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Abstract

In bilaterian animals the 30 ends of microRNAs (miRNAs) are frequently modified by tailing and trimming. These modifications affect

miRNA-mediated gene regulation by modulating miRNA stability. Here, we analyzed data from three nonbilaterian animals: two

cnidarians (Nematostella vectensis and Hydra magnipapillata) and one poriferan (Amphimedon queenslandica). Our analysis

revealed that nonbilaterian miRNAs frequently undergo modifications like the bilaterian counterparts: the majority are expressed

as different length isoforms and frequent modifications of the 30 end by mono U or mono A tailing are observed. Moreover, as the

factors regulating miRNA modifications are largely uncharacterized in nonbilaterian animal phyla, in present study, we investigated

the evolution of 30 terminal uridylyl transferases (TUTases) that are known to involved in miRNA 30 nontemplated modifications in

Bilateria. Phylogenetic analysis on TUTases showed that TUTase1 and TUTase6 are a result of duplication in bilaterians and that

TUTase7 and TUTase4 are the result of a vertebrate-specific duplication. We also find an unexpected number of Drosophila-specific

gene duplications and domain losses in most of the investigated gene families. Overall, our findings shed new light on the evolu-

tionary history of TUTases in Metazoa, as they reveal that this core set of enzymes already existed in the last common ancestor of all

animals and was probably involved in modifying small RNAs in a similar fashion to its present activity in bilaterians.
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Introduction

MicroRNAs (miRNAs) are produced through a series of

complex enzymatic processes prior to taking their mature

form. In general, primary miRNA (pri-miRNAs) processing is

initiated by cleaving the pri-miRNAs by an RNAse III enzyme

called Drosha and released into cytoplasm as premiRNA

(Lee et al. 2003). In the cytoplasm premiRNAs are proc-

essed by another RNAse III enzyme, Dicer, which cleaves

the overhangs of the premiRNAs and released it as a dou-

ble stranded miRNA (Lee et al. 2002), later it interacts with

Argonaute (AGO) and guides RNA-induced silencing com-

plexes (RISC) to target mRNAs (Peters and Meister 2007;

Bartel 2009). Typically, miRNAs are produced at the length

of 22 nucleotides (nt), however, high-throughput sequenc-

ing studies have found there is heterogeneous combin-

ation of miRNA isoforms produced in addition to the

dominant mature miRNA sequences (Langenberger et al.

2009). miRNA modifications include isoforms with

variations at 30 and 50 ends and nontemplated nucleotide

additions at 30 end of miRNA (Burroughs et al. 2010; Han

et al. 2011; Mansur et al. 2016). These modifications can

lead to delay in maturation of miRNAs and also influence

their stability and function (Ameres et al. 2010; Han et al.

2011; Wyman et al. 2011; Heo et al. 2012; Ji and Chen

2012; Knouf et al. 2013; Thornton et al. 2014). 30 modifi-

cation is not unique to miRNAs as a number of studies

performed in other populations of RNAs revealed the sig-

nificance of posttranscriptional modifications in regulating

RNA stability and function (Anantharaman et al. 2002;

Wang and He 2014). Such modifications include RNA edit-

ing catalyzed by adenosine deaminases (ADARs) (Nishikura

2016), single nucleotide polymorphism (SNPs) (Duan et al.

2007), tailing catalyzed by terminal uridylyl transferases

(TUTases) (Lim, Ha, et al. 2014; Thornton et al. 2014),

and methylation of 30 end by the methyltransferase HEN1

(Ji and Chen 2012).
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RNA tailing is one of the most frequent posttranscriptional

modifications (Norbury 2013). Poly (A) polymerases (PAPs) are

known to add a poly (A) tail to mRNAs and the key function of

this addition of nontemplated nucleotides is the protection of

the mRNA from 30 to 50 exonucleases in cytoplasm (Yamashita

et al. 2005; Schmidt and Norbury 2010; Schoenberg and

Maquat 2012). Apart from poly (A) tail, 30 end of RNA can

also undergo modifications by TUTases that add a uridine tail

(Kwak and Wickens 2007; Mullen and Marzluff 2008;

Rissland and Norbury 2009; Norbury 2013). These TUTases

are assumed to evolve from ancestral PAPs by switching their

nucleotide preference to UTP (Lunde et al. 2012; Yates et al.

2012). TUTases are responsible for the addition of mono

and poly uridylyl tails to different RNA populations in a wide

range of organisms. For example, in the fission yeast

Schizosaccharomyces pombe the TUTase-related Cid1 protein

family regulates mRNA turnover by targeting specific mRNAs

and promoting their decapping (Stevenson and Norbury

2006; Rissland and Norbury 2009). The uridylation of small

RNA 30 was first identified in plants as HEN1 SUPPRESSOR1

(HESO1) and UTP: RNA uridylyltransferase (URT1) were found

to be involved in decaying of uriydylated mature small RNAs in

Arabidopsis (Li et al. 2005). In human, seven TUTases were

identified to date and were demonstrated to carry specialized

functions. For example, TUTase4 (also known as ZCCHC11) is

involved in uridylation of histone mRNAs and promotes their

decay (Schmidt et al. 2011). TUTase7 (also known as ZCCHC6)

is involved in monouridylation of group II premiRNAs, a set of

premiRNAs lacking 30 2nt overhangs, which is required for

Dicer processing. The majority of the let7 miRNA family mem-

bers and miR-105 are shorter and lack 30 2nt overhangs. In

such cases, TUTases 7, 4, and 2 are involved in generating the

2-nt 30 overhang through mono-uridylation and by that en-

able Dicer processing (Heo et al. 2012; Kim et al. 2015).

