to storage at -20°C 59. The PLK4 inhibitors 

VX680 and staurosporine and the PLK1 inhibitor BI2536 were employed after dilution from 

50 mM DMSO stocks stored at -80°C 79.

Kinase assays and analysis of PLK4 autophosphorylation

The kinetics of PLK4 autophosphorylation was measured by two methods. Initially 2 μg 

(∼60 pmol) of WT, Y177E, and Y177F PLK4 (1-269) recombinant protein in 50 mM Tris, 

pH 7.4, 100 mM NaCl, 1mM DTT and 100 mM imidazole were assayed at 30 °C in the 
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presence of 200 μM ATP (2μCi 32P ATP per assay) and 10 mM MgCl2. VX-680 (10 μM) 

was pre-incubated prior to ATP addition, or 1% (v/v) DMSO was included as solvent 

control. The reactions were terminated at the indicated time points by denaturation in SDS 

sample buffer prior to separation by SDS-PAGE and transfer to nitrocellulose 

membranes. 32P-incorporation into PLK4 (autophophorylation) was detected by 

autoradiography. The total amount of PLK4 loaded was detected by Ponceau S staining. In 

addition, samples were immunoblotted with purified pT170 PLK4 antibody (1:1,000 

dilution) and phosphorylation at T170 was detected with a rabbit HRP-conjugated secondary 

antibody by ECL.

Differential Scanning Fluorimetry (DSF)

The fluorescence emission of Sypro Orange dye (1:4000 final dilution from stock) was 

measured to construct thermal denaturation profiles for individual PLK4 proteins (4 μM) and 

evaluated as described using the Boltzmann equation (Mohanty et al., 2016) in the presence 

of 1 mM ATP complexed with 10 mM MgCl2 or the indicated concentrations of kinase 

inhibitor (4% (v/v) final DMSO concentration). Control samples all contained 4% DMSO as 

solvent control. Denaturation assays were performed using a StepOnePlus RT-PCR machine 

employing a thermal ramp between 25 -95 °C (0.3 °C step per data point). Mean ΔTm 

values ± SD from duplicate experiments were calculated by subtracting the control Tm value 

from the Tm value measured in the presence of ligand.

Cell Culture, Transfection, and Immunoblotting

All cells were maintained in DMEM (Corning) containing 10% fetal bovine serum (Atlanta 

Biologicals) and penicillin/streptomycin (Corning) at 37°C, in 5% CO2. Transient 

transfection of COS7 was carried out using the FuGENE 6 transfection reagent (Roche) for 

24h. Cells were lysed in 50 mM Tris, pH 7.4, 1% Triton X-100, 50 mM NaF, 10 mM 

Na4P2O7, 100mM NaCl, 5mM EDTA, 1 mM Na3VO4, 1 mM PMSF, and 50 nM okadaic 

acid. Whole cell lysates were analyzed by SDS-PAGE and immunoblotting via 

chemiluminescence on a FluorChemQ imaging system (Alpha Innotech).

FRET Imaging and Analysis

Cells were imaged as described previously 109. For activity measurements, cells were co-

transfected with the indicated mCherry-tagged PKC and CKAR. UTP-stimulated PKC 

activity traces were quantified by area under the curve and normalized to WT PKC activity. 

Data represent the average of three independent experiments. Comparisons for UTP-

stimulated activity were made using a repeated-measures one-way ANOVA followed by a 

post hoc Dunnett's multiple comparison test. **p<0.01 as compared with the WT group. All 

statistical tests were performed using Prism software version 6.0e for Mac (Graphpad 

Software).

Plasmid Constructs

The C Kinase Activity Reporter (CKAR) 92 was previously described. pENTR clones of 

DNA encoding human PKCβII were from the Ultimate Human ORF Library (Life 

Technologies). These were N-terminally tagged with mCherry via Gateway cloning (Life 
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Technologies) into pDEST-mCherry, which was generated from pcDNA3 (Life 

Technologies) with mCherry DNA (gift from Roger Tsien) subcloned into the HindIII and 

EcoRV sites and blunt ligation of the Reading Frame Cassette A (Life Technologies) into the 

EcoRV site of pcDNA3. PLK4 (1-269) was cloned into pET30 Ek/LIC and expressed in 

E.coli strain BL21(DE3) pLysS, as described 108.

