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Abstract

Objective—We designed and validated a portable electrical bioimpedance (EBI) system to 

quantify knee joint health.

Methods—Five separate experiments were performed to demonstrate the: (1) ability of the EBI 

system to assess knee injury and recovery; (2) inter-day variability of knee EBI measurements; (3) 

sensitivity of the system to small changes in interstitial fluid volume; (4) reducing the error of EBI 

inan@gatech.edu, ph: 404-385-1724. 

HHS Public Access
Author manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 October 01.

Published in final edited form as:
IEEE Trans Biomed Eng. 2017 October ; 64(10): 2353–2360. doi:10.1109/TBME.2016.2641958.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measurements using acceleration signals; (5) use of the system with dry electrodes integrated to a 

wearable knee wrap.

Results—(1) The absolute difference in resistance (R) and reactance (X) from the left to the right 

knee was able to distinguish injured and healthy knees (p<0.05); the absolute difference in R 

decreased significantly (p<0.05) in injured subjects following rehabilitation. (2) The average inter-

day variability (standard deviation) of the absolute difference in knee R was 2.5Ω, and for X was, 

1.2 Ω. (3) Local heating/cooling resulted in a significant decrease/increase in knee R (p<0.01). (4) 

The proposed subject position detection algorithm achieved 97.4% leave-one subject out cross-

validated accuracy and 98.2% precision in detecting when the subject is in the correct position to 

take measurements. (5) Linear regression between the knee R and X measured using the wet 

electrodes and the designed wearable knee wrap were highly correlated (r2 = 0.8 and 0.9, 

respectively).

Conclusion—This work demonstrates the use of wearable EBI measurements in monitoring 

knee joint health.

Significance—The proposed wearable system has the potential for assessing knee joint health 

outside the clinic/lab and help guide rehabilitation.

Index Terms

Electrical bioimpedance; joint physiology; wearable sensing

I. Introduction

Electrical bioimpedance (EBI) is a technique that involves passing a small amount of 

electrical current through a volume of biological tissue, and measuring the ensuing voltage 

change across that tissue to calculate the passive impedance imposed against electrical 

current flow [1]. Because the electrical conductivity for different types of tissue varies 

significantly, such EBI measures can provide information regarding the underlying structural 

composition of the tissue volume [2].

EBI is often measured at a single frequency of excitation—typically in the tens of kHz or 

higher to reduce losses due to the skin-electrode interface and also allow for higher safety 

limits on current levels of excitation—but can also be measured at multiple frequencies to 

allow for bioimpedance spectroscopy [3]. Applications of the method have included the use 

of EBI for body composition analysis (i.e., estimation of fat-free mass and total body water) 

[4, 5], blood volume pulse and limb blood flow quantification [6, 7], cardiac output and 

function [8, 9], detection of cardiac events such as aortic valve opening [10], wound healing 

monitoring [11], and, recently, muscle injury and edema assessment [12–14]. To our 

knowledge, evaluation of EBI as a tool for quantifying knee joint health following acute 

knee injuries – which may be more subtle as compared to total knee replacement surgery as 

previously considered [14] – has not been examined by others in the existing literature. 

Additionally, these previous approaches were mainly limited to controlled lab settings, using 

bench-top, wall-powered equipment, which are not applicable in a wearable setting.
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Recently, our group presented a novel proof-of-concept system for vector EBI measurements 

that could potentially be used for quantifying knee joint health following an acute injury, in a 

wearable setting [15]. We presented results from a small preliminary dataset of 9 subjects (7 

healthy, and 2 with injured knees) in that previous paper, and showed promising initial 

results comparing the impedance characteristics of the injured versus healthy leg: the 

differences between legs in resistance and reactance were greater for the subjects with 

recently acquired acute injury as compared to the healthy subjects.

