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Abstract: Honeycombs resemble the structure of a number of natural and biological materials such
as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption
applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading
could help understanding the mechanical behavior of more complex 3D tessellated structures such as
porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made
using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and
precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from
polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique.
The samples were mechanically tested in-plane under compression to determine their mechanical
properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal
honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then
used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s
ratio of thick honeycombs. Finite element models were also built for computational analysis of the
mechanical behavior of thick honeycombs under compression. The mechanical properties obtained
using our analytical relationships were compared with experimental observations and computational
results as well as with analytical solutions available in the literature. It was found that the analytical
solutions presented here are in good agreement with experimental and computational results even
for very thick honeycombs, whereas the analytical solutions available in the literature show a large
deviation from experimental observation, computational results, and our analytical solutions.

Keywords: cellular structures; 3D printing; elastic properties; hexagonal honeycomb

1. Introduction

Bone has the intrinsic ability of self-healing in the case of being damaged in small areas. However,
in large bony defects, bone loses its ability to repair itself by regeneration of new bony tissue.
While autologous bone grafting is known as the gold standard in orthopaedic surgery, it has some
drawbacks such as limited bone stack and donor site mordibility [1]. Recently, porous titanium and
titanium alloy scaffolds have been thoroughly investigated due to their excellent biocompatibility and
corrosion resistance, low stiffness (which is necessary for avoiding stress shielding), and good bone
regeneration performance.

Additive manufacturing techniques have made it possible to fabricate scaffolds with precisely
controlled micro-architecture. Therefore, several 3D unit cell types have been suggested and tested
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mechanically and biologically when used as the micro-architecture of bone replacing scaffolds [2,3].
Singh showed that in some areas (where bone is very dense), cancellous bone microarchitecture
resembles that of a hexagonal honeycomb with thick cell walls [4]. Hexagonal honeycombs or
honeycomb-like structures have been manufactured as biomedical implants using different additive
manufacturing techniques [5,6]. Recently, various cells have been successfully cultured in collagen
scaffold honeycombs [7–9]. It is important to study the mechanical behavior of thick honeycomb-like
structures, because the mechanical properties of the biomaterials used for tissue regeneration could
significantly influence the tissue regeneration performance of biomaterials.

The mechanical properties of honeycombs (such as their stiffness and yield stress) in out-of-plane
direction are usually much higher compared to their in-plane properties. This is why more studies
have been devoted to the investigation of out-of-plane properties of honeycombs compared to their
in-plane properties. However, honeycombs are loaded in-plane in a number of natural structures
such as cancellous bone, wood, and cork [10]. Moreover, thick honeycombs could be also useful for
energy absorption purposes in the in-plane direction. In this case, the mechanism dominating the
structure deformation is bending of the cell walls (rather than sudden buckling of the walls which
is common in the out-of-plane deformations of honeycombs) and then face-to face crushing of the
cell walls. This can lead to a smoother stress-strain curve with higher energy absorption capacity as
compared to the out-of-plane direction, if the geometrical parameters are chosen properly.

Several experimental works have been carried out on the in-plane deformation of honeycombs.
Foo et al. [11] obtained linear elastic mechanical properties of Nomex™ honeycomb structures using
extensive test programs and compared their results with those of their finite element (FE) models.
They observed size effects for the moduli of Nomex™ honeycombs. Papka and Kyriakides [12]
compressed honeycomb specimens between stiff flat grips experimentally and numerically. They found
out that although the crushing patterns developed during the plateau regime differs from specimen to
specimen (caused by specimen size and geometric imperfections), the cell failure mechanism is similar
for all cases. Other experimental works on the in-plane mechanical behavior of honeycombs can be
found in [13–17]. Several numerical studies have also been carried out using FE methods the most
important of which are in the following references [18–20].

El-Sayed et al. [21] published the first analytical study on the in-plane mechanical properties
of hexagonal honeycombs in which the elastic mechanical properties of a composite under in-plane
axial and out-of-plane bending loads were studied, and the plastic deformation properties under
in-plane axial loading were characterized. However, as stated in [10], their work had ‘numerous small
errors’ which rendered the results unreliable. In 1982, Gibson et al. [10] presented improved analytical
relationships for the mechanical properties of hexagonal honeycombs (E1, E2, υ12, υ21, σy1, σy2, G, and
σel). Their results showed good agreement with their experimental results for both rubber and metal
honeycombs but only for very small values of wall thickness and relative density.

Masters and Evans [22] developed an analytical model for prediction of elastic constants of
honeycombs by decomposing the general deformation of a honeycomb cell into flexural, stretching,
and hinging parts. For each of the three mechanisms, force constants were defined while relationships
for E1, E2, υ12, υ21, and G were calculated. The elastic constants calculated from each mechanism were
then superimposed to give a general model [23]. Masters and Evans [22] did not obtain any relationship
for yield stress. Goswami [24] derived analytical formulas for the elastic properties of hexagonal
honeycomb cores. Elemental beam theory was used for each component inside the unit cell to give
different elastic properties by means of strain energy concept. The results of their model coincided
with the results reported in [10]. Balawi and Abot [25] presented a modified model for commercial
hexagonal honeycombs having double wall thickness in vertical walls and some curvature in the
neighborhood of cell vertices caused by expansion or corrugation processes during manufacturing.

