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Abstract

The Critical Assessment of Genome Interpretation (CAGI) experiment is the first attempt to 

evaluate the state-of-the-art in genetic data interpretation. Among the proposed challenges, Crohn 

disease (CD) risk prediction has become the most classic problem spanning three editions. The 

scientific question is very hard: can anybody assess the risk to develop CD given the exome data 

alone? This is one of the ultimate goals of genetic analysis, which motivated most CAGI 

participants to look for powerful new methods.

In the 2016 CD challenge we implemented all the best methods proposed in the past editions. This 

resulted in 10 algorithms, which were evaluated fairly by CAGI organizers. We also used all the 

data available from CAGI 11 and 13 to maximize the amount of training samples. The most 

effective algorithms used known genes associated with CD from the literature. No method could 

evaluate effectively the importance of unannotated variants by using heuristics. As a downside, all 

CD datasets were strongly affected by sample stratification. This affected the performance 

reported by assessors. Therefore, we expect that future datasets will be normalized in order to 

remove population effects. This will improve methods comparison and promote algorithms 

focused on causal variants discovery.
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Introduction

One of the main applications of next-generation sequencing is related to human health 

diagnostics. Although there are already solid demonstrations that disease causal variants 

could be identified (MacArthur et al., 2014), only a few studies have tried to build predictive 

models for disease risk and phenotype prediction (Weedon et al., 2006)(Morrison et al., 

2007)(Giollo et al., 2015). The Critical Assessment of Genome Interpretation (CAGI) is the 

first effort aimed at objectively assessing the state of the art for genome interpretation. 

Introduced in 2010, in its four editions it proposed dozens of datasets where researchers 

could try to predict the effects of genetic variants. During each challenge, the CAGI 

organizers release unpublished data and formulate a specific question related to it. During a 

prediction season, participants can analyze the data and try to answer the challenge question. 

After this season, the CAGI assessors evaluate the quality of the submissions, and a 

conference is organized to discuss prediction performance and emerging ideas.

In the literature there are a vast number of bioinformatics tools available to perform 

predictions and risk assessments, mostly based on statistical methods and machine learning 

(Giollo et al., 2014). It is possible to build a disease risk estimation tool using the same 

principles, but the curse of dimensionality (Friedman) and limited sample size together 

represent a huge challenge in CAGI. The former issue is due to the high number of variants 

that can be observed in each sample, on the order of several thousands. Just a few of them 

are likely to be important for human health, but in most situations the key variants for a 

disease are unknown. Ideally, one should first perform feature selection (Saeys et al., 2007) 

in CAGI, with the aim to discard irrelevant variants for disease onset. This step is the main 

result of Genome-Wide Association Studies (GWAS) (WTCC Consortium, 2007) and 

linkage analysis (Easton et al., 1993), but there is still a huge number of variants that need to 

be annotated. Tools for pathogenicity prediction like SIFT (Sim et al., 2012) and PolyPhen2 

(Adzhubei et al., 2010) can mitigate the problem just partially. In fact, these tools (1) only 

work on Single-Nucleotide Polymorphisms (SNPs), (2) have a limited accuracy (Thusberg et 

al., 2011) and (3) predict protein loss-of-function, which is not the same as predicting 

disease risk. The interaction among different variants (GAP & WTCC Consortium, 2010) 

and environmental relationships (Molodecky and Kaplan, 2010) are even harder to assess for 

a proper disease risk prediction. These problems must be considered in CAGI, but their 

solutions require a large sample size which is not available.

In this paper, we decided to focus on the CAGI Crohn disease (CD) challenges. Given the 

exomes of a few cases and controls, participants should predict their disease risk. CD is a 

multifactorial disease which has received vast attention in the last decade due to its burden 

on human health (Barrett et al., 2008). As a result, a considerable amount of prior 

knowledge can be found in the literature. CAGI proposed CD datasets in 2011, 2013 and 

2016. This is a unique challenge that enables the study over time of the performance in this 

disease prediction problem. We participated successfully in all CD challenges, and during 

CAGI 2016 we tested all the best methods ever proposed for disease risk prediction. Here, 

we report the state-of-the-art in this challenge, and emphasize the key features of the most 

effective methods. We also highlight some issues related with all datasets and the proper 

evaluation of algorithm performance.
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Materials and Methods

Datasets

CAGI published three different CD datasets over the last three editions. For each of them, 

the task was always the same. Prediction of a disease risk indicator based on exome data. 

