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Abstract

In this paper, we investigate the possibility that genetic variation contributes to self-perceived 

weight status among adolescents and young adults in the U.S. Using samples of identical and 

fraternal twins across four waves of the National Longitudinal Study of Adolescent to Adult 

Health (Add Health) study, we calculate heritability estimates for objective body mass index 

(BMI) that are in line with previous estimates. We also show that perceived weight status is 

heritable (h2 ~ 0.47) and most importantly that this trait continues to be heritable above and 

beyond objective BMI (h2 ~ 0.25). We then demonstrate significant sex differences in the 

heritability of weight identity across the four waves of the study, where h2
women =0.39, 0.35, 0.40, 

and 0.50 for each wave, respectively, and h2
men =0.10, 0.10, 0.23, and 0.03. These results call for a 

deeper consideration of both identity and gender in genetics research.
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1. Introduction

Health scientists have long relied upon self-rated health (SRH) as a global indicator of 

overall well-being (Idler and Benyamini, 1997)—largely because self-reported health 

measures are consistently found to be at least as valid as physician assessed morbidity 

(Ferraro and Farmer, 1999), and SRH is strongly associated with overall mortality risk (Idler 

and Angel, 1990). A growing body of work has started to investigate self-ratings of health, 
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and this work has shown important differences by age, gender, and specific morbidities 

(Chang and Christakis, 2003; Lee et al., 2010; Nelson et al., 2008). Because certain 

individuals’ health assessments are relatively rigid even in the face of new information about 

changes in objective health status (Boardman, 2006), scholars have argued that these 

measures tap into a more complex phenomenon that has been characterized as a “health 

identity” (McMullen and Luborsky, 2006). This argument is in line with the results of a 

recent study by Altman, Van Hook, and Hillemeier (2016), who show that obesity status is a 

critical part of the subjective component of health assessments, and that this relationship is 

consistent regardless of historical period. Grover, Keel, and Mitchell (2003) have argued that 

“weight identity” is, like health identity, a stable component of personal identity.

In this paper, we evaluate the possibility that variation, not just in weight itself but in weight 

identity, may be due in part to genetic variation in the population, and we examine gender 

differences in the heritability of weight identity. We use sibling-based quantitative genetic 

models to illustrate the importance of this genetic connection for social epidemiologic 

understandings of health assessments in general and weight identity in particular.

1.1. Health identity and weight identity

Social scientists have detailed the ways in which multiple and competing social roles, 

statuses, and life circumstances coalesce to define one’s identity (Goffman, 1959). More 

recently, researchers have made it clear that current health, health lifestyles, and healthcare 

interactions are all important components of overall health identity (Kelleher and Leavey, 

2004). Critically, physical weight is consistently linked to overall health assessment 

(Altman, Van Hook, and Hillemeier, 2016; McMullen and Luborsky, 2006), and lifestyle 

indicators such as food choice are increasingly important signals of one’s health identity 

(Stead et al., 2011). Further, the connection between health self-assessments and identity is 

important to medical sociology and social epidemiology. Self-assessments about current 

health have two components: (1) a spontaneous assessment; and (2) an enduring self-concept 

(Bailis et al., 2003). This latter component is particularly important, because it suggests that 

simple questions about one’s health, including one’s weight, may tap into complex health-

related identities that are relatively stable over time. Nonetheless, some individuals may be 

more likely than others to adjust their health self-assessments in light of new information, 

new life events, or changes in health status.

Previous work has demonstrated the stability of SRH as an enduring self-concept by 

evaluating the association between health assessments and reported morbidities and co-

morbidities over time (Boardman, 2006). In this paper, we demonstrate the stability of 

weight identity by examining residual variation in subjective weight status (e.g., “Overall, 

how do you think of yourself in terms of your weight?”) after adjusting for objective BMI.

1.2. Genetics and identity

Results of a meta-analysis suggest that the heritability of subjective well-being is between 

30% and 50% (Nes et al., 2006). That is, roughly one-third to one-half of the variance of 

subjective well-being in the population may be due to genetic variation. Yet the idea that 

health identity reflects a genetic component is rarely considered in the social sciences. Our 
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study addresses this limitation by ascertaining for the first time the proportion of variance in 

weight identity that may be genetically influenced. Researchers have made gains in their 

efforts to assess the genetic origins of environmental sensitivity (Belsky and Pluess, 2009; 

Boyce and Ellis, 2005; Shanahan and Hofer, 2005), but very little work has considered 

health identities such as weight identity within this overall framework. This is very 

important because those who are less flexible in their health or weight identity may be less 

likely than others to make significant changes to improve or maintain their health 

(Boardman et al., 2011; Boardman et al., 2012). By studying the two phenotypes of 

objective BMI as well as one’s own perceived weight status, we examine the possibilities 

that the covariation between these traits is due, in part, to common genetic influences, and 

more importantly, that unique genetic influences contribute to subjective weight identity. 