In this paper, we present a comprehensive validation of our methods, and unlike previous 

approaches ([12–14]), we demonstrate engineering contributions which can facilitate 

translating our technique from the lab to the field or home, including: (1) a larger study on 

49 subjects (42 healthy, 7 injured) to validate the performance of the technology in 

quantifying physiological differences in the knee; (2) a study of the inter-day measurement 

variability to determine the minimum bioimpedance change that can, with confidence, be 

attributed to edema as compared to measurement error; (3) a physiological perturbation 

study aimed at creating small changes in local interstitial fluid volume in the knee based on 

modulating tissue temperature to quantify the sensitivity of the vector EBI system; (4) an 

algorithm for automatically detecting periods of high reliability, for gating the data 

acquisition; and (5) evaluation of a wearable knee wrap-based implementation of our 

system, with copper band electrodes.

II. System Design and Methods

A. Bioimpedance Measurement System

A custom analog front-end is used to acquire static and dynamic bioimpedance 

measurements from the knee joint. Note that, in this work, “static” bioimpedance is 

considered the slowly varying component of impedance that would change based on 

structural modifications of the tissue volume (i.e., edema); “dynamic” bioimpedance, on the 

other hand, captures the mΩ level fluctuations in the tissue impedance that are cardio-

synchronous, and associated with the blood volume pulse. The block diagram of the 

measurement setup is shown in Fig. 1 (a).

A sinusoidal current is input to the knee (frequency 50 kHz, and amplitude 2 mApp) via 

electrodes E1 and E4; the voltage drop resulting from this current excitation is detected from 

electrodes E2 and E3. The circuit also senses the delivered current to subsequently correct 

for any variability over time (vsense(t)). An I/Q demodulator consisting of in-phase (i(t)) and 

quadrature (q(t)) phase sensitive detection and filtering is used to find both in-phase and 

quadrature components of the measured voltage. The signal (vsense(t)) is passed through 

amplitude detection to get the signal A(t) which is used to monitor the amplitude of the 

injected current.

The signals are then recorded using an MP150 data acquisition system (Biopac Systems Inc., 

Goleta, CA) with a sampling rate of 2 kHz. The amplitude correction (compensating for any 

variations in current amplitude during the measurement) and calibration (converting the 

voltage signals i(t) and q(t) into impedance signals) steps are carried out in post-processing 

using MATLAB (Mathworks, Natick, MA). For more details regarding the circuit and 
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system design details, as well as the algorithms used for calibration and amplitude 

correction, the reader is referred to [15].

B. Position Identification Algorithm

Bioimpedance measurements are greatly impacted by motion artifacts and subject position 

[16–18]. Our ultimate goal is to design a wearable system that can be used outside of 

laboratory/clinical settings, and thus must be “smart” in that it can automatically identify 

times at which the body position is such that robust, and consistent, EBI measurements can 

be obtained. We developed an algorithm that can detect such instants in time based on 

signals from two dual axis accelerometers, placed laterally on the thigh and shank (Fig. 

1(b)). The EBI signals are then gated by determining instances where the subject is still and 

in a certain position, using information obtained from the accelerometers.

We have used the signals from the dual axis accelerometers placed on the thigh (ath(t) = 

[ath,x(t) ath,y(t)]T) and the shank (ash(t) = [ash,x(t) ash,y(t)]T) to determine a consistent body 

position for measurement: seated posture with legs fully extended and supported. This 

position is preferred for EBI measurements as it provides a completely unloaded and easily 

repeatable position, which will reduce artifacts and variability in measurements. The 

position identification algorithm is summarized in Fig. 1(c) and includes windowing (10 sec 

windows, 50% overlap), feature extraction, and binary classification. Features extracted 

from each ten second frame are used to label the frame as reject (0) meaning the subject is 

not in the desirable position described above or accept (1). The labels for these frames are 

then used to determine which resistance/reactance measurements can be assumed as robust 

and thus stable.

The binary decision rule mentioned is trained separately before it is applied to new data (a 

testing set). For this training, the signals from the two accelerometers are recorded from 

multiple subjects (six in our case), while the subject performs the following activities with 

known labels: (1) standing (label 0), (2) sitting legs bent (label 0), (3) sitting legs crossed 

(label 0), (4) sitting legs extended and supported (label 1) and (5) walking (label 0) each for 

1 minute. The subjects perform a combination of the listed activities for 13 minutes, where 

for approximately three minutes, the subject is sitting with legs extended and supported. 

