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Abstract

Background—Nitric oxide (NO), a highly versatile signaling molecule, exerts a broad range of 

regulatory influences in the cardiovascular system that extends from vasodilation to myocardial 

contractility, angiogenesis, inflammation, and energy metabolism. Considerable attention has been 

paid to deciphering the mechanisms for such diversity in signaling. S-nitrosylation of cysteine 

thiols is a major signaling pathway through which NO exerts its actions. An emerging concept of 

NO pathophysiology is that the interplay between NO and reactive oxygen species (ROS), the 

nitroso/redox balance, is an important regulator of cardiovascular homeostasis.

Scope Of Review—ROS react with NO, limit its bioavailability, and compete with NO for 

binding to the same thiol in effector molecules. The interplay between NO and ROS appears to be 

tightly regulated and spatially confined based on the co-localization of specific NO synthase 

(NOS) isoforms and oxidative enzymes in unique subcellular compartments. NOS isoforms are 

also in close contact with denitrosylases, leading to crucial regulation of S-nitrosylation.

Major Conclusions—Nitroso/redox balance is an emerging regulatory pathway for multiple 

cells and tissues, including the cardiovascular system. Studies using relevant knockout models, 

isoform specific NOS inhibitors, and both in vitro and in vivo methods have provided novel 

insights into NO- and ROS-based signaling interactions responsible for numerous cardiovascular 

disorders.

General Significance—An integrated view of the role of nitroso/redox balance in 

cardiovascular pathophysiology has significant therapeutic implications. This is highlighted by 

human studies where pharmacologic manipulation of oxidative and nitrosative pathways exerted 

salutary effects in patients with advanced heart failure. This article is part of a Special Issue 

entitled Regulation of Cellular Processes by S-nitrosylation.
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1. Introduction

Nitric oxide (NO) is a labile free radical gas that functions as a highly versatile and 

ubiquitous signaling molecule exerting a broad range of regulatory influences in the 

cardiovascular and renal systems, ranging from control of systemic and microvascular tone 

to platelet function, myocardial contractility, calcium (Ca2+) cycling, vascular inflammatory 

and growth responses, renal sodium excretion, and cellular energy metabolism [1–7]. Much 

attention has been paid to deciphering the mechanisms underlying such diversity in 

signaling.

In addition to cGMP-dependent signaling [8], S-nitrosylation of specific cysteine thiol 

residues or metal centers is a major signaling pathway through which NO modifies protein 

activity and thereby exerts its widespread and diverse effects [9,10]. An emerging concept of 

NO pathophysiology is that the interplay between NO and reactive oxygen species (ROS), 

the nitroso/redox balance, is an important regulator of cardiovascular homeostasis [11,12]. 

ROS readily react with NO and limit its bioavailability and also compete with NO for 

binding to the same sites in effector molecules. Accumulating evidence shows that 

nitrosative stress, an impairment in NO signaling caused by increased amounts of reactive 

nitrogen species (RNS), is caused by or associated with a disturbance in the cellular redox 

state. RNS of biological significance include NO, low and high molecular weight S-

nitrosothiols (SNO), and peroxynitrite. This review addresses the role of S-nitrosylation in 

cardiovascular cell function and the significant interplay between oxidative stress and S-

nitrosylation-based signaling in cardiovascular health and disease.

2. NO based signaling

2.1. Sources of NO

NO is produced from the amino acid L-arginine by the enzymatic action of NO synthases 

(NOS) or by the breakdown of nitrite or other compounds [13–16]. NOS generated NO is 

under complex, tight control to dictate specificity of its signaling and to limit toxicity to 

other cellular components, due to its potent chemical reactivity and high diffusibility. There 

are three major NOS isoforms in mammalian systems: Neuronal NOS (nNOS or NOS1), 

inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS or NOS3), each of which 

oxidizes the terminal guanidino nitrogen of L-arginine to form NO and the amino acid L-

citrulline. They share a common basic structural organization and requirement for substrates 

(arginine and NADPH) and cofactors (tetrahydrobiopterin, heme, calmodulin, FAD, and 

FMN) for enzymatic activity. The binding of calmodulin is triggered by transient elevations 

in intracellular Ca2+ levels and serves as an allosteric modulator of the three NOS isoforms. 

NOS1 is expressed in neural tissues, myocardium, skeletal muscle, and macula densa as well 

as other renal tubule segments and is a Ca2+/calmodulin-dependent enzyme that is also 
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subject to transcriptional and other post-translational controls [16–19]. Transcription of 

NOS2 is induced in nearly all tissues in response to cytokines, endotoxin, or other 

proinflammatory stimuli. NOS2 is less responsive to intracellular Ca2+ transients owing to 

tight calmodulin binding at ambient intracellular Ca2+levels [20]. NOS3 is expressed in the 

endothelium and myocardium and plays a central role in the regulation of systemic blood 

pressure, cardiovascular remodeling, myocardial contractility, and angiogenesis 

[16,19,21,22]. NOS3 is subject to rapid regulation by calcium Ca2+/calmodulin as well as a 

variety of transcriptional, post-transcriptional, and post-translational controls. A major 

structural difference between NOS1 and NOS3 is that the NOS1α isoform has an N-terminal 

PDZ domain that is crucial in regulation of its spatial localization and protein–protein 

interactions [23]. Furthermore, we have shown that NOS1 and NOS3 reside in precise 

subcellular organelles in cardiac myocytes and interact with oxidative enzymes in a spatially 

confined manner, as discussed in more detail later [19,24–26].