PLK4 digestion and Mass Spectrometry

Tryptic digestion—Recombinant wild type PLK4 (1-269) was reduced with 3 mM DTT 

in 50 mM ammonium bicarbonate and heated at 60°C for 10 minutes. Free cysteine residues 

were subsequently alkylated with 14 mM iodoacetamide (dark, at room temperature, 30 

minutes). Excess iodoacetamide was quenched upon addition of DTT to a final 

concentration of 7 mM. Proteins were digested overnight with trypsin (2% w/w) at 37 °C.

Liquid Chromatography/Mass Spectrometry (LC-MS)—nLC-ESI-MS/MS analysis 

was performed using a Thermo Fusion mass spectrometer attached to a Ultimate 3000 nano 

system (Dionex). Peptides were loaded onto the trapping column (Thermo Scientific, 

PepMap100, C18, 300 μm × 5 mm), using partial loop injection, for seven minutes at a flow 

rate of 9 μL/min with 2% MeCN 0.1% (v/v) TFA and then resolved on an analytical column 

(Easy-Spray C18 75 μm × 500 mm 2 μm bead diameter column) using a gradient of 96.2% 

A (0.1% formic acid) 3.8% B (80% MeCN 19.9% H2O 0.1% formic acid) to 50% B over 30 

minutes at a flow rate of 300 nL min-1.. A full scan mass spectrum was acquired over m/z 
400-1500 in an Orbitrap (60K resolution at m/z 200) and data-dependent MS/MS analysis 

performed using a top speed approach (cycle time of 3 s), using either HCD and/or ETHCD 

for fragmentation, with product ions being detected in the ion trap (rapid mode).

.raw files were converted to .mgf files in Proteome Discoverer. HCD and ETHCD spectra 

were separated according to ETD reaction time (<39 ms selects HCD spectra) generating 

two separate .mgf files. Using an in-house built Perl script, the two .mgf files were merged 

and searched using MASCOT (2.1) against the E. coli IPI database (24/03/15; 4,551 

sequences) with the sequence of human PLK4 (1-269) included. Parameters were set as 

follows: MS1 tolerance of 10 ppm; MS/MS mass tolerance of 0.6 Da; carbamidomethylation 

of cysteine was set as a fixed modification; phosphorylation of serine and threonine, 

phosphorylation of tyrosine and oxidation of methionine were set as variable modifications. 

The tandem MS data for the identified phosphopeptides were interrogated manually and 

confirmed.
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Figure 1. 
A) Example benefits of integrative analysis. Placing cancer variants in the context of natural 

sequence variation and post-translational modifications provides mechanistic insight as to 

how cancer variants can disrupt functionally significant residues, like phosphorylation sites, 

to deregulate kinase catalytic activity and rewire signaling networks. Using the classification 

of the human kinome allows us to consider differences between the kinase groups, families 

and subfamilies. B) MSAOnt schema. MSAOnt consists of three main classes: 

AlignedResidue, Insertion and Deletion. Using these three classes, we can fully represent an 
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alignment of sequences to a profile or consensus. It is connected to the ProKinO 

ProteinKinaseDomain class through the hasMSAElement relation. C) The KinView 

interface. The interface is divided horizontally into top and bottom regions. Each region has 

an associated tree structure to select the kinase group, family, subfamily or domains of 

interest. The pulldown menu above the tree adjusts the residue numbering to match any 

