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Abstract

Background—Heterozygous mutations in the gene ABCB4, encoding the phospholipid floppase 

MDR3 (Mdr2 in mice), are associated with various chronic liver diseases. Here, we hypothesize 

that reduced ABCB4 expression predisposes to extrahepatic biliary atresia (EHBA).

Methods—Livers from neonatal wildtype (wt) and heterozygous Mdr2-deficient mice were 

subjected to mass-spectrometry based lipidomics and RNAseq studies. Following postnatal 

infection with rhesus rotavirus (RRV), liver immune responses and EHBA phenotype were 

assessed. Hepatic microarray data from 40 infants with EHBA were mined for expression levels of 

ABCB4.

Results—Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased while 

the PC/PE ratio was decreased in neonatal Mdr2+/− compared with wt mice. Following RRV 

challenge, hepatic expression of IFNγ and infiltration with CD8+ and NK+ lymphocytes were 

increased in Mdr2+/− mice. Plasma total bilirubin levels and prevalence of complete ductal 

obstruction were higher in these mice. In infants with EHBA, hepatic gene expression of ABCB4 
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was downregulated in those with an inflammatory compared with a fibrosing molecular 

phenotype.

Conclusions—Decreased expression of ABCB4 causes dysregulation in (phospho)lipid 

homeostasis, and predisposes to aberrant pro-inflammatory lymphocyte responses and an 

aggravated phenotype of EHBA in neonatal mice. Downregulated ABCB4 is associated with an 

inflammatory transcriptome signature in infants with EHBA.

Introduction

The main constituents of bile, including bile acids (BA), phospholipids (PL; mainly 

phosphatidylcholines) and cholesterol, are actively excreted from hepatocytes into the bile 

across the canalicular membrane by the proteins BSEP (encoded by the gene ABCB11), 

MDR3 (ABCB4) and ABCG5/8 (ABCG5/8) respectively, all members of the ABC 

transporter family. Impaired expression of these transporters results in well recognized 

clinical syndromes of chronic cholestasis, typically with onset in infancy. The most severe 

phenotypes result from bi-allelic mutations in the respective genes, for instance in 

progressive familial intrahepatic cholestasis (PFIC) type 2 due to mutations in ABCB11, a 

syndrome of chronic cholestasis associated with low or normal serum gamma-

glutamyltransferase (GGT) activity and an absence or low level of bile salts in bile, whereas 

dual mutations in ABCB4 cause a fibrosing cholangiopathy with high serum GGT levels and 

absence of biliary PL. MDR3-disease is associated with a variety of liver disease 

phenotypes, ranging from neonatal onset of cholestatic jaundice, commonly referred to as 

PFIC type 3, to low phospholipid intrahepatic gallstones, and biliary fibrosis with 

characteristic radiographic and histologic features (1–3). Histologically it is characterized by 

a cholangiopathy with bile duct epithelial injury and ductal proliferation, portal 

inflammation, and variable stage of fibrosis. Severe reduction of biliary phospholipids in 

MDR3 deficiency in humans, or of the orthologue Mdr2 in mice, was shown to predispose to 

biliary microcrystal formation, cholangiocyte injury, and hepatocellular carcinoma (4).

A recent population based genome sequencing study in Iceland detected four variants in the 

gene ABCB4 that confer risk for the development of gallstones, intrahepatic cholestasis of 

pregnancy (ICP), HCC and cholangiocarcinoma, and cirrhosis (5), thus rendering ABCB4 
the gene with perhaps the most significant contributions to inherited liver disease, similar to 

that of the PNPLA3. Importantly, there has been increasing evidence for rare ABCB4 
variants causing liver disease in both autosomal dominant as well as recessive inheritance 

patterns. For instance, heterozygous missense mutations, which impair trafficking of MDR3, 

were associated with ICP(6). Heterozygous mutations in ABCB4 have also been linked to 

idiopathic fibrosing cholestatic liver disease in adults (7), chronic cholestatic biochemistry 

profile and family history of liver disease (8), and early onset of primary sclerosing 

cholangitis (8). Recently, heterozygous variants in ABCB4 were also detected in a cohort of 

9 children with idiopathic chronic cholestasis with first onset of symptoms between 2 

months and 11 years of age (9). In five subjects, haploinsufficiency for ABCB4 was 

associated with other liver diseases, including extrahepatic biliary atresia (EHBA). 

Coexistence of heterozygous variants in ABCB4 and in functionally related genes like 

ABCB11 and ATP8B1 were found to be more frequent in children with idiopathic 
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cholestasis than in healthy controls (10). However, the mechanisms of how reduction in 

MDR3 expression due to heterozygous mutations modulates co-existing liver diseases are 

currently unknown.