2.2. cGMP pathway

NO activates soluble guanylate cyclase (sGC), a heterodimer with an α subunit and a β 
subunit,to generate the second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) 

[8]. Activation of this enzyme is mediated by the binding of NO to the heme moiety of sGC 

to form the nitrosyl-heme adduct of sGC [27]. As a result, the heme iron is shifted out of the 

plane of the porphyrine ring configuration, initiating binding of GTP and the formation of 

cGMP. Cyclic GMP activates cGMP-dependent protein kinase (PKG), which in turn 

phosphorylates a number of proteins involved in vascular smooth muscle relaxation, the 

proliferative process, adhesion molecule expression, and platelet aggregation [28]. cGMP 

signaling is terminated by the action of the cyclic nucleotide-hydrolyzing 

phosphodiesterases (PDE). PDE5 is spatially localized within cells in proximity to NOS. In 

the case of the cardiac myocyte, PDE5 is found at the cell membrane associated with 

caveolae [29]. cGMP mediated signaling has been extensively reviewed elsewhere and is not 

the focus of this review (Fig. 1A) [8].

Of note, S-nitrosylation has been shown to modulate cGMP levels by inhibiting sGC [30] 

and to inhibit NOS3 [31] and NOS3 regulating proteins, including heat shock protein 90 and 

Akt [32,33]. PKG has regulatory thiols that may also be susceptible to S-nitrosylation. In 

addition, S-nitrosylation has been shown to activate arginase and inhibit dimethylarginine 

dimethylaminohydrolase, which leads to decreased NOS substrate levels and increased 

levels of methylarginine NOS inhibitors, respectively [34,35].

2.3. S-nitrosylation

Besides the cGMP pathway, NO exerts its actions by the nitrosylation of sulfhydryl groups 

on proteins and small molecules (Fig. 1A) [36,37]. S-nitrosylation is a ubiquitous post-

translational modification that regulates diverse biologic processes [9,38,39]. Nitrosylation 

of specific cysteine thiol residues or metal centers is a reversible covalent modification that 

modulates protein activity. Cysteines susceptible to nitrosylation tend to be located between 

an acidic and a basic amino acid and a consensus motif predictive of sites of S-nitrosylation 

has been described [37,39].
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Protein S-nitrosylation occurs by transnitrosylation from low-molecular weight SNO, such 

as S-nitrosoglutathione (GSNO) or S-nitrosocysteine, by transition metal catalyzed addition 

of NO, or by endogenous NO-mediated nitrosylating agents such as dinitrogen trioxide 

(N2O3), which is formed by the autoxidation of NO and is particularly increased within the 

hydrophobic interior of biological membranes [39–41]. There is evidence that the redox 

state and ultrastructural accessibility of cysteine residues determines whether a particular 

thiol in a protein is S-nitrosylated [42,43]. Increases in cellular ROS and RNS production 

lead to decreases in the intracellular reduced glutathione (GSH) pool, thereby attenuating 

GSH-mediated trans- or denitrosylation and stabilizing SNO formation [44]. The stability of 

SNO is favored by low ambient oxygen, whereas with increasing oxygen S-thiolation is 

promoted [45,46]. The intermediate thiyl radical may be involved in the decomposition of 

SNO [47].

As evidenced from studies in the myocardium [2], the sub-cellular localization of NOS 

determines the local concentration of NO and appears to becritical in the formation of SNO. 

For example, sarcolemmal NOS3 inhibits the L-type Ca2+ channel (LTCC) [48] via S-

nitrosylation, whereas NOS1 colocalizes with the sarcoplasmic reticulum (SR) Ca2+-release 

channel (ryanodine receptor, RYR) and stimulates its activity via S-nitrosylation (Fig. 2) 

[49,50]. The role of S-nitrosylation in regulating cardiac calcium signaling is discussed in 

greater detail later.

2.4. Denitrosylation

S-nitrosylation-based signaling is regulated not only by NO production, but also by 

enzymatic degradation (Fig. 1B). A recent series of reports demonstrates that GSNO 

reductase (GSNOR) is a key regulator of S-nitrosylation and is important in protecting cells 

from nitrosative stress, the mechanisms of which have been recently reviewed [9,51]. 

GSNOR has widespread activity in cells, using NADH to reduce GSNO into glutathione S-

hydroxysulfenamide (GSNHOH), which in turn is converted to oxidized glutathione (GSSG) 

[52]. Reduction of GSSG by glutathione reductase terminates the denitro-sylation reaction 

(Fig. 1). Although GSNOR selectively metabolizes GSNO, by depleting the pool of GSNO 

it shifts the equilibrium and therefore limits levels of S-nitrosylated proteins. A knockout 

mouse (GSNOR−/−) has been generated and manifests increased levels of S-nitrosylated 

proteins despite similar production of NO, suggesting that S-nitrosylation is tightly regulated 

both at the level of formation and decomposition of SNO bonds [53]. We and others have 

shown that GSNOR−/− mice have increased mortality following endotoxic challenge and 

manifest hypotension under anesthesia, whereas they exhibit decreased cardiac infarct size 

and remodeling and increased cardiac function and survival after myocardial infarction 

[53,54]. These findings support the notion that hypo- and hyper-nitrosylation of specific 

protein targets correlate with pathophysiology.

Another major enzymatic system mediating intracellular protein denitrosylation is the 

thioredoxin system [55]. Unlike GSNOR which specifically denitrosylates GSNO, the 

cytoplasmic and mitochondrial thioredoxins mediate the denitrosylation of multiple S-

nitrosylated proteins in a stimulus coupled, substrate specific, and spatially restricted manner 

[51,55,56]. Following denitrosylation, the thioredoxin system uses thioredoxin reductase and 
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NADPH to regenerate reduced thioredoxin (Fig. 1B). This enzymatic system has been 

shown to reverse the S-nitrosylation-induced reduction of NOS activity and inhibition of 

protein kinase C and thioredoxin is itself regulated by S-nitrosylation of multiple residues 

[57–59]. Other enzymatic systems reported to function as denitrosylases include carbonyl 

reductase 1 [60], Cu, Zn-superoxide dismutase [61], and xanthine oxidoreductase [62]. All 

of these denitrosylases are coupled to cellular antioxidant redox systems, highlighting the 

importance of the cellular redox state in regulating the level of protein S-nitrosylation and 

thereby cellular signaling.