Feature extraction is performed on the accelerometer signals from the six subjects as shown 

on Fig. 1(c) to produce a feature vector Ftraining and the corresponding known labels 

dtraining.

Exhaustive grid search with leave-one-subject-out (LOSO) cross-validation is used to 

determine the set of hyper-parameters and kernel to be selected for the support vector 

machine (SVM) classifier to be trained [19, 20]. The kernels considered in the search are 

linear and radial basis function (RBF) kernels. The set of values considered for the hyper-

parameter C are numbers logarithmically spaced between 10−2 and 103 for both kernels. The 

γ parameter for the RBF kernel is chosen from the set {10−4, 10−3, 10−2}. A kernel and a 

value for C (and γ if the RBF kernel is selected) is chosen and the LOSO cross-validation 

accuracy score of the model is computed using Ftraining and dtraining. The same procedure is 

repeated for all combinations of kernels, C values and γ values (for models where the kernel 

is RBF). The model that maximizes the LOSO cross-validation accuracy within the models 
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included in the search is selected. Finally an SVM classifier with the selected kernel and 

hyper-parameter(s) is trained on Ftraining and dtraining resulting in the binary decision rule to 

be used. The training and model selection is done once and is expected to generalize well for 

new subjects. SVM was chosen as a classification algorithm as it provides many degrees of 

freedom in model selection by allowing the use of various kernels and multiple hyper-

parameters (C and γ). An exhaustive grid-search is used to be able to select the one that will 

generalize the best, from the set that is considered. The model selection and SVM training 

steps are carried out using the Scikit-learn library for the Python programming language.

The features extracted for each frame are the mean and the standard deviation of each of the 

four accelerometer signals (ath,x(t), ath,y(t), ash,x(t), ash,y(t)) resulting in eight features per 

frame. The feature extraction stage was performed in MATLAB.

C. Human Subject Studies and Measurement Protocols

Five separate human subject studies were conducted to assess the bioimpedance 

measurement system and the designed algorithm. All human subject studies were approved 

by the Georgia Institute of Technology Institutional Review Board (IRB) and the Army 

Human Research Protection Office (AHRPO).

1) Discriminating Healthy versus Injured Knees and Monitoring Longitudinal 
Injury Recovery—In the first test performed, the bioimpedance measurement system was 

used to acquire measurements from 49 subjects. Out of these subjects, 42 were healthy, 

control subjects (27 male, 15 female) with no history of recent injury to any knee. Seven 

subjects (six male, one female) had a recent acute, unilateral knee injury (within one month 

before the measurement date), requiring subsequent corrective surgery (torn anterior cruciate 

or medial collateral ligament, and/or lateral meniscus). All injured subjects and 36 of the 

control subjects were college athletes.

Standard wet gel (Ag/AgCl) adhesive backed electrodes (2660-3 Red dot electrodes, 3M, 

Maplewood, MN) were positioned on the subjects’ legs as shown in Fig. 4(a). The proximal 

current electrode (E1) was placed three inches above the crease on the quadriceps tendon, 

towards the medial side of the knee. The distal current electrode (E4) was placed three 

inches below the popliteal fossa, towards the lateral side of the knee. The voltage electrodes 

(E2, E3) were placed adjacent to the current electrodes [15]. Subjects were asked to sit with 

their back against the wall, legs extended forward. While the subject sat still (to rule out 

motion artifacts), the signals were recorded on a laptop using the MP150 data acquisition 

system. Measurements were taken from both knees of each subject. Later, the in-phase and 

quadrature signals were amplitude corrected and calibrated to get the static resistance and 

reactance signals. The mean of these signals over 60 seconds was taken to compute knee 

resistance and reactance of a given subject. This protocol was repeated on the seven injured 

subjects, on one occasion several months (4–7) after corrective surgery was performed.

2) Day-to-Day Variability in EBI Measurements—A second test was performed to 

investigate the day-to-day variability of the knee impedance measures. EBI measurements 

were acquired from five healthy subjects for three days within a week under standard 

conditions (e.g., no previous exercise and same time of day). The electrodes and electrode 
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configuration in the first test were used and measurements were taken from both knees. 