Material and Methods

HUMAN STUDIES

Case report—The female patient was born small for gestational age at a Kenyan refugee 

camp (birth weight 1.5kg), noted to be jaundiced at 7 months of age. She was diagnosed 

with PFIC3/MDR3 disease based on clinical genetic testing which revealed two non-

synonymous variants in ABCB4 (c.2363G>A [pR788Q] and c.101C>T [pT34M]) 

interpreted as pathogenic and as variant of uncertain significance, respectively. She 

presented to our center at 13 months of age with serum biochemistries notable for significant 

cholestasis (conjugated bilirubin 13 mg/dL, alkaline phosphatase 700 IU/L, GGT 600IU/L, 

total serum bile acids 128 μmol/L), moderate hepatocellular injury (AST 400IU/L and ALT 

200IU/L) and with coagulopathy (prothrombin time 19.5 sec). The patient developed ascites, 

variceal bleeding and ultimately underwent liver transplantation at 23 months of age. The 

explanted liver showed histomorphological features of MDR3 disease and EHBA.

Hepatic microarray studies—Relative ABCB4 gene expression levels were analyzed in 

gene expression data originally obtained from hepatic microarray studies carried out on 

patients with EHBA at the time of diagnosis by intrahepatic cholangiograms (11). Detailed 

information on handling of liver biopsy samples, protocols for RNA labeling, chip 

hybridization and signals, internal controls, normalization procedures, and analysis of gene 

expression were deposited in Gene Expression Omnibus (GEO: GSE46995). The original 

study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and 

was approved by the human research committees of all participating institutions.

MURINE STUDIES

Abcb4 (Mdr2)−/− mice were originally derived in the FVB strain (12) and then backcrossed 

into the BALB/c strain in the laboratory of Dr. Lammert (Homburg/Germany) (4). In the 

established murine EHBA model, 1.5 ×106 ffu of rhesus rotavirus (RRV) is injected 

postnatally into BALB/c mice leading to bile duct obstruction(13). As a way to attenuate the 

EHBA phenotype, a lower dose of 0.5×106 ffu of RRV was injected intraperitoneally (i.p.) at 

day of life (DOL) 2. All mice were bred in house and kept in conventional conditions. All 

protocols were approved by the Animal Care and Use Committee of the Cincinnati 

Children’s Research Foundation.

Phenotype of EHBA

The EHBA phenotype was assessed on day 8 post RRV challenge. Plasma total bilirubin 

concentration was measured using a colorimetric assay (Pierce Chemical Co., Rockford, IL). 

Zinc-fixed, paraffin-embedded extrahepatic bile ducts were sectioned and stained with H&E 

and patency was assessed on longitudinal sections by investigators blinded to the group 

assignment (ANC, AGM), as previously performed in studies on experimental EHBA (14).
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iNOS Immunohistochemistry

5μm zinc-fixed mouse liver sections were subjected to antigen retrieval consisting of heat at 

high pressure for 15 minutes in 1M Sodium Citrate buffer, pH 6.0. Primary antibody against 

iNOS (rabbit; Abcam: Ab15323, Cambridge, UK) was diluted at 1:100 with blocking 

solution and incubated at 4°C overnight. Biotin-SP-conjugated Goat anti-rabbit (Jackson 

ImmunoResearch: 111-065-003; West Grove, PA) was applied at 1:1000 dilution and 

incubated for 2 hours at room temperature.

Protein blot analysis

Crude protein extracts from livers of neonatal mice were prepared by sonication on ice in 

RIPA Buffer. Lysates were centrifuged for 20 min, 14,000 rpm at 4°C, and the supernatants 

were used for SDS-PAGE on a 4–12% acrylamide Bis-Tris gel (Invitrogen, Carlsbad, CA) 

followed by transfer to a nitrocellulose membrane. Immunoblotting was performed with 

anti-MDR3 antibody (Kamiya Biomedical Co., Tukwila, WA) or anti-actin antibody (Santa 

Cruz Biotechnology, Santa Cruz, CA) diluted 1:1000 in 2.5% BSA blocking buffer followed 

by washes and incubation with a secondary antibody conjugated to horseradish peroxidase at 

1:2000 dilution. Blots were developed with Super Signal West Pico (Thermo Scientific, 

Florence, KY). The molecular weights of ABCB4-encoded membrane-bound P-glycoprotein 

and of actin are 140 and 43 kDa, respectively.

Hepatic Mononuclear Cell (MNC) isolation, flow cytometric analysis

Mice were euthanized and perfused with 1% collagenase through the portal vein. Hepatic 

MNC were isolated as previously reported by our group (15). Following red cell lysis and 

washes, single cell suspensions were stained with PerCP-, PE-, APC, FITC and conjugated 

antibodies against CD3, CD8, NK, and CD4, respectively, and cell counts were acquired on 

an Accuri flow cytometer (BD Biosciences, Franklin Lakes, NJ). Flow cytometric data were 

compensated and analyzed using FlowJo Tree software (FlowJo LLC, Ashland, OR).

Quantitative PCR

Multiplex qPCR using the TaqMan Mouse Immune Array (Applied Biosystems) with genes 

encoding 88 cytokines and chemokines and 8 house-keeping genes and candidate SYBR 

green qPCR were performed as reported by our group before (16).