3. Myocardial cellular processes regulated by S-nitrosylation

NO has both autocrine and paracrine activities within the heart [63], and influences 

myocardial contractility [25,64,65], ventricular relaxation [66,67], and mitochondrial 

respiration [68–71]. At a biochemical level, these effects are due to interactions with Ca2+ 

handling proteins, including the L-type Ca2+ channel (LTCC), ryanodine receptor/Ca2+-

release channel (RYR2), and SR Ca2+ ATPase (SERCA) [9,49,72], the contractile 

myofilaments [73], and respiratory complexes [74], respectively. Extensive study by 

multiple groups has led to a view of isoform-specific NO signaling in precise subcellular 

compartments (Fig. 2)[24,25]. NOS knockout mice have been a valuable tool for 

deciphering these signaling pathways, and overexpression or reconstitution strategies have 

continued to support isoform specific activity [19,26,50,75,76].

3.1. Spatial localization of NO production

In the cardiac myocyte, NO activity is predominantly determined by its site of production, 

which in turn is controlled by spatial localization of the NOS enzymes (Fig. 2) [24,25]. 

NOS3 is localized primarily to caveolae of the sarcolemma and t tubules, where its function 

is regulated by interaction with caveolin-3 and is linked to multiple cell surface receptors, 

including muscarinic, β-adrenergic, and bradykinin receptors [65]. Activation of NOS3 

results in negative inotropy and chronotropy, an effect that is enhanced by β-adrenergic 

activation, suggesting that NO acts as a negative feedback mechanism over contractile 

reserve [77]. NOS1 has been localized to the SR, where it influences Ca2+ cycling and 

thereby exerts positive inotropic effects in the heart.Of note, immunoprecipitation studies 

have demonstrated that NOS1 binds to RyR2 [25,49,50,72,78]. There is also evidence of a 

mitochondrial NOS expressed in the inner mitochondrial membrane or matrix [79], although 

this remains controversial [80,81]. Another source of mitochondrial NO may be NOS1 

associated with the SR, since the SR membrane has been shown to be attached to the outer 

mitochondrial membrane [82]. Importantly, this specificity of NOS localization is critical for 

the subcellular organelle generation of NO because it provides a localized signal for protein 

S-nitrosylation (Fig. 2).

3.2. Alteration in subcellular localization following tissue injury

NOS enzyme activity and subcellular localization are altered after myocardial infarction and 

in heart failure (Fig. 2C) [83–85]. In this regard, it has been shown that NOS1 expression is 

not only increased post-myocardial infarction, but NOS1 is shifted in localization within the 

cell to the level of the sarcolemma with interactions with caveolin-3, in contrast to its 
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location at the SR in mice without myocardial infarction. Furthermore, NOS1 accounted for 

the majority of the NO produced within the cell, as NOS3 expression and activity decreased 

post-myocardial infarction. This translocation of NOS1 to the sarcolemma may explain the 

observation that NOS1 signaling inhibits myocardial β-adrenergic contractility after 

myocardial infarction [86]. This likely represents an adaptive response since others and we 

have shown that NOS1−/− mice exhibit increased mortality after myocardial infarction (Fig. 

3) [87,88]. Indeed, the cardioprotective effect of NOS1 post-myocardial infarction was 

associated with increased S-nitrosylation of the LTCC leading to decreased Ca2+ influx [89]. 

In turn, the reduced Ca2+ entry within the cardiac myocyte prevented Ca2+ overload-induced 

injury. NOS1 has also been shown to protect against the development of myocardial 

remodeling after infarction [87,88]. In summary, based on their specific spatial localization 

within the cardiac myocyte, NOS1 and NOS3 play a specific and unique role in cardiac 

biology and pathophysiology (24).

3.3. Calcium signaling

Depolarization of the cardiac myocyte plasma membrane triggers a cascade of events 

leading to a rapid increase in cytosolic Ca2+ and resulting in muscle contraction, termed 

excitation–contraction coupling [2]. S-nitrosylation modulates the function of ion channels 

that regulate excitation–contraction coupling and therefore normal systolic and diastolic 

function [9,11].

In the normal heart, intracellular Ca2+ concentration ([Ca2+]i) is tightly regulated throughout 

the cardiac cycle. In excitation–contraction coupling, a small amount of Ca2+ enters through 

the LTCC during membrane depolarization. This influx triggers massive Ca2+ release from 

the SR,mainly trough theCa2+release channel RyR2. Thiselevated [Ca2+]i causes the binding 

of Ca2+ to troponin C in the myofilaments, which activates the contraction. Relaxation is 

initiated when Ca2+ is transported out of the cytosol, which is achieved by SERCA in the SR 

and the sarcolemmal sodium–calcium exchanger (NCX).