Since the first human study indicated that the difference in resistance from left to right knee 

was an important parameter for separating healthy from injured knees, the day-to-day 

variability in this parameter in particular was quantified.

3) Investigating Effects of Local Heating/Cooling on EBI—A third test was 

performed for seven healthy subjects to investigate the effects of local tissue heating and 

cooling on knee bioimpedance. Tissue (skin and muscle) heating will decrease pre- to post-

capillary resistance ratios thus resulting in net capillary filtration and increasing interstitial 

fluid, while local cooling will have the opposite effect [21]. In this test, the subject’s knee 

bioimpedance was recorded (with the same electrodes, electrode placement and subject 

positioning as the first test) while the knee was locally cooled using a standard ice-pack 

(Pro-Tec Athletics, Richmond WA) on the anterior patella for 20 minutes. Skin temperature 

on the patella was measured using a resistance temperature detector (SA2CRTD-3-1000-A, 

Omega Engineering, Stamford, CT). The temperature was logged using a data logger 

(HH126, Omega Engineering, Stamford, CT) with a sampling rate of 1 Hz. After waiting for 

the skin temperature to return to its baseline value, the test was repeated with a hot pack 

(Chattanooga Medical Supply Inc., Chattanooga, TN).

4) Optimal Position Identification Algorithm—Experiments were performed on seven 

healthy subjects to evaluate the position identification algorithm. Dual axis accelerometers 

(ADXL203EB, Analog Devices, Norwood, MA) were placed on the subjects’ right leg as 

shown on Fig. 4(a). The accelerometer on the thigh was placed six inches above the crease 

on the quadriceps tendon on the lateral side of the knee. The accelerometer on the shank was 

placed six inches below the crease on the popliteal fossa at the lateral side of the knee as 

well. The accelerometers were held in place using athletic tape. The electrodes and electrode 

configuration used were the same as in the first experiment. The accelerometer and EBI 

signals were recorded from each subject while the subject performed the five activities 

mentioned in Section II.B, for one minute each. The signals from the EBI analog front-end 

and the accelerometers were acquired using the MP150 data acquisition system and were 

recorded on a laptop. A combination of these activities was performed for 13 minutes.

LOSO cross-validation was performed to assess the performance of the position 

identification algorithm described in Section II.B. In each fold of the cross-validation, a 

binary classifier was trained on all subjects except the one that was left out in that particular 

fold. The model was tested on the subject that was left out of training, and the accuracy and 

precision were calculated. The resistance and reactance signals for the testing subject were 

gated using the predicted labels such that the frames labeled “1” are kept and the rest are 

removed. The variability of the resistance and reactance signals across frames were 

computed both when gating is performed and not performed. This comparison is done to 

demonstrate how gating reduces measurement variability and increases consistency. The 

train-test procedure was repeated for all subjects and the accuracy, precision and variability 

metrics were averaged across the LOSO cross-validation folds.

5) Evaluation of a Knee Wrap with Dry Electrodes Integrated—Experiments were 

performed on seven control subjects to demonstrate the usability of the bioimpedance 
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measurement system with dry electrodes integrated into a knee brace. For this test, 

bioimpedance signals were acquired from a subject using Ag/AgCl wet gel electrodes, with 

the aforementioned electrode configuration and while the subject was seated, with legs 

extended and supported from the bottom, for 60 seconds. Then the subject was asked to 

wear the designed brace shown in Fig. 5(a) to (c). The brace consists of two wraps, each 

containing the proximal (E1 and E2) and distal (E3 and E4) electrodes. Each electrode 

consists of five 1.6 inch by 1.2 inch rectangles cut out of plastic and covered with copper 

tape, that are electrically shorted to each other. The brace was positioned such that the 

electrodes were at similar positions to the ones in the prior tests as shown on Fig. 5 (a) and 

(b). Signals were acquired while the subject was still, in the same position for 60 seconds. 

The signals were amplitude corrected and calibrated to get the resistance and reactance 

signals measured using wet and dry electrodes. The measured resistance and reactance 

which was compared for wet and dry electrodes, was calculated by averaging the resistance 

and reactance signals over the 60 second time interval.