In all of the above-mentioned works, the Euler-Bernoulli beam theory is the theoretical basis for
deriving the analytical relationships. The analytical solutions obtained using the Euler-Bernoulli beam
theory are not applicable to thick honeycombs, because a number of simplifying assumptions are used
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in that theory. It is therefore important to use the Timoshenko beam theory for deriving the analytical
relationships that are used for thicker honeycombs (which can be good candidates for replacing dense
cancellous bones). In this paper, the stiffness matrix of hexagonal honeycomb structures is obtained by
which the elastic properties of honeycomb structures including the elastic modulus, Poisson’s ratio,
and yield stress in both major in-plane directions are found. The results obtained from the derived
formulas are compared with existing analytical formulas presented by Gibson and Ashby [10] and
Masters and Evans [22] as well as to the experimental results of the study of Gibson and Ashby [10] on
low density honeycombs, and with the mechanical properties measured for additively manufactured
dense honeycombs in this study. Moreover, FE models are created to validate the proposed analytical
relationships and to present the steps required for development of a trustworthy numerical tool for
investigation of thick honeycomb structures.

2. Materials and Methods

2.1. Experimental Tests

An additive manufacturing technique, i.e., fused deposition modelling, was used for fabricating
thick honeycombs with a wide range of relative densities from polylactic acid (PLA). The hexagonal
honeycombs were made from poly-lactic acid (PLA) filaments using 5th generation Replicator Desktop
Makerbot 3D printer. For each density, six samples were made (three sample for testing in each
of the two main directions of each honeycomb). The dimensions of the hexagonal honeycombs
were 77ˆ 90ˆ 21.395 cm3. Four different relative densities of honeycombs were generated by varying
the thickness to length ratio of the cell walls, i.e., t{l “ 0.09, t{l “ 0.18, t{l “ 0.27, and t{l “ 0.36
(Figure 1). The mechanical properties of the samples were measured under compression using
INSTRON 5985 machine (Illinois Tool Works Inc., Glenview, IL, USA) with 100 kN load cells.
The displacement rate of the upper grip was set to 2 mm/min. The tests and elastic properties
calculations were in accordance with the specifications described in the standard ISO 13314:2011 [26].
To measure the mechanical properties of the bulk material, i.e., additively manufactured PLA
used in the current study, bulk cylinders (100% infill) with nominal diameters of 12.7 mm and
nominal lengths of 25.4 mm were made and tested under compression using a methodology similar
to that of the honeycombs. The measured elastic modulus and yield stress of the bulk material
were 1.962 ˘ 0.069 GPa and 56.204 ˘ 1.213 MPa, respectively. To gain a better overview of the elastic
modulus and yield stress values, their normalized values (i.e., ratio of their value in the porous
structure to their corresponding value in the bulk material) were plotted and compared between the
analytical, numerical, and experimental values.
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Figure 1. The manufactured hexagonal honeycombs with (a) t/l = 0.09; (b) t/l = 0.18; (c) t/l = 0.27; and 
(d) t/l = 0.36. 
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Figure 1. The manufactured hexagonal honeycombs with (a) t/l = 0.09; (b) t/l = 0.18; (c) t/l = 0.27;
and (d) t/l = 0.36.

2.2. Relative Density

A unit cell (Figure 2b) constructing a 2D hexagonal lattice structure (Figure 2a) consists of
four vertical and four inclined edges. The lengths of the vertical and inclined edges are assumed
to be possibly different and are denoted by l and h, respectively. The angle between the inclined
edges and the X2 axis is also arbitrary and is denoted by θ. The thickness of the edges t is however
considered constant throughout the study. It is customary in the studies investigating cellular solids to
express the mechanical properties as functions of relative density (also called apparent density) rather
than other geometrical parameters such as t{l. Dealing with relative density ( ρ

ρs
) rather than other

geometrical parameters gives a better overview of the weight of the structure, and also makes it easier
to compare the mechanical properties of structures with different micro-geometrical features but of the
same weight.

In thin honeycombs, i.e., when the ratio t{l is very small, the area occupied by the material
constructing half a unit cell (Figure 3) is 2

´

h
2

t
2 ` lt` h

2
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2

¯

. On the other hand, the total area occupied
by half a unit cell is p2h` 2lcos θq l sinθ from which the relative density is given by

µ “
ρ
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(1)

In thick honeycombs, the area occupied by the material of half a unit cell is (see Figure 3)
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from which the relative density can be calculated as

µ “
ρ

ρs
“

t
`

h` 2l ´ t
sinθ `

t
2 cotθ

˘

2 ph` lcos θq l sinθ
(3)

Plotting the simplified and exact relative density relationships (i.e., Equations (1) and (3)) for
regular hexagonal honeycombs showed that their values are close regardless of t{l (see Figure 4).
Therefore, Equation (1) will be used from now on for calculating relative density because of its
simplicity and also due to its use in the work by Gibson and Ashby [10,27].
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solution; and (c) degrees of freedom acting on the considered unit cell.
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2.3. Euler-Bernoulli Beam Theory

In this section, we use the Euler-Bernoulli beam theory to derive analytical relationships for
the elastic modulus, E, Poisson’s ratio, ν, and yield stress, σy of hexagonal honeycombs as functions
of the elastic modulus, Poisson’s ratio, and yield stress of the bulk material (Es, σys , νs) and the
relative density (µ) of the honeycomb structure. Since the in-plane deformation of the honeycombs is
plane-strain, the problem is solved using beam elements with square cross-section.

The geometry and deformation of a honeycomb unit cell under simple axial loading is symmetrical
with respect to both X1 and X2 directions. Therefore, the deformation of 1

4 of a unit cell is representative
of the deformation of all the four quarters. The symmetry of the unit cell with respect to X1 and X2

also implies that edges AB and A8B8 (Figure 2c) remain straight during the elastic deformation and that
they are only contracted or expanded with no additional flexure. Therefore, each of points A and B
have only one degree of freedom denoted by q1 and q2, respectively. Since the deformation of edge CC8

in a unit cell is symmetrical with respect to the deformation of edge C88C888 in the neighbouring unit
cell located on its left side, similar to edge AB, edge CC8 cannot have any rotation or lateral deflection
along its length. Therefore, point C can have only two degrees of freedom, which are displacements in
the X1 and X2 directions and are denoted q4 and q3, respectively. Edge BC cannot have any rotation at
its ends B and C, but it can bend in its middle part.