Defects in intracellular Ca2+ handling, such as reductions in the systolic [Ca2+]i, increase in 

diastolic [Ca2+]i, and impairments in diastolic Ca2+ re-uptake, have an important role in the 

depressed contractility and cardiac reserve observed in heart failure [90]. The down-

regulation of SERCA and up-regulation of NCX that occurs in heart failure act in concert to 

shift Ca2+ out of the cell and reduce SR Ca2+ content, leaving less Ca2+ available for 

contraction. Beside the changes in SERCA and NCX expression, there is evidence for 

diastolic Ca2+ leak in heart failure [90]. Redox modifications of RyR2 (S-nitrosylation, 

oxidation) in the setting of heart failure play an important role in the activity of the channel 

[91–95]. Due to its high number of cysteines (89 cysteine residues per subunit), it is 

susceptible to S-nitrosylation, S-glutathionylation, and disulphide oxidation [49,96]. A few 

of these cysteines can be rapidly oxidized by ROS and RNS, including H2O2, , NO, and 

GSNO [42,96–98].An increased oxidation of the RyR2 channel has been demonstrated in 

animal models of heart failure [92,94,95]. This was restored by β-adrenergic-blockers and 

antioxidants, associated with improved cardiac function, although it was not investigated 

whether the change in free thiols was due to increased S-nitrosylation, glutathionylation, or 

further oxidation (disulphide bonds, sulphenic or sulphonic acids). Our group has shown that 
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with a low concentration of NO donor, the increase in S-nitrosylation of the channel is 

associated with an increase in contractility and that loss of S-nitrosylation decreases 

inotropic responsiveness [50,99–101]. This highlights the importance of determining the 

redox state of RyR2 in disease.

ROS and RNS species play a significant pathophysiological role in heart failure. The cardiac 

RyR2 has low-level basal SNO. S-nitrosylation of additional cysteines leads to further 

activation of the channel [49]. This is a highly reversible modification that can occur on a 

time scale proportionate to excitation–contraction coupling. On the other hand, oxidation of 

cysteine residues on RyR2 leads to irreversible activation of the channel, leading to SR leak 

and resulting in SR Ca2+ depletion (Fig. 2C). We have shown that cardiac RyR2 is 

hyponitrosylated in heart failure, due to nitroso-redox imbalance (Fig. 4) [50,101]. We 

evaluated excitation–contraction coupling and nitroso-redox balance in spontaneously 

hypertensive-heart failure (SHHF) rats with dilated cardiomyopathy and age matched 

Wistar–Kyoto rats. SHHF cardiomyocytes were characterized by depressed contractility, 

increased diastolic Ca2+ leak, hyponitrosylation of RyR2, and enhanced xanthine oxidase 

(XO)-derived superoxide [101]. Global S-nitrosylation was decreased in failing hearts 

compared to non-failing. XO inhibition restored global and RyR2 nitrosylation and reversed 

the diastolic SR Ca2+ leak, improving Ca2+ handling and contractility. Together these 

findings demonstrate that nitroso-redox imbalance causes RyR2 oxidation, 

hyponitrosylation, and SR Ca2+ leak, a hallmark of cardiac dysfunction. The reversal of this 

phenotype by inhibition of XO has important pathophysiological and therapeutic 

implications [102,103].

XO is an important source of ROS in the cardiovascular system and our studies have 

provided significant new insights into the mechanism of cardiac XO signaling and its 

interaction with NOS1. We and others have demonstrated that NOS1 deficiency increases 

mortality, remodeling, and ventricular arrhythmia after myocardial infarction, associated 

with increased XO activity and decreased S-nitrosylation of Ca2+ handling proteins, while 

specific myocardial NOS1 overexpression has been shown to protect from remodeling by 

preserving Ca2+ cycling components [26,87,88,104,105]. Increased expression of NOS1 in 

the caveolae is associated with increased S-nitrosylation of the LTCC leading to decreased 

Ca2+ current. In turn, the reduced Ca2+ influx within the cardiac myocyte prevented 

Ca2+overload-induced injury [69,89,106]. This is a protective mechanism, since it has been 

recently shown that increasing Ca2+ influx through the LTCC channel after myocardial 

infarction prevents depressed myocyte contractility but increases the risk of ischemic injury, 

precipitates sudden death, and exacerbates depressed cardiac pump function [107].

We have shown that XO inhibition preserves the expression of components of Ca2+ 

handling, such as SERCA, phosphorylated phospholamban (PLB) and NCX [108]. In this 

regard, it has been described that NOS1 influences PLB phosphorylation, probably through 

phosphatase activity [66]. Interestingly, it has been proposed that physiologically, this 

NOS1-dependent effect on PLB phosphorylation is mediated by peroxynitrite, formed from 

the concerted action of NOS1 and XO [109]. More recently, phospholamban has been shown 

to be S-nitrosylated in the heart, leading to activation of SERCA [67]. In NOS1 deficient 

mice, after myocardial infarction, we have shown that XO inhibition prevented remodeling 
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and contractility by decreasing ROS/RNS damage and preserving the components of Ca2+ 

cycling [26].

NO activity has been shown by some [106,110], but not all [42,111] investigators to inhibit 

SR Ca2+ uptake. S-nitrosylation reactions have the potential to modify SERCA via thiol 

reactions [106,111–113]. Previous studies have shown that thiol-oxidation reduces Ca2+ 

pump activity. To the extent that nitrosative stress and ROS compete for the same thiol 

[39,114], it is possible that reversible S-nitrosylation of SERCA may also modulate pump 

activity to coordinate with S-nitrosylation regulation of the RYR2 [50]. It is also conceivable 

that oxidant signaling may directly regulate cross-bridge cycling kinetics, thereby 

modulating the efficiency of contraction [115,116]. In so far as modulation of proteins via 

thiol S-nitrosylation and oxidation is a general phenomenon, many potential proteins 

involvedincardiac Ca2+ signaling have the potential to be influenced by NOS, XO, and other 

oxidase signaling [11,72]. Whether these proteins are modulated reversibly so as to preserve 

physiologic signaling or irreversibly so as to cause toxicity is determined by nitroso/redox 

balance.

