Skip to main content
. 2017 Jul 13;12(7):e0181231. doi: 10.1371/journal.pone.0181231

Table 2. Our database/tissue/disease filters can significantly reduce the number of predicted miRNA targets but still keep the functional one.

Human miRNA Functional target Reference Pubmed ID Filter settings: (database/tissue/disease) # of predicted targets when using only the database filter # of predicted targets when using all three (database/tissue/disease) filters Reduced ratio
miR-16-5p PPM1D 20668064 4 / breast tissue / invasive breast cancer 883 16 98.19% = (883–16)/883
miR-301a-3p PTEN 21393507 4 / breast tissue / invasive breast cancer 533 14 97.37%
miR-195-5p SLC2A3 22265971 3 / bladder tissue / carcinoma of bladder 3008 125 95.84%
miR-615-5p IGF2 22819824 3 / liver tissue / liver neoplasms 1238 57 95.40%
miR-519d-3p CDKN1A 22262409 4 / liver tissue / liver neoplasms 717 45 93.72%
miR-135a-5p APC 18632633 4 / colon / colorectal neoplasms 374 27 92.78%
miR-153-3p MCL1 19676043 3 / brain / glioblastoma 1816 156 91.41%
miR-204-5p EZR 21416062 3 / stomach / stomach carcinoma 1152 104 90.97%
miR-103a-3p KLF4 22593189 3 / colon / colorectal carcinoma 2095 236 88.74%
miR-497-5p RAF1 21350001 4 / breast tissue / breast neoplasms 887 106 88.05%