Human kinase UniProt numbering. After clicking ‘Update’, the natural sequence variation of 

the selected kinases is displayed using a weblogo. Red circumscribed residue numbers show 

positions with cancer associated variants, while green circles show positions with 

experimentally validated post-translational modifications (PTMs). The secondary structure is 

displayed between the top and bottom regions. Detailed information is displayed by 

hovering the mouse over a residue number (cancer variants) or green circle (PTMs).
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Figure 2. 
A) KinView comparison of PTK and STK activation segments. The natural sequence 

variation is displayed in a weblogo format, with cancer variants represented with red 

circumscribed residue numbers and post-translational modifications represented with green 

circles. Major phosphorylation sites have the residue type and number of experimentally 

validated phosphorylation events displayed. Note, the lack of residue numbers below two 

columns reflect a deletion in PKA relative to the alignment profiles. B) A subset of cancer 

associated variants in PTKs. Here, we show the common variants effecting positions 201PKA 

and 204PKA in PTKs. The mutant type (MT), count and most commonly associated cancer 

type are shown. C) A subset of cancer associated variants in STKs. Here, we show the 

common variants effecting positions 201PKA and 204PKA in STKs. The mutant type (MT), 

count and most commonly associated cancer type are shown.

McSkimming et al. Page 23

Mol Biosyst. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A) Sequence alignment of model eukaryotic PLK4 activation segments, omitting the ‘DFG’ 

motif, and ending at the ‘APE’ motif. Conserved Ser/Thr amino acids are outlined in blue, 

and con-served Y170PLK4 is outlined in red. B) Coomassie blue staining of 3 μg of PLK4 

proteins separated by SDS-PAGE. C) Collision dissociation product ion tandem mass 

spectra identifying phosphorylation of T177PLK4 or D) dual phosphorylation of T170PLK4 

and Y177PLK4 in the same PLK4 phosphoshopeptide. Matched product ions are indicated.
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Figure 4. 
A) Wild type PLK4 (1-269) or D154APLK4 mutant PLK4 (1-296) were serially diluted and 

the indicated amounts (ng) were separated by SDS PAGE. Proteins were transferred to a 

nitrocellulose membrane and probed with rabbit pT170PLK4 PLK4 or 6His antibodies. 

Antibody binding was visualised using goat anti-rabbit secondary antibodies attached to 

HRP by ECL. B) PLK4 Y177EPLK4 mutation greatly reduces 32P incorporation 

(autophosphorylation) into PLK4 (top panel) and lacks detectable T170PLK4 

phosphorylation before or after ATP addition when probed with pT170PLK4 PLK4 antibody 

(middle panel). Equal loading of proteins was confirmed by staining the membrane with 

Ponceau S (bottom panel).
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Figure 5. 
A) KinView comparison of FGFR family and PDGFR family activation segments. The 

natural sequence variation is displayed in a weblogo format, with cancer variants represented 

with red circumscribed residue numbers and post-translational modifications represented 

with green circles. Major phosphorylation sites have the residue type and number of 

experimentally validated phosphorylation events displayed. B) A subset of cancer associated 

variants in FGFR family. Here, we show the common variants effecting positions 646FGFR1, 

652FGFR1 and 656FGFR1 in the FGFR family. The mutant type (MT), count and most 

commonly associated cancer type are shown. Note the high frequency of K656EFGFR1 

variants, which structurally mimic the phosphorylation of the preceding tyrosine. C) A 

subset of cancer associated variants in PDGFR family. Here, we show the common variants 

effecting positions 849PDGFRβ, 855PDGFRβ and 859PDGFRβ in the PDGFR family. The 

mutant type (MT), count and most commonly associated cancer type are shown.
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Figure 6. 
A) KinView selection of kinases that naturally conserve an asparagine at position 220PKA 

(top) and those that have mutations to asparagine at position 220PKA (bottom). Note that the 

AGC group does not naturally conserve an asparagine at 220PKA among the 15 organisms 

included in ProKinO. B) Impaired phosphorylation of D523NPKCβ PKCβII variant. The 

mutation to asparagine decreases the priming phosphorylations, which require the activity of 

PKC, in the activation loop, the C-tail turn motif and the C-tail hydrophobic motif. C) 
Normalized FRET ratio changes showing PKC activity from COS7 cells co-expressing 

CKAR and mCherry-tagged PKCβII mutant stimulated with 100μM UTP followed by 200 

nM PDBu. Graph on the right shows the signaling output resulting from UTP stimulation 

(see Methods), quantified and normalized to WT PKC activity. **p<0.01 as compared with 

WT, using a repeated-measures one-way ANOVA.
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