3.4. Voltage-gated potassium and sodium channel function

Cardiac voltage-gated potassium (K+) and sodium (Na+) channels, important in the 

regulation of the cardiac action potential, have been shown to be subject to regulation by S-

nitrosylation [72]. Voltage-gated K+ channels determine the resting membrane potential and 

the duration of the cardiac action potential. The delayed rectifier K+ current is one of the 

major components that determines the timing of repolarization of cardiac myocytes and 

consists of a rapidly activating (IKr) and a slowly activating component (IKs). It has been 

reported that S-nitrosylation of cysteine 445 in the pore-forming subunit KCNQ1 increases 

IKs in a NOS3 dependent manner [117–119]. This activation resulted in shortening of the 

action potential duration. S-nitrosylation of a cysteine in the Kir2.1 channel protein has also 

been shown to shorten the action potential by increasing the inward-rectifying K+ current 

[120].

In cardiomyocytes, the voltage-gated Na+channels are responsible for fast depolarization. 

The main Na+ channel expressed in the mammalian myocardium is encoded by the gene 

SCN5A. Although Na+channels typically inactivate very quickly, in cardiomyocytes a late 

current is observed that has been shown to be dependent on S-nitrosylation coupled to NOS 

activity [121]. The Na+ channel is rich in cysteines that could also be subject to oxidation 

under oxidative stress conditions [122,123]. Of note, a mutation in α-syntrophin associated 

with a form of the long QT syndrome results in aberrant S-nitrosylation of the Na+ channel 

[124]. α-syntrophin, a dystrophin-associated protein, normally serves as scaffold protein for 

NOS1 and the plasma membrane CA2+-ATPase, an interaction that results in inhibition of 

NO production [125]. The α-syntrophin mutation results in a disruption of the CA2+-

ATPase-NOS1 complex and favors interaction of NOS1 with the Na+ channel, promoting S-

nitrosylation and increased late Na+ currents [124]. Although the impact of this process on 

the action potential duration was not investigated, it has been shown by others that mutations 

of the Na+ channel that lead to similar increased late currents prolong the duration of the 

action potential [126].
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3.5. β-adrenergic receptor signaling

In the heart, NOS3 is activated by coupling to numerous receptors, including the β-

adrenergic, muscarinic, and bradykinin receptors. The prototypic mode of activation appears 

to occur via agonist-stimulated increase in Ca2+, leading to Ca2+/calmodulin activation of 

NOS3. NOS3 is localized to caveolae of the sarcolemma and t-tubules, where the 

scaffolding protein caveolin-3 inactivates it until displaced by Ca2+/ calmodulin [65,127]. 

NOS3 can also be activated directly by Akt phosphorylation without intracellular increases 

in Ca2+[128,129].

NO exerts negative inotropic effects, which are more marked when contractility is stimulated 

by either β-adrenergic activation or heart rate, a finding reminiscent of the phenomenon of 

“accentuated antagonism” that is observed with vagal nerve stimulation [130]. The 

observation that NO inhibition of contractility is more apparent during β-adrenergic 

stimulation has led to the proposal that NO serves as a negative feedback mechanism over 

contractile reserve, a notion supported by the finding that adrenergic agonists directly 

stimulate NO production [77]. We have shown that the β3-adrenergic receptor, present in 

myocardium [131], is linked to NO production [132]. Studies performed using NOS−/− mice 

recapitulate central features of NO biology. For example, NOS3−/− mice have an enhanced 

β-adrenergic inotropic response [133], and some [134], but not all [135], patch clamp 

experiments demonstrate a requirement for NOS3 in cholinergic inhibition of intracellular 

Ca2+.

Studies have shown that NOS3-induced S-nitrosylation of β-arrestin 2, dynamin, and G 

protein coupled receptor kinase (GRK2) regulates agonist-induced β2-adrenergic receptor 

trafficking by promoting receptor internalization, promoting endocytosis, and decreasing 

receptor phosphorylation and desensitization, respectively [136–139]. β-arrestin 2 serves as 

a scaffold that functionally colocalizes NOS3 and β2-adrenergic receptor. Isoproterenol 

stimulation results in activation of NOS3 and S-nitrosylation of β-arrestin 2, which promotes 

its dissociation from NOS3 and its association with clathrin heavy chain/β-adaptin. This 

facilitates routing of the β2-adrenergic receptor into the clathrin-based endocytotic pathway, 

and β-arrestin 2 is subsequently denitrosylated. Inhibition of GRK2 by isoproterenol 

induced S-nitrosylation suppresses β2 adrenergic receptor phosphorylation, β-arrestin 2 

recruitment, and receptor desensitization and downregulation. On the other hand, 

desensitization is enhanced by inhibiting NO production. NOS3 also mediates S-

nitrosylation of dynamin, which promotes clathrin-dependent endocytosis and 

internalization of the β2 adrenergic receptor.

3.6. Mitochondrial function

Many studies indicate that mitochondrial NO regulates energy metabolism. In studies 

measuring muscle O2 consumption, NO donors and agonists suppress tissue O2 consumption 

in a fashion that could be attenuated by NOS inhibitors [140]. Myocardial O2 consumption 

is also physiologically inhibited by NO in a manner that improves mechanical efficiency 

[68]. It has been demonstrated in both anesthetized and conscious animals, that myocardial 

oxygen consumption (MVO2) increases in response to NOS inhibition [68,141,142]. Thus, 

NO regulates not only the major energy consuming process of the heart, contraction, but also 
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mitochondrial energy production. Collectively, these studies suggest that NO promotes 

mechanoenergetic coupling and thereby enhances myocardial mechanical efficiency.