TUTase7, TUTase4 and TUTase2 (also known as GLD2) are

responsible together for terminal uridylation of miRNAs (Heo

et al. 2012; Thornton et al. 2014). TUTase6 (also called U6

TUTase) is involved in modification of U6 snRNAs by 30 uridy-

lation, leading to shortening of the 30 end by exonucleases

(Trippe et al. 2006; Mullen and Marzluff 2008; Rissland and

Norbury 2009). A mitochondrial PAP (known as PAPD1 or

TUTase1) is responsible for adding poly(A) tails in mammalian

mitochondrial mRNAs, a modification that regulates the trans-

lation and stability of these mRNAs (Chang and Tong 2012). In

overall these studies show that while tailing by TUTases is im-

portant for controlling RNA stability, it has different conse-

quences on different RNA pathways.

Even though TUTases are conserved throughout Metazoa,

little is known about their evolution as they were studied

almost exclusively in few bilaterian models such as mammals,

Drosophila melanogaster, Caenorhabditis elegans, and zebra-

fish. However, as small RNAs are found in nonbilaterian animal

clades such as Porifera (sponges) and Cnidaria (sea anemones,

corals, hydroids, and jellyfish) (Grimson et al. 2008;

Wheeler et al. 2009; Moran et al. 2017), it is possible that

TUTases also modulate their stability and that this regulatory

pathway is ancestral to all animals. This notion is corroborated

by the fact that the stabilityof small RNAs inplants is alsomodu-

lated by trimming and tailing in a similar fashion to bilaterian

animals (Ji and Chen 2012; Zhai et al. 2013; Wang et al. 2016).

To assay whether miRNA modifications such as nontem-

plated addition and trimming occur in nonbilaterian animals,

we performed an in-depth analysis of small RNA sequence

data from Cnidaria (Nematostella vectensis and Hydra magni-

papillata) and Porifera (Amphimedon queenslandica).

Additionally, we analyzed the phylogeny of TUTases family

throughout Metazoa and their holozoan relatives to unravel

the evolutionary history of these RNA modifying enzymes.

Materials and Methods

Detection of Homologs of RNA Modifier Enzymes

Using protein sequences from human we performed Blast

search for TUTases protein sequences from all major groups

of animals and their holozoan relatives including

Choanoflagellata, Filasterea, Porifera, Placozoa, Cnidaria,

Ctenophora, Deuterostomia, Lophotrochozoa, and

Ecdysozoma. The list of species considered for TUTase homo-

logs search are provided in supplementary file (supplementary

table 1, Supplementary Material online). We carried out

BLASTP searches using the National Center for

Biotechnology Information (NCBI) (BLASTþ 2.5.0 Fri, 23

September 2016 17:00:00 EST) (https://blast.ncbi.nlm.nih.

gov/Blast.cgi; last accessed May 4, 2017) on all available meta-

zoan species (under the term Metazoa) as well as on

Choanoflagellata and Capsaspora using Homo sapiens pro-

tein sequences as queries. In case we found no matches we

carried out TBLASTN searches with the same query sequen-

ces, using the Transcriptome Shotgun Assembly (TSA) data-

base of NCBI and restricted it to Cnidaria and Porifera. In

addition, for nonbilaterian species we carried out species-

specific searches through Compagen (http://compagen.zoo-

logie.uni-kiel.de/index.html; last accessed May 4, 2017)

(Hemmrich and Bosch 2008), Joint Genome Institute (http://

genome.jgi.doe.gov/; last accessed May 4, 2017) (Grigoriev

et al. 2012) and the Mnemiopsis Genome Project Portal

(https://kona.nhgri.nih.gov/mnemiopsis/blast/; last accessed

May 4, 2017) (Moreland et al. 2014) databases. Further,

with the retrieved matching sequences we carried out recip-

rocal BLAST searches against Homo sapiens and Danio rerio

protein sequences. The E-values, percentage identity and simi-

larity of all TUTase homologs from the phylogenetic study are

provided in supplementary table 2, Supplementary Material

online. Retrieved proteins were analyzed to determine con-

served domains using the CDD tool (v3.15 27 June 2016)

(Marchler-Bauer et al. 2015) and PFAM tool (v30.0, July 1,

2016) (Finn et al. 2014).
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Animals

Nematostella vectensis polyps were grown in 16 & artificial

sea water at 18 �C in the dark and fed three times a week with

freshly hatched Artemia salina nauplii. Induction of spawning

was performed as previously described (Genikhovich and

Technau 2009). Samples for RNA extraction were flash

frozen in liquid nitrogen and stored at �80 �C until used.