III. Results and Discussion

A. Physiological Measurements

1) Discriminating Healthy versus Injured Knees and Monitoring Longitudinal 
Injury Recovery—The bioimpedance measurement results obtained for the first study are 

shown on Fig. 2(a). The difference in resistance between the knees for the healthy subjects 

(left minus right) was 1.9 ± 5.6 Ω. The difference in reactance was −1.1 ± 2.4 Ω. The 

difference in resistance between the knees (injured side minus healthy side) for the injured 

subjects was −11.8 ± 4.5 Ω. The difference in reactance was 4.9 ± 2.6 Ω. The absolute 

differences in resistance between the knees for the healthy subjects (left vs. right knee) were 

4.9 ± 3.3 Ω while for injured subjects were 11.8 ± 4.6 Ω (p<0.05, two sample t-test with 

unknown and unequal variances). Similarly, the absolute difference in reactance between the 

knees were 2.2 ± 1.4 Ω for the healthy subjects and 4.9 ± 2.6 Ω for the injured subjects 

(p<0.05, two sample t-test with unknown and unequal variances).

For all of the injured subjects, the affected knee had lower resistance than the healthy one. 

For all but one injured subject, the affected side had a higher reactance (lower negative 

reactance) than the healthy one; the one outlier injured subject had almost no difference 

(0.02 Ω) in reactance between the knees.

The effect of injury recovery on the difference in impedance between the knees is shown on 

Fig. 2(b). The difference in resistance between the knees for the injured subjects (injured 

side minus healthy side) decreased from −11.8 ± 4.5 Ω when the injury was acute (within a 

month of the injury date) to −1.0 ± 4.0 Ω during recovery (four to seven months after 

corrective surgery). The difference in reactance decreased from 4.9 ± 2.6 Ω to 2.3 ± 2.0 Ω. 

Furthermore, the absolute difference in resistance between the knees decreased from 11.8 

± 4.6 Ω to 3.6 ± 1.7 Ω (p<0.05, two sample t-test with unknown and unequal variances).

The estimated probability density for the difference in resistance and difference reactance 

between the knees (left minus right) is also shown in Fig. 2(b). The probability density 

estimation was done using Gaussian kernel density estimation where the bandwidth is 
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estimated using Scott’s rule [22]. This kind of visualization helps show how the injured 

subjects’ data points move toward where the healthy subjects’ data points are denser, as 

recovery occurs.

The results seen for the knee resistances were consistent with expected physiological 

changes, as edema commonly accompanies injuries and local excess fluid accumulation 

results in lower tissue resistance. The injected current at 50 kHz flows through both 

extracellular and intracellular space [2], however, we cannot differentiate the contribution of 

either fluid space to the resistance change measured. Tissue resistance has also been argued 

to be proportional to new tissue growth and to fibrin clotting which are processes that occur 

during wound healing [11]. Therefore, as the edema decreases and injured tissue repair 

occurs during injury recovery, the injured knee’s resistance increases and the absolute 

difference in resistance between the injured and healthy knees decreases.

Tissue reactance is related to cell membranes as they are made of lipid layers which have a 

capacitive effect. Negative reactance increases with cell mass and cell wall integrity which 

can both decrease (thus elevating reactance) due to injury [11]. Therefore, the observed 

knee’s reduced reactance after injury is consistent with anticipated physiological changes as 

well. The results presented also agree with previous studies existing on assessing knee or 

lower limb health using bioimpedance [12–14, 23].

2) Day-to-Day Variability in EBI Measurements—The absolute difference in 

resistance and reactance between the left and the right knees are potential biomarkers for 

knee health monitoring as discussed in Section III.A.1. Knee bioimpedance measurements 

taken from five subjects in three different days (within a week) showed that the average day-

to-day variability (standard deviation) of the absolute difference in knee resistances were 

2.5Ω. The average day to day variability for the absolute difference in reactances was 1.2Ω.