As for the bending moment, the Euler–Bernoulli beam equation can be written as

d4w
dx4 “ 0 (4)
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where w is the deflection of the mid-surface and x is the coordinate of the considered point.
The solution to this differential equation can be expressed as:

w “ c0 ` c1x` c2x2 ` c3x3 (5)

where constants c0 ´ c3 must be determined by applying certain boundary conditions. For a cantilever
Euler-Bernoulli beam at the free end of which a point load F acts, we have

δ “
Fl3

3Es I
and θ “

Fl2

2Es I
(6)

and for a cantilever beam with a concentrated moment M at its end, the displacement and rotation are

δ “
Ml2

2Es I
and θ “

Fl
Es I

(7)

In beams that the angle of the free end does not change during the deformation (e.g., the edges of
the honeycomb considered in this study), the rotations produced by the lateral load F and moment M
must be equal and opposite from which the value of M can be identified:

Fl2

2Es I
“

Ml
Es I

ñ M “
Fl
2

(8)

While the force F tends to increase the lateral displacement, the moment M tends to reduce the
deflection (Figure 5a). The total deflection resulted from force F and moment M is then

δ “
Fl3

3Es I
´

ˆ

Fl
2

˙

l2

2Es I
“

Fl3

12Es I
(9)

Rewriting Equation (9) as a function of F gives (see Figure 5a)

F “
12Es I

l3 δ (10)

Similarly, the axial force required to displace the end of a rod by u is AEsu{l (see Figure 5). Figure 5
will be referred to several times in the rest of the paper for determining the forces and moments.
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2.4. Timoshenko Beam Theory

The Timoshenko beam theory takes into account shear deformation and rotational inertia effects,
making it suitable for describing the behavior of thick beams. For a homogenous beam of constant
cross-section, the governing equations of the Timoshenko beam theory are:

d2

dx2

ˆ

Es I
dϕ

dx

˙

“ q px, tq

dw
dx

“ ϕ´
1

κAGs

d
dx

ˆ

Es I
dϕ

dx

˙
(11)

where ϕ is the angle of rotation of the normal to the mid-surface of the beam and κ is the shear
coefficient factor. The shear coefficient factor is 10 p1` νsq { p12` 11νsq for a rectangular cross-section
(such as the beams considered in this study). In a linear elastic Timoshenko beam, the bending moment
M is related to the angle of rotation ϕ by

M “ ´Es I
Bϕ

Bx
(12)

For a cantilever Timoshenko beam with a point load F at its free end, M “ Fl and Equations (11)
lead to

δ “
Fl3

3Es I
`

Fl
κAGs

and θ “
Fl2

2Es I
`

F
κAGs

(13)

The displacement and rotation of a cantilever Timoshenko beam with a concentrated moment M
at its free end are identical to those of a similar Euler-Bernoulli beam. As before, the rotations produced
by the lateral load F and moment M must be equal and opposite from which M can be calculated

Fl2

2Es I
`

F
κAGs

“
F
?

2
16 l2

2Es I
“

Ml
Es I

ñ M “ F
ˆ

l
2
`

Es I
κAGsl

˙

(14)

While F tends to increase the lateral displacement, M tends to reduce it. The total deflection
caused by F and M is then

δ “
Fl3

3Es I
`

Fl
κAGs

´

ˆ

Fl
2
`

FEs I
κAGsl

˙

l2

2Es I
“

Fl3

12Es I
`

Fl
2κAGs

(15)

Rewriting Equation (15) as a function of F gives

F “
1

l3

12Es I `
l

2κAGs

δ (16)

2.5. Stiffness Matrix Derivation

Due to the symmetry of the hexagonal unit cell, 1
4 of the unit cell was considered for the analytical

study (the top left part of Figure 2c). Therefore, the obtained force at points A and B must be multiplied
by two to calculate the total force applied to the corresponding degrees of freedom (DOFs) q1 and q2,
respectively. Similarly, the obtained forces for point C must be multiplied by four to give the total force
applied to the third and fourth DOFs, i.e., q3 and q4.

In this study, the stiffness matrix of the unit cell is obtained which is then used to calculate
the displacements of the DOFs of the structure as functions of the imposed force. Given the
displacements of the DOFs, analytical relationships for the mechanical properties of the unit cell
can be derived. The displacements of a hexagonal unit cell can be considered as superposition of four
distinct displacements taking place at each DOF separately. To obtain the elements of the ith column of
the stiffness matrix, DOF qi is displaced by unity while the other DOFs are kept fixed. The forces that
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must be applied at each DOF to cause such a deformation constitute column i of the stiffness matrix.
By applying this technique to all the DOFs, the elements of all the columns of the stiffness matrix are
obtained. The force-displacement relationship of this system has the following form:

$

’

’

’

&

’

’

’

%

Q1

Q2

Q3

Q4

,

/

/

/

.

/

/

/

-

“

»

—

—

—

–

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

fi

ffi

ffi

ffi

fl

$

’

’

’

&

’

’

’

%

q1

q2

q3

q4

,

/

/

/

.

/

/

/

-

(17)

where Qi is the external force applied to a DOF qi. In the following, the procedure of obtaining the
stiffness matrix elements, kij, is presented. When applying the displacements, it is necessary to know
what external forces must be applied at each DOF. Figure 5 demonstrates the loads required to cause
lateral and axial unit displacements at the free end of a cantilever Euler-Bernoulli beam. This figure is
referred to several times in the following.