Genotype sequences were collected from German patients, and part of them lead to the 

association of PRDM1 and NDP52 variants to CD (Ellinghaus et al., 2013). It is therefore 

clear that careful study can extract valuable knowledge from CAGI exomes. From the 

experimental point of view, Illumina instruments were used for sequencing. In 2011, reads 

were aligned with respect to the human genome build 18 (hg18), and base calling was 

obtained by a combination of BWA (Li and Durbin, 2009), Picard and SAMtools (Li et al., 

2009). The main differences in the 2013 and 2016 editions were the introduction of GATK 

(DePristo et al., 2011) and the use of hg19. Finally, data was provided to CAGI participants 

as a VCF formatted file (see Table 1 for a summary).

An interesting peculiarity of CAGI 13 was the presence of exomes from 28 pedigrees, which 

included a pair of monozygous discordant twins. The number of cases and controls was 

declared during the prediction season. In addition, during the last two editions data from the 

previous challenges could be used for training. This idea will be explored heavily over the 

next sections.

Algorithms

This section explains the ten algorithms used to prioritize exome variants and predict disease 

risk. These were implemented because they proved to be among the most effective methods 

in CAGI 11 and 13. The goal in CAGI 16 was to validate them on a new dataset. All 

implementations were written in R, with the intention of obtaining a fully automatic 

prediction. At first, coding variants with Minor Allele Frequency (MAF) < 0.04 were 

selected using information from dbSNP (Sherry et al., 2001) and a collection of 

BioConductor packages (Gentleman et al., 2004) (Obenchain et al., 2014) (Durinck et al., 

2009). Let S ∈ {0, 1, 2, NA}n×m be the resulting matrix of exome variants, where n is the 

sample size and m represents the observed Single-Nucleotide Variants (SNVs). By 

construction, sij represents the number of variants at genomic position j for sample si. In 

other words, 0 and 2 are equivalent to observing twice the nucleotide with the major and 

minor allele frequency, respectively. A heterozygous variant is encoded with 1. Finally, NA 

is used to denote unobserved nucleotides in a sample, e.g. due to technical issues or different 

experimental setup.

Algorithms developed for CD risk prediction exploit either a weighting scheme or machine 
learning (ML). A weighting scheme w is used as a linear model. Positive weights correspond 

to pathogenic mutations, whereas negative coefficients are protective variants. By computing 

the dot product between a genotype si and w a disease risk can be computed. Machine 

Learning instead assumes that one can identify patterns to predict a disease risk from a 

training set, i.e. CAGI 11 and 13 CD data. Based on these two ideas, the following methods 

were tested.
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Key variants weighting—this is the simplest form of weighting, which looks at the 

presence of a predetermined set of important SNVs to predict disease risk. These variants 

are given a weight of 1, while all other variants are set to 0. This is the typical model used 

for Mendelian diseases, when a single SNV is evaluated.

Odds Ratio weighting—GWAS estimated odds ratios for variants related to a disease 

(Beck et al., 2014). This is a risk measure of developing a disease based on direct 

associations on real data. Given this information, let define the weight wg as follows:

where ORg is the set of CD associated variants with known odds ratios in gene g. In other 

words, all variants sij within the same gene g will share the same average weight wg.

Publication weighting—genes related to CD are reported in the literature. Independent 

studies also corroborate some associations, providing additional belief in previous findings. 

As an example, 623 genes were linked CD (Yu et al., 2010) so far. 67% of them were 

reported just once, while NOD2 alone appears in 356 publications. Phenopedia (Yu et al., 

2010) is a public database that stores the number of times cg that a gene g was linked to a 

disease in a scientific publication. In this case, the weighting scheme wg is defined as 

follows:

Once again, variants within the same gene share the same weight.

NA weighting—DNA sequencing techniques can measure a wide range of information, 

e.g. single SNVs, exomes and full genomes. Based on the experimental setup, some DNA 

regions are accessible or not detectable. On top of this, sequencing errors and computational 

limitations might lead to the impossibility of observing the nucleotides in some DNA 

regions. These are called Not Available (NA) variables, and pose big issues in data analysis. 

In this method, disease risk r for sample si is defined as

where NA(si) is the set of not observable variants in si.

Overrepresented weighting—more than 50% of the samples in CD challenges are 

expected to be cases. This proportion is much larger than the disease prevalence in Europe 

(Shivananda et al., 1996). Thus, variants that are overrepresented with respect to these in a 
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reference populations (e.g. 1000 genomes (1000GP Consortium, 2012)) might be the causal 

CD mutations. In this method, dbSNP (Sherry et al., 2001) was used to obtain the minor 

allele frequency of variants. The overrepresented ones were identified using a binomial test. 