There is evidence that S-nitrosylation of proteins is involved in the regulation of 

mitochondrial energetics [69]. S-nitrosylation inhibits the activity of Complex 1 and 

F1F0ATPase, thereby attenuating ROS generation and reducing ATP consumption, 

respectively, during ischemia–reperfusion [69]. Cytochrome c oxidase activity is also 

inhibited by S-nitrosylation leading to decreased oxygen consumption [70]. S-nitrosylation 

of creatine kinase inhibits its activity and suppresses contractility under stress [71]. On the 

other hand, the activity of α-KGDH is increased by S-nitrosylation, which may prevent 

oxidative inactivation upon ischemia–reperfusion [69].

4. Vascular cellular processes regulated by S-nitrosylation

4.1. Vasodilation

In addition to being the largest reservoir of oxygen (O2), hemoglobin is a major NO donor 

that vasodilates blood vessels in response to low oxygen tension, thereby matching perfusion 

with tissue O2 demand, a process termed hypoxic vasodilation [143]. Hemoglobin is a 

tetramer of 2 alpha and 2 beta chains that exhibit cooperative binding of O2 and exists in one 

of 2 structural states, R (relaxed, high O2 affinity) and T (tense, low O2 affinity). NO is 

carried both by binding to hemes in a manner similar to O2 and by S-nitrosylation of Cys93 

of the β subunit. S-nitrosohemoglobin (SNO-Hb) has been shown to mediate hypoxic 

vasodilation [120]. SNO-Hb formation is favored in the oxygenated R structure, whereas in 

hypoxia or low Ph the T structure releases NO and S-nitrosothiols to the surrounding tissues 

with resultant vasodilation. There is evidence that the coronary vasodilator nitroglycerin 

improves myocardial perfusion by utilizing SNO-Hb mediated O2 delivery in concert with 

NO release [121].

A recent clinical study has shown that inorganic nitrate capsules or a dietary nitrate load 

results in dose-dependent increases in plasma nitrite concentration via bioconversion in vivo 

[15]. This bioactive nitrite, after reduction to NO, causes dose-dependent decreases in blood 

pressure and prevents ischemia–reperfusion-induced endothe-lial dysfunction in healthy 

volunteers. Nitrite, within the realm of physiological concentrations, vasodilates both the 

arterial and venous sides of the forearm circulation and systemic nitrite application decreases 

blood pressure in humans [13,14]. It is thought that these effects of nitrite are mainly 

because of its reduction to NO within the blood vessel wall and within the red blood cell. Of 

note, nitrite infusions have been shown to be associated with rapid formation of iron-

nitrosylated hemoglobin and, to a lesser extent, S-nitroso-hemoglobin [13]. Therefore, red 

blood cells play key role in autoregulation of blood flow and disturbances in nitroso-redox 

balance may underlie vascular dysfunction in a variety of disease states, including heart 

failure [122], pulmonary hypertension [123], sickle cell disease [144], and diabetic 

cardiovascular disease [145].
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4.2. Angiogenesis

Vascular endothelial growth factor (VEGF), a major promoter of angiogenesis, stimulates 

NOS3 production of NO [146,147]. NOS3−/− mice are deficient in VEGF responsiveness, 

supporting the important role of NO in angiogenesis [148]. Accumulating evidence suggests 

that S-nitrosylation mediates the pro-angiogenic effects of NO. VEGF has been shown to 

induce S-nitrosylation of mitogen activated protein kinase phosphatase 7 (MKP7), which 

facilitates endothelial cell migration [149]. In addition, S-nitrosylation-mediated activation 

of dynamin, a regulator of endocytosis, promotes endothelial cell survival and angiogenesis 

[138]. In vascular diseases associated with aging [150] and diabetes mellitus [151], 

alterations in endothelial cell protein S-nitrosylation have also been reported.

Hypoxia stimulates angiogenesis via the transcription factor hypoxia-inducible factor (HIF), 

which increases VEGF expression [152]. SNO donors have been shown to exert an effect 

similar to hypoxia, leading to increased HIF nuclear expression and S-nitrosylation-

mediated HIF stabilization [153–156]. Furthermore, studies in normoxic GSNOR−/− mice 

demonstrated constitutively S-nitrosylated HIF with increased binding to the VEGF gene 

[54]. These mice also manifested cardioprotection after myocardial infarction, associated 

with increased myocardial capillary density. Collectively, these studies support the notion 

that NO promotes angiogenesis via protein S-nitrosylation.

4.3. Inflammation and apoptosis

Extensive evidence has demonstrated that NO exerts anti-inflammatory effects in the 

vasculature. NO donors decrease, whereas NOS inhibitors increase, leukocyte-endothelial 

adherence [6,157]. Studies in mice lacking specific NOS isoforms have further supported 

this notion [158] [159]. S-nitrosylation has been shown to be the NO-based signaling 

mechanism regulating endothelial protein trafficking and suppression of nuclear factor κB 

(NFκB)-dependent expression of proinflammatory cytokines and adhesion molecules [160]. 

In regard to protein trafficking in endothelial cells, S-nitrosylation of N-ethylmaleimide 

sensitive factor suppresses exocytosis of granules (i.e. Weibel–Palade bodies) and thereby 

externalization of the adhesion molecule P-selectin [161]. This inhibits leukocyte rolling and 

thus vascular inflammation. A similar mechanism is operative in platelets, reducing 

activation, adhesion, aggregation, and thrombosis [162]. Studies have demonstrated 

inhibitory S-nitrosylation of both NFκB and its activating enzyme complex, inhibitoryκB 

kinase [163,164]. Thus, the S-nitrosylation mediated anti-inflammatory actions of NO are 

relevant to a wide range of cardiovascular disease processes, including atherosclerosis, 

sepsis, and autoimmune disorders.