Phylogenetic Analysis

The protein sequences were aligned using MUSCLE (Edgar

2004) algorithm in the SeaView program (Gouy et al. 2010)

and the trimming was performed using TrimAl (Capella-

Gutierrez et al. 2009) to remove any low quality regions. In

order to identify the appropriate model for Phylogenic recon-

struction we used ProTest (Darriba et al. 2011). The

maximum-likelihood (ML) phylogenetic trees were con-

structed using PhyML v3.0 (Guindon et al. 2010), we used a

starting tree constructed by BioNJ (implemented in PhyML)

and used the tree searching option combining the best results

of both NNI and SPR. Statistical tree robustness was assessed

in PhyML via 100 bootstrap replicates. MrBayes v3.2.1 was

used to construct Bayesian tree, the run lasted 5,000,000

generations and every 100th generation was sampled

(Altekar et al. 2004). We used one cold and three heated

chains in each run. All runs reached a standard deviation of

split frequencies of 0.0006 or lower. The first 25% of the

samples were discarded by burn-in. In all runs minimal esti-

mated sample size was calculated to be above 15,000, indi-

cating adequate sampling, and a PSRF value of 1.0 was

reached, which indicates convergence.

Small RNA Library Preparation

Total RNA was extracted from different developmental stages

of Nematostella vectensis (blastula, primary polyp, late pla-

nula, adult male, and female) using Tri-Reagent (Sigma-

Aldrich) following the manufacturer’s instructions. Three

biologically independent animal pools were used for each de-

velopmental stage. From each stage 20 mg of total RNA was

used and the RNA integrity was analyzed with a Bioanalyzer

(Agilent Technologies, USA). The small RNA size selection was

performed using 15% denaturing urea polyacrylamide gel,

RNA elution from gel was performed overnight and precipi-

tated using ethanol. Small RNA libraries were constructed

as described in Phillip Zamore Lab Illumina TruSeq Small

RNA Cloning Protocol April, 2014 (http://www.umassmed.

edu/zamore/resources/protocols/; last accessed May 4,

2017). Small RNA libraries were sequenced in the Center

for Genomic Technologies of the Hebrew University on the

NextSeq 500 platform (Illumina) with 50 nt read length. The

raw data have been deposited at NCBI GEO Submission

(GSE94526) (supplementary table 3, Supplementary

Material online).

Bioinformatics Analysis

The sequencing data were preprocessed to remove the adapt-

ers using Cutadapt (Martin 2011) and sequences shorter than

18 nt were discarded. Processed data were analyzed using

miRDeep2 core algorithm to identify any new miRNAs and

also to assess the authentic mature miRNA sequences

(Friedl€ander et al. 2011). Nematostella genome from the

NCBI database was used as a reference, and the mature

miRNA and miRNA precursor were retrieved from miRBase

Release 21 (Kozomara and Griffiths-Jones 2014). The small

RNA sequencing data of Hydra magnipapillata and

Amphimedon queenslandica were retrieved from data depos-

ited at NCBI Sequence Read Archive (SRA050926) (Krishna

et al. 2012) and (SRP000624) (Grimson et al. 2008), respect-

ively. For miRNA quantification the miRDeep2 quantification

algorithm was used and the spike-ins were used for normaliz-

ing the read counts. To determine the miRNA isoforms, the

data were analyzed using miRDeep2 and the different length

miRNA isoforms were identified from the files produced by

miRDeep2 for individual miRNAs. To analyze both multiple iso-

forms and nontemplate nucleotide additions, we considered

the guide miRNAs with read count above 50 as cut-off. The

heatmapsweregeneratedusingMultiExperimentViewer(MeV

version 4.7) (http://mev.tm4.org/; last accessed May 4, 2017).

Results

miRNAs in Cnidaria and Porifera Exhibit Multiple Isoforms

In order to identify multiple isoforms expressed with varied

length in nonbilaterian animals, we analyzed the small RNA

sequence data from Nematostella vectensis, Amphimedon

queenslandica, and Hydra magnipapillata. In Nematostella

we analyzed small novel RNA sequencing data we generated

from distinct RNA preparations of late planula, primary polyp

and adult male. The small RNA sequencing data of Hydra and

Amphimedon were retrieved from previously published data

(Grimson et al. 2008; Krishna et al. 2012). To identify the

miRNA isoforms with different length, we analyzed the out-

put generated by miRDeep2 (Friedl€ander et al. 2011) analysis

and read counts of each miRNA matching 18–24 nt sequence

length without any mismatches were collected (supplemen-

tary table 4, Supplementary Material online). We observed

that all the three species expressed miRNAs with variable

length isoforms (figs. 1A and 2A), the data was plotted on

heatmaps (figs. 1B and 2B). When comparing the percentage

of total reads distributed among different lengths, we

observed that the majority of reads distributed among 21

and 22 nt length miRNAs. Yet, a substantial fraction of the

reads were of different lengths. In case of N. vectensis we

found that miRNA length variants are consistent throughout

different development stages (fig. 1B). In overall, our analysis

reveals that in nonbilaterian animals miRNAs exhibit hetero-

geneity in length like in bilaterian animals.
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FIG. 1.—Posttranscriptional modifications of miRNAs in the cnidarian Nematostella vectensis during late planula, primary polyp, and adult male devel-