Bonferroni correction was applied to correct for the standard p-value threshold of 0.05. The 

variants selected in this way were given a weight of 1, and 0 for the others.

Bi-clustering—this is a type of unsupervised learning techniques that can divide 

automatically samples in two groups by looking at their reciprocal similarity. During CAGI, 

we used both k-means (with k = 2) and Hierarchical Clustering in order to solve this 

problem (Jain, 2010). We assumed that the smaller cluster is the one with healthy samples. 

Other insights from additional data sources were used to confirm this last hypothesis.

Transductive clustering—this method is based on the Transductive Learning principle 

(Chapelle et al., 2009). Similarity among samples was estimated using the cophenetic 

distance (Jain, 2010). Small clusters (n ≤ 5) of highly similar samples were identified. 

Within such groups, the average disease onset age of CD was estimated using knowledge 

from past CD editions (where available) and transferred to the CAGI 16 samples. Healthy 

samples were assumed to have a disease onset age of 1000, just to allow the computation of 

a trend within the group.

Manual prediction—by using the evidence gained from the previous methods, a manual 

assessment of each sample was performed. Clearly, this is not an algorithm.

Transductive SVM—to construct a suitable feature set for classification, an initial 

assessment of each variant sequence element was carried out against the CAGI 13 training 

data. The Fisher exact test was used to select variants associated with disease onset. Overall, 

43 variants had a p-value lower than 5×10-6 and were used to build a machine learning 

classifier. CAGI 13 labels were attached to CAGI 15 samples using transductive learning 

(Chapelle et al., 2009). The fully labeled dataset was used to train an SVM classifier with 

RBF kernel.

Logistic Regression—Variant relevance was estimated using log-odds ratios on the 

CAGI 13 dataset to build a classifier. Only protective SNVs were selected by looking at 

negative log-odds scores and logistic regression algorithm was used train a classifier.

Ensemble—the disease risk was estimated by combining the previous techniques with 

bootstrap (Efron, 1992). In this case, the disease indicator of a given sample was equal to the 

proportion of methods that ranked it higher than the 67th percentile of all samples.

Performance Measures

The main task in CAGI was the definition of a method that could estimate a disease risk 

probability given the exome data. The CAGI assessors used Receiver Operating 

Characteristic (ROC) curves to identify the best submissions (Bradley, 1997). ROC 

represents the relationship between True Positive Rate (TPR) and False Positive Rate (FPR):
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where TP and FP are the number of True Positives and False Positives, while P and N are the 

total number of Positive and Negative examples in the test set. The ROC curve integral 

provides the well-known Area Under the Curve (AUC) metric (Bradley, 1997). Accuracy 

(ACC) and Pearson correlations (COR) are also used to indicate the association between 

variables:

where TN are True Negatives, while o′ is the standard deviation of a population.

Results

Each CD challenge proposed during CAGI has peculiarities that should be addressed 

properly to maximize performance. In this section a description for all three CD datasets is 

presented, with considerations about the best method to use in each case.

CAGI 11

CAGI 11 proposed a disease risk challenge based on exome data for the first time. It 

represents an important event in establishing best practice that should be taken into account 

in similar tasks. Unfortunately, there was a critical issue in this challenge, which hampered a 

proper evaluation of submissions. Cases and controls in the dataset were collected using 

different experimental setups, which produced incomparable sequencing results. Cases 

appeared to be sequenced in a limited amount of exome regions, whereas controls were 

covered in a much wider range. As a result, one could observe a very large variation in the 

number of genetic variants reported depending on the two groups, which influenced most 

prediction algorithms and the submissions. Interestingly, the NA weighting strategy would 

pick-up this signal, and achieves a 95% classification accuracy. Given this huge bias, it is 

clear that bi-clustering can achieve the same results. An implementation of the publication 
weighting strategy by Yana Bromberg proved to be the most effective CAGI11 submission 

among all participants, leading to a nearly perfect ranking. However, it is very likely that this 

submission converged implicitly to NA weighting due to the dataset bias.