The antiapoptotic effects of NO have been shown to be mediated, at least in part, by S-

nitrosylation of caspase-3 [165–167]. A cysteine residue on the active site of caspase-3 is S-

nitrosylated thereby inhibiting its proapoptotic effects. A recent study has reported that 

thioredoxin-mediated denitrosylation is the mechanism by which caspase-3 undergoes 

stimulus-coupled activation [55]. To the extent that these mechanisms are operative in 

endothelial cells, the balance between S-nitrosylation and denitrosylation may play a pivotal 

role in endothelial cell survival.
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5. Renal cellular processes regulated by S-nitrosylation

NO plays a key role in regulating the capability of the kidneys to excrete sodium, an 

important determinant of arterial blood pressure [5,168]. Studies evaluating the intrarenal 

effects of NO donors and NOS inhibitors indicated that NO serves as a diuretic and 

natriuretic agent [5]. Experimental evidence from proximal tubule and cortical collecting 

duct cells and isolated proximal tubule and collecting duct segments demonstrated that this 

effect of NO is mediated by direct inhibition of epithelial transport mechanisms [4]. NO 

inhibits the sodium/hydrogen (Na+/H+) antiporter on the luminal membrane of the proximal 

tubule and attenuates the sodium/potassium (Na+/K+) ATPase activity on the basolateral 

membrane of the proximal tubule and collecting duct segments [169]. However, the 

signaling mechanisms mediating the inhibitory effects of NO on renal epithelial ion channels 

have not been fully elucidated. There is also evidence suggesting that the effects of 

intrarenal NOS inhibitors and NO donors on tubular reabsorptive function are mediated 

indirectly by the associated changes in peritubular hemodynamicsor interstitial pressure 

[5,170].

NO has been shown to be abundantly produced in the renal medulla. Renal medullary cells 

adapt to the hyperosmotic interstitial environment by increased expression of osmoprotective 

genes, which is driven by the transcriptional activator, tonicity-responsive enhancer I.H. 

Schulman, J.M. Hare / Biochimica et binding protein (TonEBP) [171]. A recent study 

addressed the effect of NO on the expression of osmoprotective genes and TonEBP 

activation in Madin–Darby Canine Kidney (MDCK) epithelial cells. NO donors blunted 

tonicity-induced up-regulation of TonEBP target genes. 8-bromo-cGMP and peroxynitrite 

failed to reproduce the inhibitory effect of NO, indicating that NO acts directly on TonEBP. 

S-nitrosylation of TonEBP was found to correlate with reduced DNA binding and 

transcriptional activity. Thus, this study demonstrated a novel SNO-mediated inhibitory 

effect on TonEBP, a mechanism relevant for regulation of osmoprotective genes in the renal 

medulla.

Ecto-5′-nucleotidase (5′-ribonucleoside phosphohydrolase, 5′-NU) is a membrane-bound 

glycoprotein that hydrolyzes extracellular nucleotides into membrane-permeable nucleosides 

[172]. In the kidney, 5′-NU is expressed mainly in plasma membranes of proximal tubular 

cells and, to a lesser extent, in glomerular mesangial cells, interstitial fibroblasts, and 

intercalated cells of the collecting tubule. It has been shown that NO inhibits 5′-NU activity 

in a cGMP- and protein synthesis-independent manner, most likely through S-nitrosylation 

of the enzyme [172]. The inhibition of 5′-NU activity by NO affected renal proximal 

phosphate reabsorption.

In glomerular mesangial cells, NO can modulate cell migration, cell proliferation, and the 

expression of extracellular matrix (ECM) proteins, degrading proteases, and intrinsic 

protease inhibitors [173]. The regulatory effects of NO on the expression pattern of 

cytokine-inducible genes that contribute to ECM homeostasis are considered to be a critical 

step in the development and progression of fibrotic processes within the kidney [174]. The 

role of protein S-nitrosylation in mediating the effects of NO on mesangial cells has not 

been extensively studied. However, using the biotin-switch method combined with two-
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dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry and peptide mass fingerprinting, 31 novel protein targets of S-

nitrosylation in NO-treated and cytokine-activated murine mesangial cells have been 

identified, including signaling proteins, receptors and membrane proteins, cytoskeletal and 

cell matrix proteins, and cytoplasmic proteins [175]. More recently, PARP-1, a trans-

activator of the NOS2 promoter in mesangial cells, has been shown to be a target of NO-

mediated S-nitrosylation [176]. This modification limits its DNA binding activity and ability 

to trans-activate the NOS2 promoter. This NO-mediated negative feedback regulation of 

PARP-1 binding and action at the NOS2 promoter represents an endogenous mechanism to 

limit excessive NO generation in pathological states. Further research is warranted to 

elucidate the pathophysiological role of S-nitrosylation and denitrosylation signaling 

pathways in the kidney.

6. Summary

NO plays a central role in cardiovascular physiology. Protein S-nitrosylation, a reversible, 

thiol-based, and redox-sensitive post-translational modification, has emerged as a crucial and 

ubiquitous NO-based signal. The regulatory effects of S-nitrosylation involve altering 

protein structure and function by modifying specific thiols and shielding modified thiols 

from further irreversible modification under oxidative/nitrosative stress. In addition, the 

spatial localization of NO and SNO signaling, the level of protein S-nitrosylation, and the 

interaction with other signaling pathways determines whether the overall effect of S-

nitrosylation is protective or detrimental. Future research on the mechanisms of S-

nitrosylation and denitrosylation and interactions with ROS-based signaling pathways may 

help identify potential therapeutic targets in cardiovascular diseases.
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Abbreviations