3) Investigating Effects of Local Heating/Cooling on EBI—The results for the local 

tissue heating/cooling test are shown in Fig. 3. The mean knee resistance has been shown 

with error bars at 0 (baseline), 5, 10, 15 minutes into the heating/cooling for the seven 

subjects. Note that for each subject, the baseline knee resistance was subtracted from the 

measured resistance to show the deviation from the baseline. The difference between the 

baseline resistances for the subjects and the resistances measured at 5, 10 and 15 minutes 

was statistically significantly different than the baseline resistances (p<0.01) for both heating 

and cooling. A paired ttest was used to calculate the statistical significance as this test is 

effective in comparing dependent observations that have been obtained in pairs (the knee 

resistance measured at baseline temperature and that measured after a certain amount of 

heating/cooling) [24]. The skin temperature at the patella, at these time instances during 

heating were: 25.7±3.0 °C (baseline), 34.7±2.8 °C, 36.1±1.8 °C and 36.1±1.4 °C, 

respectively. The temperatures for cooling were: 25.6±1.3 °C (baseline), 19.5±2.7 °C, 

18.3±3.1 °C and 18.0±3.3 °C, respectively. Though the temperature values are similar, for 

the third and fourth data points during heating and cooling respectively, these skin 

temperatures were held for an additional five minutes between the third and fourth data 

points; accordingly, the temperature within the tissue itself continued to increase (or 

decrease for cooling) throughout the measurement. The temperature data points also 
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demonstrate that the heating or cooling rate of the patella, decreased with time, approaching 

zero towards the fourth data point.

Modulation of tissue temperature should cause changes in the local interstitial fluid volume. 

Heating will decrease the pre- to post-capillary resistance ratios causing net capillary 

filtration, while cooling will increase the pre- to post-capillary resistance ratio and thus 

cause net capillary absorption [21]. Fig. 3 demonstrates that our EBI measures were 

sufficiently sensitive to detect the small theoretical changes in interstitial fluid volume with 

local heating (increased interstitial fluid) and cooling (decreased interstitial fluid). It can be 

noted as the skin and underlying tissue progressively warmed or cooled, an expected 

progressive change in resistivity was observed. This demonstrates that the bioimpedance 

measurement system is sufficiently sensitive to detect small changes in interstitial fluid 

(edema) corresponding to a few Ohms change in tissue resistance.

These results also suggest that changes in knee temperature due to enviromental factors (e.g. 

hot or cold weather) or activity (e.g. exercise) is expected to effect EBI measurements. This 

suggests that a temperature sensor would be a good addition to a future wearable device for 

knee joint health monitoring. Such a sensor could be used to gate the EBI signals such that 

measurements are accepted, only when the knee temperature is within certain limits. This 

will allow the measurements taken in a wearable setting to be more consistent.

B. Towards a Wearable Sensor System: Position Identification and Dry Electrodes

1) Position Identification Algorithm—The resistance signal and the x-axis acceleration 

signal from the accelerometer on the shank (ash,x(t)) are shown on Fig. 4(b). The time 

intervals where the subject is in the correct position (seated, legs extended and supported) 

for the measurement to be acceptable are shown in red, while all others are shown in blue: 

subject standing, seated with legs bent 90°, seated leg crossed, walking). The dependence of 

the resistance signal on knee posture and the variability of the signal due to motion can be 

seen on this figure. It can also be seen that the mean value of ash,x(t)) within a given window 

can be a good indicator of the subject’s knee posture, while the standard deviation of ash,x(t) 
can be a good indicator of the presence of motion artifacts. Similar arguments can be made 

about the mean and standard deviations of the signals ash,y(t), ath,x(t) and ath,y(t); justifying 

the use of these features in the position identification algorithm.

The LOSO cross-validated accuracy of the algorithm proposed in Section II.B and tested as 

described in Section II.C.4 was 97.4 ± 2.6%. The baseline misclassification rate (when the 

most probable class, reject (0), is always chosen) was 71.4%, and the accuracy achieved 

using the aforementioned algorithm was considerably higher. The LOSO cross-validated 

precision of the algorithm was 98.2 ± 2.8%. The standard deviation of the resistance signal 

without gating as discussed in Section II.C.4, averaged over all subjects was 3.3 ± 1.2Ω 
(range: 1.7Ω–5.5 Ω). With the application of the algorithm and gating, the averaged standard 

deviation dropped to 0.5 ± 0.3Ω (range: 0.2 Ω–1.2 Ω). The standard deviation of the 

reactance signal without gating, averaged over all subjects was 0.8 ± 0.5Ω (range: 0.4 Ω–1.2 