In this edition, only a manual strategy was implemented by our group, which was based on 

ANNOVAR (Wang et al., 2010) variants selection of rare SNVs (MAF < 0.04) for genes 

related to CD according to PheGenI (Ramos et al., 2014) and String (Szklarczyk et al., 

2011). Samples with fewer variants were assumed to be controls (see Table 2). The five 

submissions were very similar in terms of reciprocal correlation, mainly because they were 

based on the same variant set. However, rs76982592 was the one that dominated all 

submissions. By just looking at its presence, according to the key variants weighting, one 

would achieve 89% accuracy.
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CAGI 13

Given the experience from CAGI11, one might try to use the same idea on the CAGI 13 

challenge. However, this was quite a unique dataset, with knowledge about (1) of the 

number of controls (Table 1), (2) 28 clear pedigrees, and (3) a pair of discordant twins. The 

CAGI 11 data was available for training as well. Given this specific setting, any CAGI11 

strategy should be refined to achieve better performance. In fact, the plain publication 
weighting strategy was not as effective as in the previous challenge, probably due to the 

complexity of this structured dataset. Clustering is a key technique to highlight the 28 

pedigrees and the twins (see Figure 1). The overall best submissions used bi-clustering and 

CAGI 11 as training data. Using this, 94% accuracy could be achieved, with 13 out of 15 

controls detected. Overrepresented weighting implemented by Rita Casadio's group also 

proved to be very effective, even though this technique would be strongly biased by the 

presence of pedigrees.

In this challenge, we implemented the most effective strategy. Transductive clustering 
managed to classify effectively 8 samples (blue samples in Figure 1), as they proved to be 

very similar to CAGI 11 controls. The twins had mostly an identical set of variants, except 

for a variant in the MOC2 gene. This was assumed to be the causal mutation for CD in all 

submissions. After this initial screening, 9 out of 15 controls were detected. Interestingly, the 

majority of healthy samples are part of an outlier group, marked orange in Figure 1. In the 

best submission (Bi-clustering in Table 3), it was assumed that the blue and orange groups 

contained all controls. Within each group, disease risk was proportional to the number of 

variants – the same principle used in CAGI 11. The bi-clustering submission was somehow 

related to the same result seen in the CAGI11 dataset. Healthy samples were very dissimilar 

with respect to the CD ones, probably due to a different experimental setup. Transductive 

clustering confirmed that this group was largely composed of controls, boosting significantly 

belief in this submission. It is still unclear if the controls were actually reused in the two 

challenges. However, CAGI 13 confirmed once again the need for better controls in a proper 

challenge setup.

CAGI 16

This last challenge is probably the hardest ever proposed in CAGI. Samples are apparently 

quite uniform and there are no obvious issues with experimental settings, like the one 

described for CAGI 11 or any prior information available like in CAGI 13. The dataset size 

is also much larger compared to previous editions (see Table 1). Transductive clustering was 

not very effective, since it could match just a single sample as a control. In addition, just two 

pedigrees could be detected in the entire dataset.

CAGI16 is hence composed of independent cases and controls, with basically no 

relationship to past challenges. This is a good dataset to validate the methods that proved to 

be most effective in previous challenges. The simplest approach to look for data bias is NA 
weighting. As can be seen in Table 4, it would be probably one of the best methods, with an 

AUC of 0.7. Methods dealing explicitly with missing data, like variable imputation, are 

likely to exploit the same source of information. The three methods using published SNVs 

associated to CD are significantly effective, with an AUC ranging between 0.59 and 0.61. 
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Key variants weighting worked well with rs2066844, a SNP known to increase significantly 

CD risk (Ningappa et al., 2011). On the other hand, Odds Ratio weighting proved that 

published GWAS variants are informative. Publication weighting and Overrepresented 
weighting results were not statistically significant, suggesting that ad-hoc weighting 

strategies are not effective. Similar findings were highlighted by Marco Carraro work, which 

showed that key variants weighting could achieve good performance when it combines 

multiple CD variants reported in clinical studies. However, his submissions based on manual 

weighting of a larger set of SNVs lead to a decrease in discriminative power (down to 0.59).

Important, tested methods rely on very different assumptions. Key variants weighting and 

Odds Ratio weighting are the most similar by design, with a correlation of 0.37. 

Nevertheless, this value is much lower than any method tested in the previous challenges. 

All other methods have a correlation between -0.1 and 0.26, proving that these strategies 

explore more divergent hypotheses than in the former CD challenges. Finally, NA weighting 

is apparently strongly related to bi-clustering on the dataset with a 0.74 correlation between 

both.

David Jones tested machine learning effectiveness on this dataset. Transductive SVM and 

Logistic regression were used, with statistically significant results for the former. This is 

probably due to the clustering assumption for this specific type of algorithm. An ensemble 

prediction was realized with bootstrap, where the disease risk of a given sample was 

estimated as the amount of methods in agreement for a high risk.