That is, we explore the idea that some of the tendency to be open to change in weight self-

assessment may have roots in observed or unobserved genotype.

1.3. Differential susceptibility and social triggers

The social trigger model of gene-environment interaction (GxE) anticipates that latent 

genetic influences manifest only when triggered by the individual’s environment. For 

example, the differential susceptibility model of GxE interaction suggests that some 

individuals possess more “plasticity” alleles, making these individuals similar to orchids, 

while others that possess relatively fewer resemble resilient dandelions (Belsky and Pluess, 

2009). Given relatively average environments, these two groups of individuals would be 

expected to fare similarly, but when exposed to either beneficial or hostile social triggers, the 

genetic differences between individuals will manifest. Given the allure of such theoretical 

models for social scientists, the past decade has witnessed an explosion of research on GxE 

interactions (Manuck and McCaffery, 2014). The initial molecular empirical work evaluated 

polymorphisms in specific candidate genes that were hypothesized to moderate 

environmental influences on specific morbidities. Perhaps the most highly cited works in 

this area are two papers from Caspi and colleagues, which sought to demonstrate that certain 

genetic polymorphisms made individuals particularly sensitive to stimuli from the social as 

well as the physical environment. Though the replicability of this work is debatable, it 

emphasized noxious environmental exposures including stressful life events (Caspi et al., 

2003) and serious forms of maltreatment among children (Caspi et al., 2002).

The results of these two studies have led to hundreds of attempted replications with mixed 

results (Risch et al., 2009), discussions about the plausible biological mechanisms of the 

purported GxE effects (Meaney, 2010), sharp criticisms about the likelihood of Type-I errors 

in underpowered and unreplicated gene-environment studies (Duncan and Keller, 2011), 

calls to extend the meaning of the environment to include social forces (Boardman, Daw, 

and Freese, 2013), and refinements to the emphasis on stressful environments (Pluess and 

Belsky, 2011). While these debates continue, there is growing consensus that a complete 

understanding of complex behavioral phenotypes requires information on the genetic 

architecture of individuals and the social contexts in which they interact (Landecker and 

Panofsky, 2013).
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A number of replicated empirical regularities have emerged from twin and family studies, 

which are well-positioned to explore aggregate genetic architecture (even if the specific 

genetic markers are unknown). For example, heritability tends to increase with age (e.g., 

Bergen, Gardner, and Kendler, 2007; Briley and Tucker-Drob, 2013), and there is some 

evidence that heritabilities also differ across environmental context (e.g., Tucker-Drob and 

Bates, 2016; Tucker-Drob, Briley, and Harden, 2013). Rather than remaining fixed and 

static, genetic influences emerge across development as individuals encounter social 

triggers. Gender may also act as a social trigger. For example, the magnitude of genetic 

influences on some psychological measures, such as anxiety, depression, and aggressive 

behavior, differs across males and females (e.g., Eley, Lichtenstein, and Stevenson, 1999; 

Eley and Stevenson, 1999). One potential explanation of these findings is that biological 

processes link psychological development to the genome more strongly for either males or 

females. An equally plausible mechanism is that the social experience of being male or 

female differentially situates individuals within social environments that magnify or 

diminish genetic influences on development.

In the present paper, we propose that genetic sensitivity to social environmental factors may 

also contribute to identity formation in general and weight identity specifically. While only 

limited work has focused on genetics and identity, Settle, Dawes, and Fowler (2009) have 

found that intensity of partisan identification is a heritable phenotype, although the direction 

of the association is not heritable. That is, genes do not contribute to “liberal” or 

“conservative” ideologies; rather, genes seem to influence individuals’ propensity to express 

their political orientations as an important component of their identity. This work is in line 

with our understanding regarding the genetic contributions to the malleability of “identity 

negotiation,” and is comparable to other work on religious identities (Lewis and Bates, 

2013).