opment stages. (A) Small RNA reads mapped on nve-miR-2026 hairpin. The miRNA reads with 30 modifications including isoforms and 30 nontemplated

additions are aligned below, with the read counts shown on right, and the designated miRNA, miRNA*, and nontemplated nucleotide species colored green,

blue, and red, respectively. (B) Heat map of miRNA isoforms expression across late planula, primary polyp and adult male developmental stages. Fractions of

different sizes of miRNA reads mapped to each premiRNA sequence, each line denotes one miRNA. (C) Frequency of modified 30 nontemplated miRNAs at

23rd nt position observed across late planula, primary polyp, and adult male development stages. The pie chart presents percentage sum of variant reads

with each nontemplated nucleotide (U, A, C, and G) modifications added at 23rd nt of miRNAs 30 end.
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FIG. 2.—Posttranscriptional modifications of miRNAs in the cnidarian Hydra magnipapillata and poriferan Amphimedon queenslandica. (A) Small RNA

reads mapped on hma-miR-3007 hairpin. The miRNA reads with 30 modifications including isoforms and nontemplated additions are aligned below, with the

read counts shown on right, and the designated miRNA, miRNA*, and nontemplated nucleotide species colored green, blue, and red, respectively. (B) Heat

map of miRNA isoforms expression analyzed from Hydra magnipapillata and Amphimedon queenslandica small RNA sequinning data. Fractions of variant

isoforms of miRNA reads mapped to each premiRNA sequence, each line denotes one miRNA. (C) Frequency of modified 30 nontemplated miRNAs at 23rd nt

position observed from H. magnipapillata and A. queenslandica small RNA sequinning data. The pie chart presents percentage sum of variant reads with

each nontemplated nucleotide (U, A, C, and G) modification added at 23rd nt of miRNAs 30 end.
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miRNAs of Cnidaria and Porifera Carry Nontemplated
Addition at Their 30 End

In order to identify the nontemplate modification at 30 ends of

miRNAs, we analyzed the miRNA sequence data from

Amphimedon, Hydra, and Nematostella using miRDeep2

and two mismatches were permitted. The miRNA sequences

with single U or A mismatches to the genome at the 30 end

were considered as miRNAs carrying nontemplated additions.

Initial analysis was performed to detect the 30 nontemplate

modifications at positions 21–24 of miRNAs (supplementary

table 4, Supplementary Material online). However, in further

analysis we focused on 23 nt-long miRNAs, as we observed

that the 23rd nt is the one that undergoes nontemplate mod-

ifications most frequently. The read counts from miRNAs with

30 nontemplated modifications were normalized and the per-

centage of each nucleotide addition was calculated. We

observed that mono-uridylation was the most frequent modi-

fication and mono-adenylation is the second most frequent

nontemplate modification (figs. 1C and 2C). To exclude the

possibility that the observed heterogeneous length isoforms

and 30 nontemplated modifications are caused by library gen-

eration or sequencing errors, we examined the small RNA

sequencing data generated by different small RNA sequenc-

ing studies of Nematostella vectensis (SRA accession number

SRP000409) (Moran et al. 2014) and Hydra magnipapillata

(SRA accession number SRP037736) (Lim, Anand, et al.

2014). We found that these miRNA variations were similar

in all the datasets analyzed (supplementary table 4,

Supplementary Material online). Additionally, we also per-

formed relative analysis on mismatches at the internal posi-

tions of miRNAs. The 3’ terminal nontemplate additions at

23rd position were found to have relatively 60–80 fold higher

read counts than any other base modification at internal posi-

tions of mature miRNAs (supplementary table 5,

Supplementary Material online), further supporting the notion

that the 30 terminal nontemplate additions are genuine and

are not the result of a technical artefact. Overall, our analysis

reveals that in nonbilaterian animal miRNAs undergo 30 non-

templated modifications similarly to bilaterian animals.

Phylogenetic Analysis of Metazoan TUTases

From an initial comparative analysis on TUTases in both

Drosophila and humans we have noticed changes in protein

domain assembly. Thus, we decided to perform classification

of all TUTases in human, zebrafish and Drosophila through

phylogenetic analysis to understand the relationship of

TUTases among these three species.

Through similarity search we retrieved the protein sequen-

ces from all the three species and the domain architecture of

retrieved proteins were analyzed. Our analysis showed that

TUTase2 was duplicated in Drosophila into GLD2 and Wispy.

In addition, we noted that TUTases6 duplication in the

Drosophila lineage resulted in Tailor and Monkey King (fig.

3). Apart from TUTase2 and TUTase6 protein duplications in

Drosophila, we also found changes in domain composition of

TUTases between human and Drosophila. Noticeably, neither

Tailor nor Monkey King have the RNA binding domain present

in its ancestor, TUTase6 (fig. 3). We were not able to detect

the TUTase7 in both zebrafish and Drosophila. In Drosophila

along with TUTase7, TUTase4 was also absent, suggesting a

loss. A more detailed analysis of the phylogeny TUTases 4 and

7 is discussed below.