Discussion

Present over the last three editions, the Crohn disease challenge represents well the idea 

behind CAGI: developing novel tools for genetic interpretation. During these years, the 

organizers proposed ever larger datasets where methods could be tested more accurately. 

The prior knowledge provided to participants and the sequencing pipelines varied slightly 

over time, but it is still obvious that the CD challenge is the only one enabling an analysis 

over time in this context. There are a few lessons that are clear from the reported results.

Our goal in this CAGI 16 edition was to test thoroughly all top performing approaches 

previously proposed in CAGI, implementing from scratch 10 methods. Many of these were 

previously proposed by other participants, so we could implement the core ideas based on 

our understanding.

From the results, weighting schemes managed to assign proper importance to exome 

variants only when numerical coefficients were based on solid studies like GWAS. SNP 

rs2066844 is a clear example, as it is well known to be associated to CD and it was indeed a 

powerful discriminative variable in CAGI 16. No heuristic could address effectively this 

problem in a similar way. From a perspective of machine learning methods, use of CAGI 11 

data was critically important in CAGI 13 for the best submissions. During CAGI 16, past 

training sets were not as useful as in CAGI 13, probably due to the high dissimilarity of new 

samples. It is clear that ML is very effective in simple scenarios where samples share high 

similarity. However, new methods for improved sample comparison are needed to boost the 
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performance of ML algorithms. Overall, both weighting schemes and machine learning 

performance are limited in the same way, due to the curse of dimensionality. To deal with 

this issue it is critical to use training sets with a large number of samples. This would help 

with the selection of key variants and proper estimation of their effect on disease onset. This 

idea was already explored using data collected during the International IBD Genetics 

Consortium's Immunochip project (Wei et al., 2013), where a simple regularized logistic 

model achieved an AUC of 0.86 on a very large CD test set. Interestingly, models based on 

Support Vector Machines and Gradient Boosted Trees decreased the predictive performance, 

suggesting that more complex algorithms are overfitting the data. Most of CAGI methods do 

not use any training set at all, mainly due to the efforts needed to request such controlled 

datasets to Data Access Committees. As a result, a significant number of CAGI submissions 

were no better than random. We believe that the main improvements in CD prediction will 

be enabled by just using regularized additive data-driven models We therefore hope to see a 

simplified access to large datasets (Wei et al., 2013) for all CAGI participants in the future.

The huge number of variables in all datasets is the main motivation for the use variant 

selection tools like ANNOVAR. This tool was heavily used in CAGI 11 as a black box, 

where its filtering process lead to the variants reported in Table 2. Variant rs76982592 was 

the one with the highest impact given our weighting strategy. Just at the time of the first 

CAGI conference, it became clear that the variant was strongly associated with the different 

experimental setup. This is surely an important contribution of CAGI highlighting a bi-

clustering pattern in the data. ANNOVAR was also used in CAGI 13 for the annotation step. 

In that edition the tool was used carefully, as its blind usage might filter away important 

disease variants. Bi-clustering was once again an effective method. ANNOVAR filtering was 

finally replaced completely by a collection of R packages in CAGI 16. Having an in-house 

tool for variant selection helped to move from manual predictions, like in CAGI 11, to a 

fully automated pipeline where human decisions are limited. This is a key step for 

reproducibility, which is achievable with a full control and understanding of the tools at 

hand. In this implementation, it was much simpler to identify the relationship between NAs 

and bi-clustering, ANNOVAR did not emphasize at all the unobserved variables. 

BioConductor packages allowed controlling in detail the entire filtering step, and learning 

more about the samples.

Over these three editions, best method performances kept decreasing from an AUC of ∼0.9 

to an AUC of ∼0.7. This negative trend is probably unexpected, but we believe that this is 

the result of an improper performance evaluation, especially in the first CAGI editions. We 

believe that all submission results reported so far are not truly representative of our current 

ability to predict disease risk, but they are inflated due to the strong bias in the datasets. Bi-

clustering appeared to be an effective method for predicting disease risk in CAGI datasets, 

but it is unlikely that this approach would work well in a real-world context. Case-control 

separation is in fact induced largely by NA variants and experimental issues. In well-

designed genetic studies, a data normalization step typically adjusts the dataset for 

population stratification issues. NA variants are also addressed in this step, as they may lead 

to spurious associations. By evaluating submissions through a crude ranking of samples with 

AUC, CD submissions that exploit patient stratification (intentionally or not) will be the 

most effective. Therefore, it is important to improve CD challenge either by normalizing the 
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dataset provided to participants or by asking for a set of causal SNVs in the submission. The 

former step is probably easier to implement, so we hope to see this improvement in future 

CAGI editions. By doing so, we believe that submission performance will reduce even 

further, leading to a truly effective validation of our current ability to predict disease risk. A 

well-structured dataset would also be a step forward to promote automated methods for 

disease risk prediction, as this should remove the manual analysis used to detect irrelevant 

facts like twins or pedigrees.