1.4. Weight identity by gender

Symbolic interaction research has demonstrated that individuals constantly negotiate their 

own identities in light of their social roles, environmental cues, and observations of others. 

These negotiations coalesce in a process in which individuals internalize putatively external 

elements of their social world (Mead, 1913). This work emphasizes the importance of a 

“master status” (Becker, 1963) but also underscores the need to consider identity across 

multiple social roles.

Among U.S. adolescents and young adults, weight identity negotiation is likely to vary 

systematically with gender. Weight status is much more salient for women than for men in 

the U.S., and women and men experience different social environments in regard to weight. 

Further, women are at higher risk of weight discrimination than men, and young women are 

at higher risk of weight discrimination at lower levels of BMI (Puhl, Andreyeva, and 

Brownell, 2008). These social realities are reflected in differential self-assessments of 

weight. For example, objectively overweight men are disproportionately inclined to report 

that they are “about the right weight” (Chang and Christakis, 2003).

We believe that increasing objective BMI affects weight identity only insofar as it is 

subjectively meaningful. Thus, in our study, we bring the social meaning of gender to bear 

Wedow et al. Page 4

Soc Sci Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the GxE literature. Because weight status is more highly salient for women than for men, 

and being overweight is more highly stigmatized for women than for men, we anticipate that 

these differential expectations regarding weight will render different environments, and that 

these environments will thus drive gendered differences in our genetic analyses, so that the 

effect of genetic variation on weight identity will manifest most among women. That is, the 

social mechanisms that are necessary to observe the heritability of this identity phenotype 

will be much stronger for women than for men in the United States.

2. Data and Methods

2.1. Dataset

This study uses data from the (U.S.) National Longitudinal Study of Adolescent to Adult 

Health (Add Health). Add Health is a nationally representative and longitudinal sample of 

adolescents originally assessed in grades 7–12 during the 1994–1995 school year. This 

cohort was followed into young adulthood with four in-home interviews, and the Add Health 

dataset contains detailed information on respondents’ social, psychological, and physical 

well-being, with information on their families, neighborhoods, schools, and peer groups. 

Thus it provides a unique way to study how social environments and behaviors in young 

people are linked to health outcomes in adulthood. Importantly for our study, Add Health 

purposely oversampled twin pairs to enable the behavioral genetic analyses that we use in 

our study (Harris et al., 2006).

2.2 Empirical analyses

We use monozygotic (MZ) and dizygotic (DZ) twin pairs in our analyses. In our final 

univariate and bivariate twin analyses we use a total of 286 MZ pairs, 251 same-sex DZ 

pairs, and 204 opposite-sex DZ pairs. Objective BMI was measured as a continuous outcome 

constructed from measured height and weight. Perceived weight status was assessed with the 

following response categories using the question “How do you think of yourself in terms of 

weight?” Response options included (1) “very underweight,” (2) “slightly underweight,” (3) 

“about the right weight,” (4) “slightly overweight,” or (5) “very overweight.”

Using twin modeling techniques in the structural equation modeling programs Mplus 7.4 

(Muthén and Muthén, 1998–2015) and OpenMx (Boker et al., 2011) with the R 3.2.0 

statistical program (R Core Team, 2016), we provide estimates for the genetic component 

(additive [A]) and two components of environmental influence (shared [C] and nonshared 

[E]) of our objective BMI and perceived weight status phenotypes. All of our models control 

for the main effects of age, sex, age2 and an age-×-sex interaction, as is standard in twin 

models (McGue and Bouchard, 1984). We compare nested models using χ2 difference tests 

to assess fit and arrive at the most parsimonious models. We estimate univariate models for 

each of the 4 waves of Add Health and provide standard errors for our parameter estimates.

We next fit bivariate twin models, or Cholesky triangular decomposition models, to 4 × 4 

covariance matrices. Here we use the most parsimonious models from our univariate 

analyses to inform the models we fit in our bivariate approach. In these models we 

decompose the variance-covariance matrix with regression of observed measures on latent 
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factors in which we model a variance-covariance path that approximates the variance shared 

between our 2 phenotypes: objective and perceived weight (Purcell, 2008). As shown by 

diagramming the bivariate path model in Figure 1, in these models objective BMI and 

perceived weight status are observed. A, C, and E are the latent factors of additive genetic 

variation, shared environmental variation, and nonshared environmental variation, 