2.5.1. The First DOF: q1 “ 1

In this subsection, the elements of the first column of the stiffness matrix are derived by applying
the displacement q1 “ 1 and setting q2 “ q3 “ q4 “ 0. This deformation displaces the top and bottom
points A and A‘ by unity upwards and downwards, respectively. Due to this deformation, strut AB is
axially stretched by unity and applies the force 2AEs

h (see Figure 6a) to points A and B. In order to have
such a deformation, the forces Q1

2 “
2AEs

h and Q2
2 “ ´

2AEs
h must be applied to points A and B which

give Q1 “ k11 “
4AEs

h and Q2 “ k21 “ ´
4AEs

h . The negative value of Q2 implies that in order to keep
point B fixed, the external load in point B must be in the opposite direction of q2. Since beams BC and
CC8 are not affected by this deformation mode, no external force is needed to be applied to point C,
hence Q3 “ k31 “ Q4 “ k41 “ 0.
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2.5.2. The Second DOF: q2 “ 1

In this case, beams AB and A8B8 go under pure compression. In contrast to case q1 “ 1, here
we have Q1

2 “ ´
2AEs

h and Q2
2 “

2AEs
h (Figure 6b). Unlike the previous case (q1 “ 1), here beam BC

does deform (Figure 6c). The displacement of point B can be decomposed into two displacement of
sinθ perpendicular to the undeformed beam BC and cosθ along it (Figure 6c). To have such axial and
lateral displacements, the forces AEs

l cosθ and 12Es I
l3 sinθ must have been applied to the ends of beam

BC (Figure 6c). Equilibrium of forces in the X1 direction at point B gives (Figure 6b,c)
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ÿ

fX1, B “ 0 Ñ ´2
ˆ

AEs

l
cos2θ`

12Es I
l3 sin2θ

˙

´
2AEs

h
`

Q2

2
“ 0

Ñ Q2 “ k22 “ 4
ˆ

AEs

l
cos2θ`

12Es I
l3 sin2θ

˙

`
4AEs

h

(18)

Beam CC8 is fixed and therefore imposes no forces to point C. Force equilibrium at point C in the
X1 and X2 directions gives (Figure 6c)

ÿ

fX1, C “ 0 Ñ ´

ˆ

AEs

l
cosθsinθ`

12Es I
l3 cosθsinθ

˙

`
Q4

4
“ 0

Ñ Q4 “ k42 “ 4cosθsinθ

ˆ

AEs

l
´

48Es I
l3

˙ (19)

ÿ

fX2, C “ 0 Ñ
AEs

l
cos2θ`

12Es I
l3 sin2θ`

Q3

2
“ 0

Ñ Q3 “ k32 “ ´4
AEs

l
cos2θ´

48Es I
l3 sin2θ

(20)

2.5.3. The Third DOF: q3 “ 1

This deformation type displaces vertex C upward by unity. Beam AB does not deform and,
thus, does not impose any load to point B. Point A is not influenced by this deformation mode, thus
Q1 “ k13 “ 0. Force equilibrium at point B in the X2 direction gives (Figure 7a)

ÿ

fX2, B “ 0 Ñ 2
ˆ

AEs

l
cos2θ`

12Es I
l3 sin2θ

˙

`
Q2

2
“ 0

Ñ Q2 “ k23 “ ´4
ˆ

AEs

l
cos2θ`

12Es I
l3 sin2θ

˙ (21)

Beam CC8 (with length h and cross-section area of A{2) is stretched by 2 and therefore imposes
the force AEs{h to point C. Force equilibrium at point C in the X2 direction gives (Figure 7a)

ÿ

fX2, C “ 0 Ñ ´
AEs

l
cos2θ´

12Es I
l3 sin2θ´

AEs

h
`

Q3

4
“ 0

Ñ Q3 “ k33 “
4AEs

l
cos2θ`

48Es I
l3 sin2θ`

4AEs

h

(22)

Similarly, force equilibrium at the same point in the X1 direction gives (Figure 7a)

ÿ

fX1, C “ 0 Ñ cosθsinθ

ˆ

´
AEs

l
`

12Es I
l3

˙

`
Q4

4
“ 0

Ñ Q4 “ k43 “ cosθsinθ

ˆ

48Es I
l3 ´

4AEs

l

˙ (23)
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2.5.4. The Fourth DOF: q4 “ 1

This deformation type displaces vertex C towards the left by unity. Similar to the case q3 “ 1,
we have Q1 “ k14 “ 0. Force equilibrium at point B and in the X2 direction gives (Figure 7b)

ÿ

fX2, B “ 0 Ñ ´
2AEs

l
cosθsinθ `

24Es I
l3 cosθsinθ `

Q2

2
“ 0

Ñ Q2 “ k24 “

ˆ

4AEs

l
´

48Es I
l3

˙

cosθsinθ
(24)

Beam CC8 simply displaces without any deformation, and therefore does not impose any load to
point C. Force equilibrium in the X1 direction at point C gives (Figure 7b)

ÿ

fX2, C “ 0 Ñ ´
AEs

l
sin2θ ´

12Es I
l3 cos2θ `

Q4

4
“ 0

Ñ Q4 “ k44 “
4AEs

l
sin2θ `

48Es I
l3 cos2θ

(25)

Similarly, force equilibrium at the same point in the X2 direction gives (Figure 7b)

ÿ

fX1, C “ 0 Ñ cosθsinθ

ˆ

AEs

l
´

12Es I
l3

˙

`
Q3

4
“ 0

Ñ Q3 “ k34 “ cosθsinθ

ˆ

48Es I
l3 ´

4AEs

l

˙ (26)

2.5.5. The Stiffness Matrix

Using the obtained stiffness matrix elements, the force-displacement relationship based on
Euler-Bernoulli beam theory in the matrix form is

#

Q1
Q2
Q3
Q4

+

“

»