In overall, our phylogenetic analysis of TUTases from all

three species, showed that in Drosophila TUTases have under-

gone major diversification, such as duplication, loss of protein

and changes in domain composition. To gain further in-depth

understanding of TUTases evolution, we performed phylo-

genetic analyses of each individual TUTase family.

Phylogenetic Analysis of the TUTases 4, 7, and 2 Family

To gain deeper insight on evolution of TUTase2, we con-

structed a phylogenetic tree of TUTase2 (GLD2) and Wispy

from most major phyla of animals and other holozoans.

Initially we did not find exact matches for TUTase2 in

Choanoflagellata or Capsaspora, however, there were partial

sequence matches. These partially matching proteins were

mostly excluded from our phylogeny due to their limited hom-

ology, but we used the homolog from the choanoflagellate

Salpingoeca rosetta as an outgroup. Among Porifera, we

were not able to find the TUTase2 in class Demospongiae

(Stylissa carteri, Xestospongia testudinaria, Haliclona tubifera,

and A. queenslandica). This is probably the result of a loss of

TUTase2 that is specific to demosponges as we were able

to find TUTase2 homologs in the Calcarea and

Homoscleromorpha sponge classes (fig. 4). However, due to

the lack of publicly available assembled transcriptome data

from the Hexactinellida we could not determine whether

this sponge class carries TUTase2. From our initial phylogen-

etic analysis, we know that TUTase2 was duplicated in

Drosophila into TUTase2 (GLD2) and Wispy (fig. 3), in order

to find at what evolutionary time point the duplication of

TUTase2 took place we performed a detailed sequence survey

in all available classes of Hexapoda. Interestingly, we found

both GLD2 and Wispy only in the Drosophilidae family. Even

other insect families within Diptera such as Culicidae,

Calliphoridae, Schizophora, and Bactrocera, which are the

closest relatives of Drosophilidae, lack duplication of

TUTase2. Hence, it appears that the TUTase2 duplication

occurred in the last common ancestor of Drosophilidae (fig.

3). Further, in terms of domain organization, TUTase2 consists

of NT_PAP_TUTase and PAP_assoc or Cid1 domain at the C-

terminal region of the protein (Wang et al. 2002). In our ana-

lysis, we observed that both domains were conserved

throughout metazoan TUTase2. In Drosophilidae, GLD2 and

Wispy have both domains, but there is a unique extension of
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the N-terminal region in both proteins, further supporting the

notion that this duplication is Drosophilidae specific (fig. 4).

Apart from mono adenylation many miRNAs are modified

by mono uridylation at their 30 end. As mentioned earlier

TUTase4 and TUTase7 were found to be responsible for 30

terminal mono-uridylation in mammalian models. However,

their evolutionary position in the broader Metazoa kingdom

is unclear. We retrieved by homology search the TUTase4

in all major phyla of Metazoa (supplementary table 1,

Supplementary Material online), except the order Diptera

where we noticed its absence. In the case of nonanimal holo-

zoans TUTase4 was absent from both Choanoflagellata and

Capsaspora. As we observed that TUTase4 is absent in Diptera

we continued searching in other Classes of Hexapoda. Unlike

Diptera, other subphyla of arthropods, including the other

groups of Neoptera (winged insects) do carry TUTase4 in their

genome. This strongly suggests a dipteran-specific loss of

TUTase4 (fig. 5).

Unlike TUTase4 orthologs that could be found in the vast

majority of metazoans, including poriferans and cnidarians

(fig. 5), TUTase7 is found only in Tetrapods as well as the

Coelacanth Latimeria chalumnae and the Australian ghost-

shark Callorhinchus milii. Based on our analysis TUTase7 has

evolved in vertebrates and it is a duplication of TUTase4 that

gained an additional new domain, TUTF7_u4 (fig. 5).

Phylogenetic Analysis of Tailor, Monkey King, TUTase6
and TUTase1

We noticed in our initial phylogenetic analysis (fig. 2) that

Tailor and Monkey King of Drosophila could originate from

a TUTase6 duplication. When we performed sequence simi-

larity searches for TUTase6 and TUTase1 in all the major

groups of animals. We found that TUTase6 is conserved

throughout Metazoa. In order to find at what time point

the TUTase6 was duplicated into Tailor and Monkey King,

we performed detail sequence search in all available classes

of Hexapoda. Interestingly, we found the duplication of

TUTase6 is unique to Drosophilidae family of insects, which

is similar to what we detected from our previous analysis on

TUTase2 duplication is Drosophilidae specific. In terms of do-

main architecture Tailor and Monkey King have lost RNA

binding domain found in its ancestor protein TUTase6. In add-

ition, Monkey King also lost its Poly(A) polymerases (PAPs)

associated domain (fig. 6).