respectively. The a11 and a22 paths represent the additive genetic variation associated with 

objective BMI and residualized perceived weight status, respectively. Likewise, the c11, c22, 

e11, and e22 paths represent the environmental variation associated with objective BMI and 

residualized perceived weight status respectively. Put differently, the pathways specific to 

perceived weight status represent unique genetic and environmental influences that are not 

shared with objective BMI. Unique to the bivariate models, the covariance paths (a21, c21, 

and e21) represent genetic and environmental variation shared between objective BMI and 

perceived weight status, and these paths can be interpreted similarly to regression 

coefficients. When squared, the coefficients represent the proportion of variance in perceived 

weight status that is shared with objective BMI. These shared paths also allow us to estimate 

a genetic correlation coefficient (rg) that indicates the extent to which latent-factor variation 

(e.g., genetic influence) is shared between our two phenotypes. The paths described in 

Figure 1 can be used with Equation 1 to estimate the genetic correlation coefficient as:

(Equation 1)

Thus in these models we can get a sense of the amount of genetic variation that is 

influencing both objective BMI and perceived weight status at the same time. We estimate 

bivariate models across all 4 waves of Add Health and provide standard errors for our rg 

estimates.

As a final step, we investigate whether the above estimates of genetic and environmental 

influences are consistent across genders. In the behavior genetic literature, this phenomenon 

is referred to as a sex-limitation model (Neale and Cardon, 1992). Two forms of sex-

limitation are possible. First, qualitative sex-limitation refers to the possibility that different 

genetic influences matter for men and women. For example, different genes may regulate 

pubertal development across gender that also influences BMI, or the social experience of 

puberty may magnify different genetic influences across gender. Here, the main point is that 

the genetic variation that matters for BMI might differ across gender. Second, quantitative 
sex-limitation refers to the possibility that the magnitude of genetic or environmental 

influences may differ across gender. For example, genetic influences may exert a larger or 

smaller influence on BMI across gender due to a variety of biological or social mechanisms, 

but the same sort of genetic influences matter across gender. Testing for qualitative sex-

limitation requires opposite-sex DZ twin pairs and evaluates whether these pairs differ 

systematically from same-sex pairs. Quantitative sex-limitation estimates genetic and 

environmental effects separately across males and females. These models are nested and can 

be compared using χ2 difference tests.
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3. Results

Table 1 reports the twin pair descriptive statistics for our outcome phenotypes, objective 

BMI and perceived weight status. As we expected, BMI increased as twins aged, and thus 

mean BMI ranged from 22.10 to 28.03 across waves. Mean perceived weight status (on a 5-

point Likert Scale) ranged from 3.08 to 3.49 across waves, or from “about the right weight” 

to “slightly overweight.” Table 1 also reports the number of MZ, same-sex DZ, and opposite 

sex DZ twin pairs used for each phenotype by wave. Finally, we report MZ, same-sex DZ, 

and opposite sex DZ phenotypic correlations for each trait by wave. For objective BMI, 

phenotypic correlations were roughly 0.8 for MZ pairs and about 0.4 for same-sex DZ pairs. 

For perceived weight status, phenotypic correlations were on average about 0.5 for MZ pairs 

and about 0.25 for same-sex DZ twin pairs. Opposite sex DZ correlations were much lower 

than same-sex DZ correlations, an indication of sex differences. That the same-sex DZ 

correlations were on average about half the MZ correlations suggests that genetic influences 

are additive (Plomin et al., 1990). To check this observation, we procedurally fit a model for 

non-additive (dominance) genetic effects, and we find estimates of zero for the dominance 

genetic parameter, providing further evidence that an additive genetic model is the most 

appropriate.

Table 2 and Figure 2 present the results of our univariate models. The final three columns in 

Table 2 indicate model fit statistics for the ACE vs. the AE model. Because we were able to 

drop C from all of our univariate models without loss of model fit (last column in Table 2), 

we only present the results of the AE models in Table 2 and Figure 2. Heritability for 

objective BMI remains quite stable across all waves at about 0.80, and this value is 

consistent with previous estimates using these data (Haberstick et al., 2010) as well as with 

estimates for similarly aged populations across other settings (Min et al., 2013). As shown in 

Figure 2, confidence intervals, even with our somewhat small twin sample, remain tight 

(please see the standard errors in Table 2). For perceived weight status, heritability values 

again stay very stable across waves at about 0.45, suggesting that perceived weight status is 

more heavily influenced by environmental factors than is objective BMI. Confidence 

intervals and standard errors are again relatively small, although they are somewhat larger 

than the confidence intervals and standard errors for objective BMI. In both phenotypes we 

see significant genetic influence across all 4 waves of Add Health.