—

–

4AEs
h ´

4AEs
h 0 0

´
4AEs

h
4AEs

l cos2θ `
48Es I

l3
sin2θ `

4AEs
h ´

4AEs
l cos2θ ´

48Es I
l3

sin2θ

ˆ

4AEs
l ´

48Es I
l3

˙

cosθsinθ

0 ´
4AEs

l cos2θ ´
48Es I

l3
sin2θ 48Es I

l3
sin2θ `

4AEs
l cos2θ `

4AEs
h

ˆ

´
4AEs

l `
48Es I

l3

˙

cosθsinθ

0 4AEs
l cosθsinθ ´

48Es I
l3

sinθcosθ

ˆ

48Es I
l3

´
4AEs

l

˙

cosθsinθ 48Es I
l3

cos2θ `
4AEs

l sin2θ

fi

ffi

fl

#

q1
q2
q3
q4

+

(27)

Comparison of Equations (10) and (16) shows that the matrix-form force-displacement relationship
for the Timoshenko beam theory can be obtained by replacing 12Es I

l3 in Equation (27) by 1
l3

12Es I`
l

2κAGs
which yields

$

’

’

’

&

’

’

’

%

Q1

Q2

Q3

Q4

,

/

/

/

.

/

/

/

-

“

»

—

—

—

—

—

—

—

—

—

–

4AEs
h ´

4AEs
h 0 0

´
4AEs

h
4AEs

l cos2θ ` 4
l3

12Es I`
l

2κAGs

sin2θ ` 4AEs
h ´

4AEs
l cos2θ ´ 4

l3
12Es I`

l
2κAGs

sin2θ

ˆ

4AEs
l ´ 4

l3
12Es I`

l
2κAGs

˙

cosθsinθ

0 ´
4AEs

l cos2θ ´ 4
l3

12Es I`
l

2κAGs

sin2θ 4
l3

12Es I`
l

2κAGs

sin2θ ` 4AEs
l cos2θ ` 4AEs

h

ˆ

´
4AEs

l ` 4
l3

12Es I`
l

2κAGs

˙

cosθsinθ

0 4AEs
l cosθsinθ ´ 4

l3
12Es I`

l
2κAGs

sinθcosθ

ˆ

4
l3

12Es I`
l

2κAGs

´
4AEs

l

˙

cosθsinθ 4
l3

12Es I`
l

2κAGs

cos2θ ` 4AEs
l sin2θ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

&

’

’

’

%

q1

q2

q3

q4

,

/

/

/

.

/

/

/

-

(28)

Since point B is an internal vertex, no external force is applied to it. The external force applied
to point C in the X2 direction is zero, thus Q2 “ Q3 “ 0. If the stress acting on the structure in the
X1 direction is denoted by σx, using the geometrical relations, the force acting on point C in the X1

direction can be obtained as 2 ph` lcosθq σ1 b, where b is the thickness of the honeycomb structure in
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its out of plane direction. Similarly, the force acting on point A in the X2 direction is calculated as
2lsinθ σ2 b, where σ2 is the stress acting on the structure in the X2 direction. The force vector is therefore

$

’

’

’

&

’

’

’

%

Q1

Q2

Q3

Q4

,

/

/

/

.

/

/

/

-

“

$

’

’

’

&

’

’

’

%

2 r2lsinθσ2 bs
0
0

4 r2 ph` lcosθq σ1 bs

,

/

/

/

.

/

/

/

-

“

$

’

’

’

&

’

’

’

%

4lsinθσ2 b
0
0

8 ph` lcosθq σ1 b

,

/

/

/

.

/

/

/

-

(29)

2.6. The Obtained Elastic Properties

For any deformation, the unknown displacements can be simply obtained by inverting the stiffness
matrix given in Equations (27) or (28) and multiplying it by the force vector given in Equation (29).
Using the obtained unknowns, it is possible to calculate the elastic modulus, Poisson’s ratio, and yield
stress of the honeycomb structure as functions of the geometrical and material properties Es, σys , νs.

2.6.1. Elastic Modulus

The elastic modulus in each direction is found by dividing the applied stress in that direction by
the resulting strain in that direction, i.e., E1 “ σ1{ε1 “ σ1 plsinθq {q4 and E2 “ σ2{ε2 “ σ2 ph` lcosθq {q1.
Using the Euler-Bernoulli stiffness matrix, the relative elastic modulus in the X1 direction is obtained as

ˆ

E
Es

˙

1
“

t3

l3
l sinθ

h pcosθ ` 1q
´

sin2θ
` t

l
˘2
` cos2θ

¯ (30)

and using the Timoshenko stiffness matrix, the relative elastic modulus in the X1 direction is
obtained as

ˆ

E
Es

˙

1
“

t3

l3
l sinθ

h pcosθ ` 1q
´

cos2θ ` 0.2
` t

l
˘2 cos2θ `

` t
l
˘2
` 1.1 νs

` t
l
˘2 cos2θ

¯ (31)

The relative elastic modulus in the X2 direction for the Euler-Bernoulli beam theory is

ˆ

E
Es

˙

2
“

t3

l3

h
l ` cosθ

sinθ
´

2h
l
` t

l
˘2
`

` t
l
˘2 cos2θ ` sin2θ

¯ (32)

and for the Timoshenko beam theory is

ˆ

E
Es

˙

2
“

t3

l3

h
l ` cosθ

sinθ
´

2h
l
` t

l
˘2
`
` t

l
˘2
` sin2θ

¯

` sin3θ
´

0.2
` t

l
˘2
` 1.1

` t
l
˘2

νs

¯ (33)

2.6.2. Poisson’s Ratio

The Poisson’s ratio can be obtained by dividing the two strains in the X1 directions. For ν12, we
have ν12 “

ε2
ε1
“

q1
q4

l sinθ
ph`lcosθq

for σ1 ‰ 0 and σ2 “ 0. Using the Euler-Bernoulli force-displacement
relationship (i.e., Equation (27)), the Poisson’s ratio ν12 is found as