Ω) and with gating it dropped to 0.2 ± 0.1Ω (range: 0.1 Ω–0.3 Ω). The signals obtained using 

gating were less variable due to consistent subject positioning.
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Consistent subject positioning in EBI measurements are critical in order to eliminate posture 

and motion related signal variability, which can blur the changes in the signals due to 

physiological effects. This consistency is established in the experiments in Sections II.C.1,2 

and 3 by user guidance. The results presented in this section are a demonstration of how 

accelerometers can be used to automatically decide to take EBI measurements when the 

subject is in a certain position, eliminating the need for user guidance. An algorithm 

requiring a one-time offline training similar to this can be implemented on a smart phone 

that wirelessly communicates with the bioimpedance hardware, which is a step towards 

creating a “Smart Brace” monitoring knee impedance.

2) Evaluation of a Knee Wrap with Dry Electrodes Integrated—Another step 

towards the smart wrap for knee impedance monitoring is to test functionality with dry 

electrodes rather than wet electrodes. Wet Ag/AgCl electrodes are less suitable for a 

wearable system as they are disposable and need to be replaced frequently; dry electrodes on 

the other hand are more durable. However, dry electrodes are more challenging to use due to 

higher skin-electrode interface impedance and lack of an adhesive material (as found in wet 

Ag/AgCl electrodes) to fix the location of the electrode [25]. Increased contact area will 

reduce the skin electrode impedance [26].

The resistance measured using dry electrodes (Rdry) from seven subjects (14 knees), plotted 

against that measured using wet electrodes (Rwet) is shown on Fig. 5(d), along with the 

linear regression line and the 95% confidence interval for the regression. The r2 score for the 

regression was 0.8. The corresponding plot for the reactance (Xdry versus Xwet) is shown in 

Fig. 5(e). The r2 score for the corresponding regression was 0.9. These results indicate that 

the variations in the EBI measurements by wet electrodes can also reliably be measured 

using the dry versions within the designed knee brace.

The resistance measurements obtained using wet electrodes are larger than that obtained 

using dry electrodes. A similar argument is true for the measured negative reactance. This 

can be attributed to the phenomenon of current constriction [27]. The wet gel electrodes 

used have an electrode surface area of 2.08 inch2 (1.6 inch by 1.3 inch), while the dry 

electrodes have a surface area of 9.60 inch2 (five copper plates), 4.6 times larger than that of 

the wet electrodes. The smaller surface area of the wet electrodes constricts the path the 

injected current takes, causing a higher resistance to be measured compared to the resistance 

measured using the larger dry electrodes. A similar argument can be made for the measured 

reactance. The absolute difference in measurements between the dry and the wet electrodes 

can be compensated for by using a mapping between the wet and dry electrode 

measurements as shown in Fig. 5(d) and (e).

IV. Conclusions and Future Work

In this paper we describe a bioimpedance measurement system intended for wearable use, 

and demonstrate its ability to acquire physiologically relevant measurements from the knee 

joint. Human subject experiments were used to demonstrate how the knee impedance 

measured using the system provides information related to knee joint edema and injury, 

along with longitudinal changes during recovery. A validation study was conducted to show 

Hersek et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the ability of the measurement system in detecting small changes in interstitial fluid volume 

due to local tissue heating or cooling, demonstrating the sensitivity of the measurement 

system to small changes in interstitial fluid volume. A position detection algorithm and the 

usability of the system using dry copper electrodes was presented as a step towards reducing 

user guidance and making the system more feasible for a wearable setting.