Overall, CAGI was successful in increasing the attention toward genome interpretation. In 

CAGI 11, many participants tested a number of approaches. Many submissions were much 

worse than random (AUC < 0.5), suggesting that there was a substantial lack of expertise in 

the field. Over time, the assessor and participant talks shed light on the common pitfalls and 

shared the most effective ideas. This has increased remarkably our understanding of this 

field, and raised the interest of many researchers. Even though submission results are 

currently inflated, we believe that CAGI organizers are also in the process of learning how to 

evaluate properly disease risk predictions, and there are positive signals of improvement in 

this direction. Therefore, we believe that with the next editions, and with bigger and well 

normalized datasets, CAGI will play a role in evaluating and testing innovative methods and 

provide novel ideas for disease risk evaluation.
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Figure 1. 
Heatmap of CAGI13 data. Columns represent the 66 dataset samples (red: controls, green: 

cases), grouped by genetic similarity using hierarchical clustering. Rows contain mutations 

clustered by sample similarity. The orange columns are outliers forming a sub-cluster with 

most of the controls. Prior knowledge is available for samples blue due to control-group 

membership in CAGI11.
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Table 1
Summary of the CD challenge data

Cases Controls Ref. Genome

CAGI 11 42 14 hg18

CAGI 13 51 15 hg19

CAGI 16 64 47 hg19

Over time, the number of samples increased significantly, with special attention for controls in the latest edition. All exomes data is provided by 
Andre Franke and Britt-Sabina Petersen.

Hum Mutat. Author manuscript; available in PMC 2018 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Giollo et al. Page 15

Table 2

Performance on the CAGI 11 dataset.

Method Ranking Details AUC

Uniform weight Count variants in CD genes. 0.66

SNV co-occurrence Count twice variants that occurs frequently paired with others, according to association rules. 0.678

Bi-clustering K-means on the variants. Rank according to the number of variants in CD genes. 0.666

Ensemble Average of the previous 0.626

Manual A manual evaluation of variants 0.678

The five methods rely on 9 variants identified in PTPN11, DSPP, TDG, NCOA3, RBMX, PRKRA, ZFHX3, RUNX2 and CELA1 genes. Methods 
have a very high correlation, which ranged between 0.76 and 0.96.
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Table 3

Performance on the CAGI 13 dataset.

Method Ranking Details AUC

Uniform weight 1 Count SNVs in CD genes. 0.743

Uniform weight 2 Count SNVs in CD genes and their STRINGdb interactors. 0.736

Mixed pedigree 1 Max one control per family. Count SNVs in CD genes. 0.844

Mixed pedigree 2 Max one control per family. Count pathogenic SNVs (according to SIFT) in CD genes. 0.688

Mixed pedigree 3 Max one control per family. Look for families with large difference in SNVs count in CD genes. 0.798

Bi-clustering Bi-clustering on the dataset. Rank according to the number of SNVs in CD genes. 0.866

The submissions have a high correlation, ranging between 0.67 and 0.89. This is mainly due to (1) a similar set of variants selected for all methods 
and (2) the use of transductive clustering from CAGI 11. The use of clustering is critical to maximize performance.
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Table 4

Results of the methods on CAGI 16 dataset.

Method AUC Pearson Correlation

NA weighting 0.7 * 0.36 *

Publication weighting 0.56 0.05

Key variants weighting (rs2066844) 0.59 * 0.23 *

Overrepresented weighting 0.47 -0.06

Transductive clustering 0.52 0.06

Odds Ratio weighting 0.59 * 0.14

Manual prediction 0.63 * 0.2 *

Transductive SVM 0.6 * 0.2 *

Logistic regression 0.57 0.16

Ensemble 0.66 * 0.29 *

Key variants weighting (clinical studies SNVs) 0.61 * 0.21 *

Performances marked with a star are statistically significant.
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