ν12 “
lsin2θcosθ

`

l2 ´ t2˘

´

t2sin2θ ` l2cos2θ
¯

ph` lcosθq
(34)

and for Timoshenko beam theory, it is

ν12 “
lsin2θcosθ

`

l2 ` 0.2 t2 ` 1.1 t2νs
˘

`

l2cos2θ ` 0.2 t2cos2θ ` t2 ` 1.1 t2cos2θνs
˘

ph ` lcosθq
(35)
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For ν21, we have ν21 “
ε1
ε2
“

q4
q1

ph`lcosθq
l sinθ for σ2 ‰ 0 and σ1 “ 0, which for the Euler-Bernoulli beam

theory gives

ν21 “
cosθsinθ

`

l2 ´ t2˘ ph ` l cosθq

sinθ
`

2ht2 ` t2lcos2θ ` l3sin2θ
˘ (36)

and for the Timoshenko beam theory, it is

ν12 “
cosθ sinθ ph ` lcosθq

`

l2 ` 0.2 t2 ` 1.1 t2νs
˘

sinθ
`

l3sin2θ ` 2 t2 h` t2 l ` 0.2 t2l sin2θ ` 1.1 t2 l νssin2θ
˘ (37)

2.6.3. Yield Stress

In the FE simulations, it was seen that that the end points of the inclined edges are the location
with maximum stress for all cases of axial loading in the X1 direction, axial loading in the X2 direction,
and bi-axial loading. In a general deformation of beam BC, in which point B is dislocated by q2

in the X2 direction and point C is dislocated by q4 and q3 respectively in the X1 and X2 directions,
by assuming that beam BC is clamped at one of its ends B or C, increase in the length of the beam
BC is q4sinθ ` pq2 ´ q3q cosθ. Similarly, the relative lateral displacement of the free end of beam BC
is pq2 ´ q3q sinθ ´ q4cosθ. These displacements cause axial load (Figure 5b) and bending moments
(Figure 5a) in the beam

P “
AEs

l
pq4sinθ ` pq2 ´ q3q cosθq

M “
6Es I

l2 ppq2 ´ q3q sinθ ´ q4cosθq

(38)

which impose the axial and flexural stresses of

σaxial “
Es

l
pq4sinθ ` pq2 ´ q3q cosθq

σf lexure “
3Est

l2 ppq2 ´ q3q sinθ ´ q4cosθq

(39)

By adding the axial and flexural stresses given in the above equation, the maximum stress in the
honeycomb unit cell can be found. The yield stress of the structure is then given by

σy “
σysσi

σmax
(40)

where σys is the yield stress of the bulk material, σi is the applied stress in direction i, and σmax is the
resulting maximum stress σmax “ σaxial ` σf lexure. The relative yield stress in the X1 direction for the
Euler-Bernoulli beam theory is found as

ˆ

σy

σys

˙

1
“

1
h p1` cosθq

ˆ

t2

t sinθ ` 3l cosθ

˙

(41)

The analytical relationship for the yield stress based on the Timoshenko beam theory was lengthy
and, had limited influence on the yield stress. We therefore do not present the analytical relationship
for the yield stress in the X1 direction based on the Timoshenko beam theory. The relative yield stress
in the X2 direction was found as

ˆ

σy

σys

˙

2
“

1
l sinθ

ˆ

t2

3l sinθ ´ t cosθ

˙

(42)
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for the Euler-Bernoulli beam theory and

ˆ

σy

σys

˙

2
“

1
l sinθ

˜

t2

3l sinθ ´ tcosθ ` 3 t2

l p1.2` 1.1νsq sinθ

¸

(43)

for the Timoshenko beam theory.

2.7. Computational Modelling

In this study, FE simulations were used as a validation tool for the analytical relationships
derived above. The planar deformation of the honeycomb structures suggests using beam elements
for representing the cell edges. All the links in the hexagonal honeycomb structure were represented
mechanically by beams that were rigidly connected at the vertices. The edges were discretized using
the standard Timoshenko beam elements that uses linear interpolation approximation and allows for
transverse shear deformation. Considering transverse shear deformation becomes more important in
thick beams (such as the ones constructing a high density honeycomb) compared to slender beams.
Since in this study, the mechanical properties of the honeycomb are obtained in elastic regime, and
since the results are reported in normalized values, the type of material for the FE modelling does not
affect the results (i.e., the normalized values of mechanical properties). The material considered for the
numerical analysis was steel and its mechanical behavior was assumed to be linear elastic, with the
elastic modulus Es “ 200 GPa and the Poisson’s ratio νs “ 0.3.

The static nonlinear implicit solver of ANSYS FE code was used for solving the problem.
The geometry of the FE model (Figure 8) was identical to the geometry of the unit cell used for the
analytical derivations (Figure 2). All the vertices were constrained in the X3 direction (perpendicular
to the page). The vertices A, B, A8, and B8 connected to the two vertical beams AB and A8B8 were
constrained in the X1 direction (see Figure 2). In order to avoid singularity of the pivot terms in the
ANSYS solver caused by rigid body movements, the degrees of freedom of one of the vertices must be
completely constrained in the space. Since this structure has no central vertex, the bottom point A8

was fixed in space.
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Figure 8. (a) The geometry, loads, and boundary conditions used in the 2D hexagonal honeycomb
finite element (FE) model; and (b) its deformed shape, for σ1 ‰ 0 and σ2 “ 0.

The elastic modulus of the structure in each direction was calculated by applying a uniaxial
stress σi and measuring the resulting strain in the same direction εi and then dividing both values, i.e.,
Ei “

σi
εi

. The Poisson’s ratios were determined by dividing the negative value of the lateral strain by
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the axial strain. The yield stress was found by finding the maximum stress, σmax, in the FE model and
then substituting it in Equation (40).