We present our first bivariate model in Table 3 for all respondents. In the first several 

columns, we present standard errors and path coefficients for both the additive genetic [A] 

and nonshared environmental [E] components of our model. In Figure 3, to highlight how 

these coefficients map onto our structural model, we present the Wave 1 [A] and [E] path 

coefficients, genetic and environmental correlations, and standard errors using the same 

diagramming as in Figure 1.

Next, using path coefficient-based equations (see Equations S1 and S2 in Section 1 of the 

online supplement), we calculate heritabilities for objective BMI and perceived weight status 

(Table 3). We find that these estimates are directly in line with the estimates from our 

univariate models in Table 2 and Figure 2, and this observation serves as a methodologically 

consistent robustness check. Unique to the Cholesky bivariate method, the shared variance-
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covariance paths (a21 and e21) allow for the determination of variance that is unique to 

perceived weight status, independent of objective BMI. We use the below equation to 

calculate this residual heritability estimate:

(Equation 2)

As reported in Table 3, we find consistent heritability estimates for this residual phenotype 

of 0.25, 0.21, 0.29, and 0.23 across each of our 4 waves, respectively. Importantly, these 

estimates indicate that perceived weight status contains a heritable component that is truly 

above and beyond either objective weight status or environmental influences. Further, these 

heritability estimates provide the first evidence that weight identity may have genetic 

underpinnings. (For a robustness check of this method, see Section 2 of the online 

supplement.) In Figure 4, we graphically decompose our bivariate results, splitting genetic 

and environmental variance into variance shared between objective BMI and perceived 

weight and variance unique to each of these phenotypes. The light gray portion of the bars in 

this figure correspond to genetic variance unique to perceived weight status.

Across each of the 4 waves our estimates of genetic correlation (rg) remains stable between 

0.78 and 0.85 with small and consistent standard errors. These rg values provide strong 

evidence that there is a substantial overlap between the genetic variance that is associated 

with BMI and the genetic variance that is associated with perceived weight status. Finally, 

using the path coefficients in Table 3, we can calculate a ratio of the genetic covariance 

between objective BMI and perceived weight status to the phenotypic correlation between 

the two traits (Plomin and DeFries, 1979):

(Equation 3)

For our bivariate model, Equation 3 yields consistent values of 0.88, 0.81, 0.76, and 0.81 

across our 4 waves, which suggests that a much of the observed phenotype covariance 

between our two traits is due to additive genetic influences. This result, in conjunction with 

the results for the residualized weight identity phenotype, supports the notion that the 

heritability of one component of weight identity operates above and beyond simple changes 

in physical weight.

We next turn toward the question of sex differences in the genetic influences on weight 

identity. First, we formally test for both qualitative and quantitative sex differences, or sex-

limitation, in our univariate models. We find weak evidence for either of these types of sex 

differences (for methodology and results, see Section 3 of the online supplement). Thus, we 

move to a more informative test of quantitative sex differences for our bivariate model. This 

test measures whether the additive genetic paths, including the a21 cross-path, are equivalent 

across males and females. Put differently, this test assesses whether gender moderates the 

relation between the genetic variance in objective BMI and perceived weight status. In order 
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to perform this test, we fix the additive genetic bivariate pathways (a11, a21, and a22) and 

similar environmental pathways across males and females to be equal. We then compare the 

χ2 statistic of this model to a model where we freely estimate each of these parameters. As 

shown in Table 4 below, in general we find strong and statistically significant evidence that 

we cannot fix these parameters to be equal, and therefore that genetic and environmental 

effects on objective BMI and perceived weight status differ greatly across gender in our 

bivariate model. (For a robustness check of this test, see Section 4 of the online supplement). 

There are two other important takeaways from this test. First, it appears that gender 

moderates the association between the genetic variance related to objective BMI and the 

genetic variance related to perceived weight status. Second, in the case of our bivariate 

model, any differences between the genetic influences for men and women come as a result 

of residual genetic variation in perceived weight status. In other words, genetic variation in 

weight identity that is unique to perceived weight status and independent of objective BMI is 

driving any gendered, genetic differences we might observe in our 2 phenotypes.