Future efforts to develop a wearable system will focus on (a) hardware miniaturization and 

integration into a knee brace and including textile electrodes rather than copper ones; (b) 

applying this technology to other joints such as the shoulder; and (c) developing a system 

sufficiently robust for unilateral rather than bilateral use (i.e., without the need for 

comparing the left to right knee); (d) the integration of a temperature sensor to the system, to 

gate EBI signals, so that measurements are taken with consistent knee temperatures.
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Fig. 1. 
(a) A block diagram of the bioimpedance measurement system. E1–E4 represents the 

electrodes that interface to the body, where E1 and E4 are current electrodes, and E2 and E3 

are voltage electrodes. The voltage signal across the resistor, Rsense, (vsense(t)) is used to 

sense the injected current. The amplitude of this signal, A(t), is detected and used to monitor 

the amplitude of the current (ibody(t)) passing through the knee joint. The voltage signal 

vbody(t) is inphase/quadrature (I/Q) demodulated to acquire the signals i(t) and q(t) which 

relate to the resistance and reactance of the measured segment. VCCS: voltage controlled 

current source, DAQ: data acquisition system, IA: instrumentation amplifier. (b) Dual axis 

accelerometers were place on the thigh and the shank to gate the EBI signals. The 

acceleration signals acquired from the thigh are ath(t)=[ath,x(t) ath,y(t)]T and those acquired 

from the shank are ash(t)=[ash,x(t) ash,y(t)]T. (c) Algorithm for identifying the time intervals 

when the user is in the optimal position to acquire measurements (sitting, legs extended and 

supported). The acceptable time intervals are identified by extracting features from the dual 

axis accelerometer signals (ath,x(t), ath,y(t), ash,x(t), ash,y(t)) and using these features to make 

a decision. The binary decision rule is trained once before-hand. The accepted time intervals 

are used to obtain the knee resistance (Rfinal) and reactance (Xfinal) using the voltage signals 

i(t) and q(t).
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Fig. 2. 
(a) The difference in resistance versus the difference in reactance for the healthy and injured 

subjects. For the healthy subjects (shown in blue, N=42), the difference is that between the 

left and the right knee (L–R) and for the injured subjects (shown in red, N=7) it is that 

between the injured and the healthy knee (I–H). The error bars indicate one standard 

deviation. (b) The difference in resistance versus the difference in reactance for the injured 

subjects (N=7), when the injury is acute (within one month of the measurement take, shown 

in red) and during recovery (four to seven months after corrective surgery, in blue). For these 

subjects, the difference shown is I–H. The probability density of the healthy subjects’ data 

(N=42, L–R difference), estimated using 2-dimensional Gaussian kernel density estimation 

is also visualized in shades of orange for comparison. The error bars indicate one standard 

deviation.
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Fig. 3. 
Mean knee resistances for seven subjects during heating (in red) and cooling (in blue) along 

with the standard deviations (shown in error bars). Note that each subject’s baseline knee 

resistance (at time=0 minutes) was subtracted from the rest of their measurements to 

emphasize the change in knee resistance with heating/cooling. The data points shown are at 

0,5,10 and 15 minutes into heating/cooling. The skin temperature at the patella, at these time 

instances during heating were: 25.7±3.0 °C, 34.7±2.8 °C, 36.1±1.8 °C and 36.1±1.4 °C. The 

temperatures for cooling were: 25.6±1.3 °C, 19.5±2.7 °C, 18.3±3.1 °C and 18.0±3.3 °C.
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Fig. 4. 
(a) Electrode positioning using wet Ag/AgCl electrodes as well as the positioning used for 

the two dual axis accelerometers. (b) The resistance (r(t)) signal and the x-axis shank 

acceleration signal (ash,x(t)) measured from a subject during various activities. The time 

intervals marked in red are when the subject is in the correct position for taking 

measurements (sitting, legs extended and supported). The measurements taken when the 

subject is in the correct position are to be accepted, all other measurements (shown in blue) 

should be rejected.
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Fig. 5. 
(a),(b) Electrode placement for the knee wrap with integrated dry copper electrodes. The 

electrode positions inside the wrap are indicated using green rectangles. (c) Dry, copper 

electrodes integrated into a knee wrap. Each electrode is made of five 1.6 inch by 1.2 inch 

rectangles cut out of plastic, covered with copper tape. (d) Resistance measured using dry 

electrodes (Rdyr) versus that measured using wet electrodes (Rwet) along with the linear 

regression line and the 95% confidence interval for the regression shaded. (e) Reactance 

measured using dry electrodes (Xdyr) versus that measured using wet electrodes (Xwet) along 

with the linear regression line and the 95% confidence interval for the regression shaded.
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