3. Results

All the samples showed 45˝ failure bands during their post yielding behavior (Figure 9). Since the
experimental data provided by Gibson and Ashby [10,27] are only presented for very small relative
densities (µ ă 0.02) and the experimental results obtained in this paper cover relatively large relative
densities (0.2 ă µ ă 0.55), the diagram of each mechanical behavior is plotted in two ranges of
relative densities: one from 0 to 0.02, and the other from 0 to 0.5. At very small relative densities,
the elastic modulus obtained from the derived analytical formulas (based on both Timoshenko and
Euler-Bernoulli beam theories), the analytical formulas presented by Gibson and Ashby [10,27] and
Masters [22], the FE model, and Gibson and Ashby [10,27] experimental observations all coincide
well with each other (Figures 10a and 11a), but they start to deviate from each other as the relative
density of the structure increases. For a relative density of 0.5, the elastic modulus predicted by the
Gibson and Ashby formula is almost twice that obtained from the analytical Timoshenko formula
(i.e., Equations (31) and (33)) and the FE model (Figures 10b and 11b).
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Figure 10. Variation of relative elastic modulus in X1 direction (E1{Es) vs. relative density (ρ{ρs) for
analytical, experimental, and numerical results. (a) For small relative density range; and (b) for the
complete range of relative density.

For large relative densities, the analytical elastic modulus formulas presented by Gibson and
Ashby deviate significantly from the other results, i.e., the Euler-Bernoulli beam theory (obtained in this
study and obtained by Masters and Evans [22]), the Timoshenko beam theory, the numerical results, and
the experimental data of the tests carried out in this study (Figures 10b and 11b). The elastic modulus
formulas presented by Masters and Evans [22] and the Euler-Bernoulli-based formulas obtained in
this study rely on each other for all the values of relative density. Moreover, the elastic modulus
obtained based on the Timoshenko beam theory is smaller than that based on the Euler-Bernoulli beam
theory and is generally in better agreement with numerical results (Figures 10b and 11b). Compared
to Gibson and Ashby analytical formulas and the derived Euler-Bernoulli theory, the Timoshenko
analytical elastic modulus presented in this study corresponds much better with both experimental
and numerical results.
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Figure 11. Variation of relative elastic modulus in X2 direction (E2{Es) vs. relative density (ρ{ρs) for
analytical, experimental, and numerical results. (a) For small relative density range; and (b) for the
complete range of relative density.

The formulas presented by Gibson and Ashby predict a constant Poisson’s ratio (i.e., ν “ 1) for
all values of relative density. Both the analytical formulas derived in this paper and our FE results,
coincide with the Gibson and Ashby result at very small relative densities, but start to decrease as the
relative density increases (Figure 12). The FE results almost coincide with the analytical results obtained
using the Timoshenko beam theory. Moreover, the Poisson’s ratio formulas presented by Masters [22]
and the Euler-Bernoulli-based formulas derived here lie on top of each other. The Poisson’s ratio
value is identical in the X1 and X2 directions for both numerical and analytical results (ν12 “ ν21).
At µ “ 0.5, the predicted Poisson’s ratios obtained from all the methods implemented in this study are
all between 0.5 and 0.6, which is in contrast with the prediction of Gibson and Ashby theory which is 1.
The experimental results obtained from a number of tests carried out by Gibson and Ashby [10,27]
also show much smaller Poisson’s ratio than their theoretical predictions.
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Unlike the elastic modulus and Poisson’s ratio for which all the numerical and analytical methods
gave very close results at small relative densities, the analytical formulas given by Gibson and Ashby
predict different yield stresses even at small relative densities (Figure 13). The analytical formulas
obtained in this study, the FE model, and Gibson and Ashby’s experimental data are in good agreement
for small relative densities, but the analytical formulas presented by Gibson and Ashby are somewhat
different from all other results (Figures 13a and 14a). For example, for a small relative density of 0.02,
the yield stress predicted by Gibson and Ashby formulas is about 30% higher than those predicted
by other techniques. This deviation continues to increase for larger relative densities, especially in
the X2 direction (Figure 14b). At the relative density of 0.5, the yield stress σy2 predicted analytically
by the relationships presented in the Gibson and Ashby study is at least twice that given by other
techniques. The analytical relationships derived using both Euler-Bernoulli and Timoshenko theories
almost coincide for relative densities smaller than 0.15 (Figures 13 and 14). For all relative densities,
the yield stress formula based on the Timoshenko beam theory correlates well with the experimental
tests carried out in this study, Gibson and Ashby’s experimental results, and the FE results (Figure 13).
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It is noteworthy to mention that the analytical relationships derived for the Poisson’s ratio and
elastic modulus are identical in both major directions X1 and X2 (see Figure 12 and compare Figures 10
and 11). Therefore, the reciprocal relationship E1ν21 “ E2ν12 is also valid for the honeycomb. However,
the structure shows a higher yield stress in the X1 direction. For example at µ “ 0.5, the yield stress in
the X1 direction is 18.5% higher than that in the X2 direction. This large difference in the yield stress in
both major directions disappears for small values of relative density (compare Figure 13a, Figure 14a).
The yield stress formulas derived by Gibson and Ashby, however, predict similar yield stress values
for both major directions.

4. Discussion

Unlike the 2D nature of deformation in honeycomb structures, the deformation of foam struts
(or walls) can be under the effect of many different loading conditions such as torsion and bending
in multiple directions. In honeycomb structures, due to the intrinsic simplicity and symmetry of
cell geometries, the degrees of freedom of the structure are small. However, the freedom of the
struts in foam structures to move in any direction and angle makes it much more difficult to obtain
analytical relationships for such structures. In addition to the benefits stated before, studying the
mechanical behavior of 2D honeycomb structures under in-plane loading has also the advantage
that its results shed light on studying the much more complex responses of 3D tessellated structures,
such as foams [27] and additively manufactured porous biomaterials [28–30]. The new matrix-based
derivation of analytical relationships is very advantageous in simplifying very complex 3D unit cells
with large degrees of freedom.