Having established statistically significant gender differences in genetic variance, we re-

estimate the parameters of our bivariate model, this time separately for men and women. In 

Table 5, we report these results similarly to the full bivariate model. The heritability 

estimates in this table show that the amount of genetic variance related to objective BMI is 

relatively similar for men and women, with gender differences ranging only from about 0.05 

to 0.10 across the 4 waves. For the heritability of perceived weight status, gender differences 

are more extreme, this time ranging from about 0.10 to 0.25 across waves. Most strikingly, 

and in line with what we expect from our sex-limitation tests, the genetic variation that is 

unique to perceived weight status (independent of objective BMI) differs the most by gender. 

For these heritability estimates, we see gender differences ranging from about 0.20 all the 

way to 0.50 across waves. Further, these heritability values for men are about 0.10 on 

average, while for women the average is about 0.40. These results confirm that, for women, 

the genetic influences on perceived weight that are unique to perceived weight and not 

shared with objective physical weight are significantly greater than for men. Put another 

way, genetic variability in weight identity is much higher for young women than for young 

men in the United States. As previous researchers have noted (Perry, 2015; Perry et al., 

2013; Perry, 2016; Short, Yang, and Jenkins, 2013), this gender-specific genetic association 

is perfectly in line with a sociological understanding of gender as a critical environmental 

moderator of biological processes and reflects the salience of weight identity for women in 

the United States.

In Figure 5, we again graphically decompose our bivariate results where the light gray 

portion of the bars correspond to the portion of genetic variance that is unique to perceived 

weight status by gender. Finally, we note that the average genetic correlation for men across 

the 4 waves is 0.92, while for women the average genetic correlation is 0.73. In other words, 

for women the percentage of the genetic variation between objective BMI and perceived 

weight status that is due to common genetic factors that influence both traits is much lower 

than for men. That the average genetic correlation values are different and much lower for 

women adds a final piece of support that, for young women in particular, genetic variation in 

perceived weight status operates above and beyond simple changes in physical weight.
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4. Discussion

Our results demonstrate strong links between objective measures of BMI and subjective 

perception of weight status. Individuals with higher BMI view themselves as somewhat 

more overweight, and this association is mediated through common genetic effects. Beyond 

genetic effects, we consistently find a positive nonshared environmental association across 

four waves of data and across males and females. This effect represents the tendency for 

(genetically identical) twins with higher BMI to also perceive themselves as overweight. 

Over and above these links with BMI, we find residual genetic and environmental effects on 

subjective weight perception. This result implies that individuals vary in the sensitivity of 

identify formation processes to objective facts, and the relative contributions of genetic and 

environmental factors to such processes differ across men and women. In this case, we 

believe that patterned differences in the social meaning of weight are reflected in gender 

differences in the observable contributions of genetics to weight identity.

While it has long been understood at the molecular level that genes play a role in shaping 

biological development and human disease, social scientists and epidemiologists have made 

it clear that health outcomes are affected not just by biological mechanisms, but also by 

social and environmental factors (Boardman et al., 2013). The differential susceptibility 

model adds that people with different genotypes may have biologically differential responses 

to the same environment, and thus demonstrates that understanding complex phenotypes like 

health requires simultaneous consideration of social and biological inputs. Our investigation 

is important because as Idler and Benyamini (1997) and many others have shown, health 

assessments are independent and robust predictors of adult mortality; how one evaluates 

one’s own health has critical and lasting consequences, because it shapes one’s health 

management decisions. If subjective health identities are “sticky” (Bailis et al., 2003)—not 

always reflecting actual health states, or changes in health states—it is important to 

understand why.

We recognize that other explanations for our results are possible. In particular, it could be 

that observed differences reflect global health assessments rather than a more narrowly 

defined weight identity (Mosing et al., 2010). To explore this possibility, in ancillary 

analyses, we estimated comparable bivariate Cholesky models with self-rated health and 

weight identity, and we calculated an rg of 0.44, 0.64, 0.58, and 0.64 for waves 1–4 

respectively. Thus, although these two phenotypes are correlated (r about 0.16 – 0.27 across 

waves), and this association is derived from common sources of genetic variation, these 

analyses are consistent with the idea that weight identity is a unique phenotype above and 

beyond a general perception of physical health.