In contrast, to TUTase6 which is conserved across

Metazoa including all the nonbilaterian animals as well as

in Choanoflagellata and Capsaspora (supplementary table 1,

Supplementary Material online), TUTase1 (also known as

Mitochondrial Poly(A) Polymerase, MTPAP) was absent

from all nonbilaterian animals and other nonmetazoan holo-

zoans including Choanoflagellata, Capsaspora, Porifera,
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FIG. 3.—A phylogenetic relationship of TUTases from Human, Drosophila melanogaster and zebrafish. (A) A PhyML tree was constructed with VT model

(þIþG). Bootstrap support values above 50% are indicated above branches. Values from Bayesian tree are indicated by a green (PP¼1.0), blue

(0.95� PP<1.0), or red (0.7< PP<0.95) star. (B) TUTases with known activity from mammals and Drosophila melanogaster. Abbreviations of species

names are: Dre, Danio rerio; Dme, Drosophila melanogaster; Hsa, Homo sapiens (human).
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Ctenophora, Placozoa, and Cnidaria (fig. 6). Based on our

phylogenetic analysis, TUTase1 probably has been derived

from a gene duplication of TUTase6 in the last common

ancestor of bilaterian animals, the Urbilateria.

Discussion

The study of miRNAs in nonbilaterian models has opened new

perceptive on evolution of miRNA as an ancestral RNA regu-

latory mechanism (Grimson et al. 2008; Moran et al. 2013).

To test the possibility that miRNAs in nonbilaterian animals are

processed into multiple isoforms like in bilaterians, we ana-

lyzed the small RNA sequencing data from two cnidarians

(Nematostella vectensis and Hydra magnipapillata) and one

poriferan (Amphimedon queenslandica). Our analysis revealed

that in all three species miRNAs frequently undergo modifica-

tions like in bilaterians: the majority of miRNAs are expressed

as different length isoforms and frequent modifications of the

30 end by mono U or mono A tailing are observed (figs. 1 and

2). However, the functional consequences of expressing mul-

tiple isoforms in these three species is unknown. We believe

that this modification may be part of the tailing and trimming

mechanism, which includes adding or removing nucleotides

at 30 ends of small RNAs after they are loaded into AGO

(Ameres et al. 2010).

Based on our analyses of miRNA 30 nontemplated modifi-

cations in nonbilaterian animals, we observed that mono-

uridylation is the most frequent modification (figs. 1C and

2C). As mentioned earlier, these 30 nontemplated nucleotide

modifications were shown to be mediated by TUTases in bilat-

erian animals (Kwak and Wickens 2007; Norbury 2013;

Thornton et al. 2014; Kim et al. 2015). Among all TUTases,

TUTase4 (ZCCHC11) and TUTase7 (ZCCHC6) are known to

regulate miRNA 30 uridylation (Heo et al. 2012; Lim, Ha,

et al. 2014; Thornton et al. 2014; Kim et al. 2015). Yet, their

evolutionary history in the broader Metazoa kingdom was un-

clear. Based on our analysis TUTase4 is a metazoan innovation,

as TUTase4 homologs are absent from nonanimal holozoans
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FIG. 4.—A phylogenetic tree of GLD2 and Wispy of selected animals. Schematic representation of GLD2 and Wispy protein domain composition from

several species. A PhyML tree was constructed with JTT model (þIþG). Bootstrap support values above 50% are indicated above branches. Values from

Bayesian tree are indicated by a green (PP¼1.0), blue (0.95� PP<1.0), or red (0.7< PP<0.95) star. Abbreviations of species names are: Ami, Acropora

millepora; Aca, Aplysia californica; Aga, Anopheles gambiae; Bfl, Branchiostoma floridae; Bol, Bactrocera oleae; Bla, Bactrocera latifrons; Cau, Corynactis

australis; Cmy, Chelonia mydas; Cel, Caenorhabditis elegans; Cte, Capitella teleta; Cgi, Crassostrea gigas; Cqu, Culex quinquefasciatus; Dre, Danio rerio; Dma,

Daphnia magna; Dbu, Drosophila busckii; Dgr, Drosophila grimshawi; Dya, Drosophila yakuba; Dan, Drosophila ananassae; Dsi, Drosophila simulans; Der,

Drosophila erecta; Dps, Drosophila pseudoobscura; Dwi, Drosophila willistoni; Dvi, Drosophila virilis; Gga, Gallus gallus; Hsa, Homo sapiens; Lch, Latimeria

chalumnae; Lgi, Lottia gigantean; Lcu, Lucilia cuprina; Lco, Leucosolenia complicata; Mle, Mnemiopsis leidyi; Mdo, Musca domestica; Nve, Nematostella

vectensis; Obi, Octopus bimaculoides; Pas, Porites astreoides; Ryu, Ricordea Yuma; Sro, Salpingoeca rosetta; Sci, Sycon ciliatum; Xtr, Xenopus tropicalis; Zne,

Zootermopsis nevadensis.
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including Choanoflagellata and Capsaspora (fig. 7). Another

curious finding is a dipteran-specific loss of TUTase4 (fig. 5).