Honeycombs are usually constructed using the two manufacturing methods namely corrugation
and HOBE (HOneycomb Before Expansion). Production of honeycombs using these two methods
requires expensive equipment and several preparation methods. The advent of additive manufacturing
(AM) techniques, such as selective laser melting (SLM) [31], selective electron beam melting
(SEBM) [32], and selective laser sintering (SLS) [33], has enabled the production of several structures
with complex geometries with remarkable ease. Porous structures with controllable unit cell type
and size are among the many different structures that are currently being created using additive
manufacturing methods. In recent years, the most focus has been on production and analysis of 3D
structures with different unit cell geometries for biomedical applications, such as diamond [34,35],
rhombic dodecahedron [36], truncated cuboctahedron [2], rhombicuboctahedron [37], truncated
cube [3], etc. Production of honeycombs using additive manufacturing techniques [38,39] has the
advantage of providing freedom in choosing the unit cell type. These techniques are also able to
produce lattice structures with unit cell sizes smaller than 100 µm. The cell walls of the additively
manufactured hexagonal honeycombs can be chosen to be thicker than traditional honeycombs (and
in fact for cases with small unit cells, they have to be thick).

In denser honeycombs, the established in-plane analytical elastic modulus and Poisson’s ratio
relationships derived by Gibson and Ashby [10] and Masters and Evans [22] show significant deviations
from numerical and experimental results. In those cases, the analytical results obtained in this paper
show much more accurate results. For small relative densities where the thickness of the cell walls are
small compared to their length, neglecting the shear deformation and axial compression or tension
of the cell walls does not have a negative effect on the prediction of the deformation of the geometry.
In fact, in thin honeycombs, the beam is much weaker in the lateral direction as compared to the axial
direction. Therefore, the axial compression or tension of the beam does not contribute considerably to
the total deformation of the beam. However, as the relative density is increased, the flexural stiffness of
the beams increases faster than the axial stiffness of the beam until it reaches a value that is comparable
with the axial stiffness. In the analytical analysis carried out by Gibson and Ashby [10], the shear
deformation and axial tension or compression of the beams are neglected, which explains the large
discrepancy of elastic modulus and Poisson’s ratio in large t{l ratios.
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Unlike the elastic modulus and Poisson’s ratio, the analytical yield stress formulae obtained by
Gibson and Ashby [10] shows deviation from numerical and experimental results even at small relative
densities. Our analytical yield stress values, however, show good correlation in all the relative density
ranges. This discrepancy can also be explained by the terms neglected in Gibson and Ashby [10]
derivations. While the structure elastic modulus and Poisson’s ratio values relate to the deformation
of the beams, the structure yield stress relates to the stress generated in the beams. In small relative
densities, the maximum stress resulted from the axial internal loads in the beams can also be high (since
the generated axial stress in the beam is simply a result of the axial component of the applied external
load applied to the beam), although the resulting deformation can be tiny (due to the much higher
axial stiffness of the beam compared to their flexural stiffness). That is why the yield stress formula
derived by Gibson and Ashby [10] shows considerable deviation from the other results (numerical,
experimental, and the analytical formulas obtained in this paper) even at small t{l ratios.

Generally, there are two numerical approaches to model the honeycombs: macro-geometrical and
micro-geometrical. In the micro-geometrical approach, all the cell walls are created in the FE model.
This method is usually useful only for parts with not a very large number of cells. Since each wall
has to be discretized using several elements, using the micro-geometrical approach for large parts is
computationally expensive. In the macro-geometrical approach, the microstructure of the honeycomb
is not modelled and simple cubic or square elements with an assigned honeycomb material model are
implemented. Before creating a macro-geometrical FE model, knowing the effective elastic properties
of the honeycomb is necessary [11] which is usually obtained from experimental tests. In both the
numerical modelling methods, the user has to handle modelling parameters for achieving accurate
results that sometimes are complex to deal with. Compared to numerical modelling, understanding
the mechanism and physical effects through the problem is much easier and faster using analytical
relationships [40].

The proposed methodology is quite general and applies to additive manufactured and
conventionally manufactured honeycombs alike. The use of additive manufacturing techniques is,
however, important from two viewpoints. First, different designs of honeycombs with different shapes
could be easily realized with additive manufacturing techniques. Since the essence of the methodology
proposed here is applicable to other geometries, we think the fundamental aspects of the proposed
analytical techniques could be used for a wide range of additively manufactured honeycombs perhaps
with some modifications in some of the derivation steps of the analytical relationships. Moreover,
additive manufacturing techniques could be used for designing more complex geometrical shapes in
general and gradients in the wall thickness and pore geometry in particular. This form-freedom creates
various design opportunities that could be best utilized when the effects of changes in the design
of the honeycombs on the mechanical behavior of the resulting scaffolds could be easily predicted.
The analytical relationships presented here and their variants could be used to predict the mechanical
properties of the honeycombs resulting from various design options.

5. Conclusions

The main contribution of this research was the derivation of analytical relationships for elastic
properties (elastic modulus, Poisson’s ratio, and yield stress) of hexagonal honeycomb structures in
their two major in-plane directions. Towards this end, the stiffness matrices of a hexagonal honeycomb
unit cell were obtained using both Euler-Bernoulli and Timoshenko beam theories. An FE model was
also created for validation of the proposed analytical relationships as well as to illustrate the required
steps required for development of a trustworthy numerical tool for investigation of plane-strain
honeycomb structures. Several structures were also manufactured using a filament-based additive
manufacturing machine. Compared to the existing analytical relationships for in-plane deformation of
hexagonal honeycombs presented by Gibson and Ashby [10] and Masters and Evans [22], the obtained
analytical relationships in this study for both Euler-Bernoulli and Timoshenko beam theories were
much closer to the experimental and numerical results.
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