Further, the literature points toward gendered mismatches in weight reporting whereby men 

are likely to overestimate their weight (Merrill and Richardson, 2009; Shapiro and 

Anderson, 2003). Accordingly, it is likely some gender-related measurement error exists in 

our subjective weight assessment outcome variables. However, we believe that this 

misreporting most likely reflects the gendered social environment surrounding weight, and is 

thus part of the environmental factors behind the gendered genetic outcomes we observe in 

our study. Nevertheless, it is important to keep in mind the mechanisms behind such 
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measurement errors and how they might affect the parameter estimates. If misreporting of 

weight perception falls neatly along gender lines, then only opposite-sex twin pairs would be 

affected. This process may explain our (somewhat weak) evidence of qualitative sex 

limitation. Same-sex pairs would not be biased by such an effect if it applies equally to all 

members of a gender because, while shifting the means for weight perception, it would not 

affect the covariance matrix from which the models derive information. Importantly, our 

primary results held when only same-sex pairs were analyzed. If such a bias does not apply 

to all members of a gender equally, then the nonshared environmental link between BMI and 

subjective weight perception may break down. Said differently, this source of error implies 

that some men need to gain even more weight than their (identical) twin to report a higher 

subjective weight perception compared to their twin. In fact, we do see in our results that 

this nonshared environmental connection is weaker for men (average e21 = .22) compared to 

women (average e21 = .31).

Finally, we note that it in era of increasing access to molecular genetic data, it is important to 

consider both the strengths and the limitations of the twin model and to compare these 

models to methods that utilize measured genetic data. For readers interested in this topic, we 

provide a detailed discussion in Section 5 of the online supplement.

5. Conclusion

To date, few researchers have conceptualized genetics as contributing to identity formation, 

and even fewer have extended this conceptualization to the realm of health identity. We 

emphasize that suggesting a role for genetics does not mean that identities do not and cannot 

change; it instead reflects social science paradigms built around the idea that not all 

individuals respond to the same environments in the same way—and that the sources of this 

heterogeneity are theoretically and empirically important. We propose that genetic variance 

influences subjective health assessments, and in particular, weight and health identity. We 

further show that the extent to which genetic variance plays a role in weight identity depends 

on gender. This research is of particular importance because what constitutes a healthy body 

size is determined in part by the social contexts in which one lives, works, and socializes 

(Qvortrup, 2010). These factors ultimately affect what individuals do to monitor and manage 

their own weight (Levine, Smolak, and Hayden, 1994). We are optimistic that we have 

developed a solid starting place for empirically investigating genetic contributions to weight 

and health identities.

Finally, we end on a note that we believe is critical and often neglected in any social science 

genetics study. In 1979 the prolific economist Arthur Goldberger noted a growing concern 

for the interpretation of genetic results, a concern which still plagues interpretations even 

today. In line with Goldberger’s critique, we caution against committing the naturalistic 

fallacy when interpreting genetic results, or concluding that simply because a phenotype 

might, in part, have a natural cause, policy has little scope to affect an outcome. While 

genetic variation plays a role in almost any phenotype (Turkheimer, 2000), the extent to 

which the social environment affects these phenotypes is ever-changing, and policy can and 

will always have an important role in shaping phenotypic outcomes.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
ACE bivariate path model for objective BMI and perceived weight status.

Wedow et al. Page 15

Soc Sci Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Twin heritability estimates for univariate models. 95% confidence intervals included.
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Fig. 3. 
AE bivariate path model for objective BMI and perceived weight status, with Wave 1 path 

coefficients and standard errors included.
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Fig. 4. 
Variance decomposition of bivariate models for all respondents by wave. Genetic and 

nonshared environmental variance is split into variance shared between objective BMI and 

perceived weight status, and variance unique to perceived weight status.
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Fig. 5. 
Variance decomposition of bivariate models for all respondents by wave and gender (M and 

F). Genetic and nonshared environmental variance is split into variance shared between 

objective BMI and perceived weight status and variance unique to perceived weight status.
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Table 4

Test of quantitative sex-limitation for the bivariate model, by wave.

Model fit statistics (χ2)

Free parameters across gender Fix parameters across gender Model Diff. pr. <

Wave 1 78.87 101.47 0.00

Wave 2 80.12 88.47 0.40

Wave 3 83.84 124.95 0.00

Wave 4 71.29 118.47 0.00

Note: Freely estimated model has 54 degrees of freedom; fixed model has 62.
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