Despite the fact that Dipterans like Drosophila have lost the

TUTase4, they still possess a small RNA 30 uridylation mechan-

ism and it was shown that the Drosophila-specific TUTase Tailor

is responsible for it (Bortolamiol-Becet et al. 2015; Reimao-Pinto

et al. 2015). Taking this into consideration, our phylogenetic

analysis reveals that in the Drosophila lineage a TUTase6-related

protein (Tailor) took over the roles of TUTase4 that was lost.

In contrast to TUTase4, TUTase7 is found only in subgroups

of vertebrates (figs. 5 and 7) and it is most probably a dupli-

cation of TUTase4 that gained an additional new domain,

TUTF7_u4 (fig. 5). Additionally, lack of this unique domain

in TUTase4 also supports the notion that TUTase4 has evolved

earlier than TUTase7. However, the function of this newly

attained domain is unknown. Interestingly, the phyletic distri-

bution of TUTase7 suggests that it was lost specifically in tele-

ost fish, which is the largest group of vertebrates, raising
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FIG. 5.—A phylogenetic tree of TUTase4 and TUTase7 of selected animals. Schematic representation of TUTase4 and TUTase7 protein domain com-

position from several species. A PhyML tree was constructed with LG model (þIþG). Bootstrap support values above 50% are indicated above branches.

Values from Bayesian tree are indicated by a green (PP¼1.0), blue (0.95� PP<1.0), or red (0.7< PP<0.95) star. Abbreviations of species names are: Aqu,

Amphimedon queenslandica; Apa, Aiptasia pallida; Adi, Acropora digitifera; Bfl, Branchiostoma floridae; Bta, Bemisia tabaci; Cmi, Callorhinchus milii; Cad,

Crotalus adamanteus; Cel, Caenorhabditis elegans; Cte, Capitella teleta; Cgi, Crassostrea gigas; Cwr, Cryptocercus wright; Dre, Danio rerio; Dma, Daphnia

magna; Eve, Eulimnogammarus verrucosus; Gga, Gallus gallus; Haz, Hyalella Azteca; Hex, Hyalomma excavatum; Htu, Haliclona tubifera; Ham, Haliclona

amboinensis; Hsa, Homo sapiens; Iri, Ixodes ricinus; Lch, Latimeria chalumnae; Llo, Loa loa; Obi, Octopus bimaculoides; Lan, Lingula anatine; Lhe, Latrodectus

Hesperus; Lhe, Lygus Hesperus; Lsp, Leuctra sp. AD-2013; Mex, Medauroidea extradentata; Ncr, Nephilengys cruentata; Nve, Nematostella vectensis; Pte,

Parasteatoda tepidariorum; Rar, Ramulus artemis; Rap, Rhipicephalus appendiculatus; Sgr, Steatoda grossa; Sol, Scylla olivacea; Tsu, Tanzaniophasma

subsolana; Xtr, Xenopus tropicalis; Zne, Zootermopsis nevadensis.
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again the question whether it carries any unique functions

that are not shared with TUTase4.

Modification of certain miRNAs at their 30 end by addition of

mono (A) has been noted in several organisms and TUTase2

was found to responsible for this modification (Ameres et al.

2010; D’Ambrogio et al. 2012; Katoh et al. 2015). Further,

knockdown of TUTase2 has shown that 30 monoadenylation

regulates miRNA (mir-122) stability (Katoh et al. 2009). From

our analysis on miRNA 30 nontemplated modifications we

noticed that miRNAs from nonbilaterian animals undergo 30

mono adenylation as well (figs. 1C and 2C). This suggests that

TUTase2 may have a role in regulating miRNA stability in these

nonbilaterian animals and that this function might be ancestral.

Through homology search, we found TUTase2 in Cnidaria and

Porifera. However, we were not able to find TUTase2 homologs

in Demospongiae, a class of Porifera. This is probably the result

of a loss of TUTase2 that is specific to demosponges as we are

able to find TUTase2 homologs in other sponge classes and it

suggests that the evolution of TUTases might be dynamic in

different nonbilaterian groups (fig. 7).
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FIG. 6.—A phylogenetic tree of TUTase1, TUTase6, Tailor, and Monkey king of selected animals. Schematic representation of TUTase1, TUTase6, Tailor,

and Monkey king protein domain composition from several species. A PhyML tree was constructed with LG model (þIþG). Bootstrap support values above

50% are indicated above branches. Values from Bayesian tree are indicated by a green (PP¼1.0), blue (0.95� PP<1.0), or red (0.7< PP<0.95) star.

Abbreviations of species names are: Aqu, Amphimedon queenslandica; Apa, Aiptasia pallida; Ace, Apis cerana; Aal, Aedes albopictus; Aca, Aplysia
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Polyphemus; Lcu, Lucilia cuprina; Mdo, Musca domestica; Nvi, Nasonia vitripennis; Nle, Neodiprion lecontei; Nve, Nematostella vectensis; Pfl, Ptychodera

flava; Ryu, Ricordea Yuma; Sko, Saccoglossus kowalevskii; Sca, Stylissa carteri; Spu, Strongylocentrotus purpuratus; Tsp, Turritopsis sp. SK-2016; Tne, Triops

newberryi; Obi, Octopus bimaculoides; Xte, Xestospongia testudinaria; Xtr, Xenopus tropicalis.
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In the case of Drosophilidae, we found unprecedented

number of modifications in TUTase family of proteins (figs. 3

and 7), the TUTase2 duplication to GLD2 and Wispy is one of

them. From phylogenetic analysis it appears that the TUTase2

duplication occurred in the last common ancestor of

Drosophilidae (fig. 4). In addition, from domain organization

analysis we noted that both GLD2 and Wispy have unique

extension of N-terminal region (fig. 4), further supporting the

lineage-specificity of this duplication is Drosophilidae specific.