[Ca2+]i Intracellular calcium concentration

cGMP 3′,5′-cyclic guanosine monophosphate

ECM Extracellular matrix

GRK2 G protein coupled receptor kinase

GSH Glutathione

GSNHOH Glutathione S-hydroxysulfenamide

GSNO S-nitrosoglutathione

GSNOR S-nitrosoglutathione reductase

GSSG Oxidized glutathione

HIF hypoxia inducible factor

K+ potassium

LTCC L-type Ca2+ channel

MKP7 mitogen activated protein kinase phosphatase 7

MVO2 Myocardial oxygen consumption

Na+ sodium
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NCX Sodium-calcium exchanger

NFkB nuclear factor kB

NO Nitric oxide

N2O3 dinitrogen trioxide

NOS Nitric oxide synthases

NSF N-ethylmaleimide sensitive factor

5′-NU Ecto-5′-nucleotidase

O2 Oxygen

PDE Phosphodiesterase

PKG cGMP-dependent protein kinase

PLB Phospholamban

RNS Reactive nitrogen species

ROS Reactive oxygen species

RYR2 Ryanodine receptor/Ca2+-release channel

SERCA Sarcoplasmic reticulum Ca2+ ATPase

sGC Soluble guanylate cyclase

SHHF Spontaneously hypertensive-heart failure

SNO S-nitrosothiols

SNO-Hb S-nitrosohemoglobin

SR Sarcoplasmic reticulum

TonEBP Tonicity-responsive enhancer binding protein

VEGF Vascular endothelial growth factor

XO Xanthine oxidase
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Fig. 1. 
Panel A shows cGMP-dependent and independent nitric oxide (NO) signaling pathways. NO 

synthase (NOS) produces NO, which activates soluble guanylate cyclase (sGC) to generate 

the second messenger 3′,5′-cyclic guanosine monophosphate (cGMP). cGMP signaling is 

terminated by cyclic nucleotide-hydrolyzing phosphodiesterases (PDE). NO also exerts its 

actions independently of the cGMP pathway by the nitrosylation of sulfhydryl groups on 

proteins. Panel B shows denitrosylation pathways through the S-nitrosoglutathione (GSNO) 

reductase (GSNOR) and thioredoxin (Trx) systems. GSNOR uses NADH to reduce GSNO 

into glutathione S-hydroxysulfenamide (GSNHOH), which in turn is converted to oxidized 

glutathione (GSSG). Reduction of GSSG by glutathione reductase terminates the 

denitrosylation reaction. Trx mediates the denitrosylation of S-nitrosylated proteins. 

Following denitrosylation, the Trx system uses Trx reductase and NADPH to regenerate 

reduced Trx. Adapted from Lima, B. et al., Circulation Research 2010;106:633–646.
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Fig. 2. 
Nitroso-redox regulationof cardiac excitation–contraction coupling. Depicted Is NOS 

isoform-specific signaling in subcellular compartments as well as potential mechanisms for 

S-nitrosylation and oxidation regulation of the ryanodine receptor/Ca2+-release channel 

(RyR2). The specificity of NOS localization is critical for the subcellular generation of NO 

because it provides a localized signal for protein S-nitrosylation (Panels A and B). NOS3 is 

localized primarily to the plasma membrane and t tubules. NOS1 colocalizes with the 

tetrameric RyR2 in the sarcoplasmic reticulum (SR) but translocates to the plasma 

membrane under conditions of stress (Panel C), including myocardial infarction and heart 

failure. RyR2 is closely associated with the plasma membrane L-type Ca2+ channel (LTCC), 

facilitating Ca2+-mediated Ca2+ release from the SR. Panels A and B illustrate the 

physiological and specific S-nitrosylation and denitrosylation that occur on a millisecond 

time scale and therefore participate in the regulation of contraction in systole and relaxation 

in diastole. Panel C shows oxidation of cysteine thiols on RyR2, which leads to irreversible 

channel activation with maladaptive loss of regulatory control. Oxidation may occurat thiols 

that are nitrosylated or at other sites, which could change permissiveness to S-nitrosylation 

via allosteric effects. Reactive oxygen species (ROS) leading to cysteine oxidation are 

derived from multiple sources, including xanthine oxidase (XO). In heart failure, the excess 

of ROS derived from xanthine oxidase (XO) impairs the normal nitrosylation of cysteines, 
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which become oxidized. In this condition, the activity of RyR2 increases, leading to diastolic 

leak that reduces the Ca2+ content of the SR. The LTCC and SR Ca2+ ATPase (SERCA) are 

similarly regulated by redox mechanisms at cysteine thiols.
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Fig. 3. 
Survival curves after myocardial infarction (MI) in wild type (WT) and NOS1−/−-mice 

followed up for 60 days. Post-MI survival was significantly reduced in NOS1−/− vs. WT 

mice (*P=0.036). Both MI groups had reduced survival in relation to their respective sham-

operated controls (†P=0.014 between WT subgroups and P=0.0001 between NOS1−/− 

subgroups). There was no significant difference in survival after sham operation between 

WT and NOS1−/− mice.

Reprinted with permission from Saraiva, R. M. et al. Circulation 2005;112:3415–3422.
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Fig. 4. 
Decreased S-nitrosylation of ryanodine receptor/Ca2+-release channel (RyR2) in isolated 

cardiomyocytes from spontaneously hypertensive-heart failure (SHHF) rats. Confocal 

microscopy showing red staining for RyR2 (left panels), green staining for nitrosylated 

cysteines (middle panels) and the combination of both (merge), right panels. The upper 

panels show a sequence of images of cardiac myocytes from a non-failing heart (Wistar–

Kyoto rat). The lower panels show the same sequence for myocytes from a failing heart 

(SHHF rat). Note the degree of colocalization of RyR2 with the S-nitrosocysteines (Cys-

NO) in the non-failing heart, which is lost in the failing myocardium.
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