Despite GLD2 and Wispy sharing common domains their or-

ganization is slightly different (fig. 4). Wispy is a Drosophilidae

specific homolog of GLD2 known to regulate the poly(A) tail of

specific mRNAs during oocyte maturation in Drosophila (Cui

et al. 2008). Additionally, Wispy is also responsible for miRNA

30 adenylation and facilities miRNA downregulation (Lee et al.

2014). GLD2 function in Drosophila and its possible overlap

with Wispy is currently unknown.

Beside the TUTase2 duplication in Drosophilidae, we

found that TUTase6 is also duplicated into Tailor and

Monkey King specifically in this lineage (fig. 6). TUTase6

was first identified as a stability regulator of U6 snRNA in

humans (Trippe et al. 1998). However, recent studies of the

TUTase6 role in miRNA expression, showed that it has dir-

ect effect on 30 nucleotide addition to specific miRNAs

(Knouf et al. 2013). We noticed in our initial phylogenetic

analysis (fig. 3) that Tailor and Monkey King of Drosophila

could originate from a TUTase6 duplication. As mentioned

earlier, the Drosophila Tailor is directly involved in catalysis

of the miRNA 30 uridylation. Deletion of Tailor in Drosophila

S2 cells increases the levels of mirtrons, a class of nonca-

nonical splicing-mediated miRNAs. This demonstrates that

Tailor has a role in negatively regulating mirtrons accumu-

lation (Bortolamiol-Becet et al. 2015; Reimao-Pinto et al.

2015). To the best of our knowledge, the function of

FIG. 7.—Origin and evolution of RNA modifying enzymes in Metazoa. A schematic tree of major animal groups with loss and gain events marked on

relevant branches.
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Monkey King has not been published. Further, In terms of

domain architecture Tailor and Monkey King have lost RNA

binding domain found in their ancestor TUTase6 and

Monkey King also lost its Poly(A) polymerases (PAPs) asso-

ciated domain (fig. 6). These findings again suggest that

there might have been sub or neo-functionalization in

Drosophila between Tailor and Monkey King in relation

to the ancestral TUTase6. As in previous cases, this dupli-

cation of TUTase6 seems to be specific to Drosophilidae

(fig. 6). The numerous lineage-specific changes of

TUTases in Drosophilidae hint at an accelerated evolution-

ary rate of this gene family in fruit flies and further suggest

that Drosophila, while being an extremely important model

organism for the functional study of RNA metabolism in

animals, probably possess a highly derived RNA tailing

mechanism.

In addition to TUTase6 duplication in Drosophilidae, we

noted that TUTase1 probably has been derived from a gene

duplication of TUTase6 in Urbilateria (fig. 7). Studies have

shown the TUTase1 is crucial in regulating stability of mam-

malian mitochondrial transcripts by adding poly(A) tails

(Tomecki et al. 2004; Nagaike et al. 2005). In contrast, mito-

chondrial mRNA polyadenylation in plants leads to degrad-

ation (Schuster and Stern 2009). In yeast, the mitochondrial

mRNAs lack poly(A) tails and the stability of mitochondrial

mRNA is regulated by mRNA-binding proteins (Dieckmann

et al. 1984; Butow et al. 1989). The regulation of mitochon-

drial transcripts in nonbilaterian animals and whether it

involves the activity of any TUTases is currently completely

unknown and deserves further study as it can reveal what

was the ancestral mechanism of mitochondrial mRNA stabil-

ization in animals.

In overall, our study reveals that three members of the

TUTase family, TUTases 3, 5, and 6, were most likely already

present in the last common ancestor of Capsaspora and

Metazoa. Further, other major transitions in the TUTase family

that our study reveals include the emergence of TUTase2 and

TUTase4 at the base of Metazoa, the loss TUTase2 in demo-

sponges, and the emergence of TUTase1 is bilaterians (fig. 7).

Conclusions

We found that miRNAs in nonbilaterian animals often

undergo modifications by tailing like in bilaterians, suggesting

that this RNA stability control system was already present in

the last common ancestor of all animals. However, variation in

the components of this system exists in some animal lineages,

with Drosophilidae being the most striking example for sub-

stantial divergence. By phylogenetic studies on TUTases, we

revealed several important events in the evolution of this pro-

tein family in the animal kingdom (fig. 7). Lastly, we believe

that future functional studies of TUTases in miRNA modifica-

tion of nonbilaterian models will provide new insight into the

evolution of small RNA pathways in animals.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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