RNAseq

For RNAseq studies, total RNA was isolated from snap frozen samples from lobe 2 of livers 

from 10-day-old mice born to Mdr2+/− parental mice, kept as littermates until time of tissue 

harvest. RNA-seq libraries were prepared with the Illumina TruSeq RNA preparation kit and 

sequenced on the Illumina Hi-Seq 2000, as previously described (17). Differentially 

expressed genes with a fold change of >= 2.0 and p<0.05 between Mdr2 +/− and +/+ 

neonatal mice were submitted to pathway enrichment analysis with ToppFun application 

from the ToppGene Suite, which uses unbiased methods to assess pathway enrichment (18). 

Raw and normalized data are accessible through NCBI’s Gene Expression Omnibus (GEO 

accession number GSE78514).
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Global lipidomic and targeted phospholipid analysis by liquid 
chromatography- mass spectrometry (LC-MS)—Liver tissue (lobe 1) was obtained 

from 10-day-old mice and subjected to exhaustive solvent extraction for lipids. Global 

lipidomics analysis was performed on a Xevo G2-S quadrupole time-of-flight (Q-TOF) mass 

spectrometer (MS) interfaced with an Acquity ultra-high performance liquid 

chromatography (UPLC) system (Waters, Milford, MA) operated in electrospray ionization 

mode. An Acquity CSH C18 UPLC column was used to chromatographically separate 

components over 20 minute gradient elution. Compounds were ionized with electrospray 

and positive and negative ions acquired over the mass range 50-1200 Daltons with high 

resolution. Deconvolution, peak alignment, and preliminary normalization were conducted 

on raw metabolomics data with Progenesis QI (Waters). Each compound ion feature was 

annotated by elution time with m/z. Raw data were normalized by total compound ion 

intensity and with a global scalar derived from logarithm ratio of each sample to the 

reference. Accurate molecular mass (m/z) was used to search against HMDB and lipid 

MAPS database for putative identification.

Targeted Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) analysis

Quantitative analysis of PC and PE was carried out using a Waters API triple quadrupole 

mass spectrometer interfaced with an Acquity UPLC system and operated in electrospray 

ionization mode with negative ion acquisition. PLs were extracted from liver tissue by the 

Folch procedure and quantified using PC and PE standards with multiple reactions 

monitoring function. Total PC and PE were calculated based on the summation of 13 major 

PC species and 20 major PE species detected in plasma or liver.

Statistical analysis

Statistical significance was determined by unpaired t- or Fisher exact tests with a 

significance set at p<0.05. Multivariate analysis, i.e. principal component analysis (PCA) for 

global lipidomics data was conducted in R environment for statistical programming. 

Compound ions acquired from both positive and negative modes from same sample were 

combined in the PCA. Normalized abundance (area of feature peak normalized by the total 

compound ion abundance from that sample) of each compound ion was used in the analysis.

Results

Reduced expression of the protein Mdr2 in neonatal Mdr2+/− compared with wild type (wt) 

mice was confirmed by immunoblotting (Figure 1a). In order to characterize the influence of 

Mdr2 expression on the hepatic microenvironment in neonatal mice we performed global 

lipidomic studies on liver samples. Principal component analysis of a total of 7281 

combined positive and negative compound ions acquired by accurate mass measurement 

revealed that Mdr2+/− mice clustered more closely in their metabolic signature with 

homozygous knockout and both genotypes were largely segregated from wt mice (Figure 

1b). Compounds significantly accumulated in the liver of Mdr2+/− mice included several PC 

and PE species, i.e. PC (36:4), PC(36:2), PE (36:4), and PE (44:10) with their identity 

confirmed either with available reference standards or using our in-house lipid database. 
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Meanwhile, the hepatic levels for several triglyceride (TAG) species, including TAG (48:4) 

and TAG (60:12) were decreased in Mdr2+/− compared with wt mice (Figure 1c and d)

Candidates from this global lipidomics analysis were confirmed by targeted mass-

spectrometry based quantitative analysis of PLs which revealed that total PC concentration 

was significantly higher in liver and plasma in neonatal Mdr2+/− compared with wt mice 

(Figure 2a). The other predominant hepatic phospholipid class, PE, was also found to 

accumulate in Mdr2+/− compared with wt mice. Targeted quantitative analysis of both PC 

and PE validated the lipid data acquired in an unbiased fashion on the Q-TOF mass 

spectrometery platform (Figure 2b). Importantly, the ratio of PC/PE, which was previously 

shown to negatively correlate with liver injury and impaired regeneration (19), was 

decreased in Mdr2+/− compared with wt mice (molar ratio of PC/PE: 2.6 vs 1.9 in neonatal 

wt vs Mdr2+/−, p<0.05). For individual PL species, we found significant increases for 18:2 

lysophosphatidylcholines (LPC) and several diacyl phosphatidylcholines were increased in 

plasma and liver of neonatal Mdr2+/− mice (Figure 2c).

To further characterize effects of reduced Mdr2 expression on liver metabolic and immune 

function in these mice we performed RNAseq. Genes associated with cholesterol and lipid 

metabolism were primarily downregulated in neonatal Mdr2+/− mice, including expression 

of the phosphatidylcholine transfer protein pctp gene which may contribute to retention of 

PLs in livers from Mdr2+/− mice (Figure 3a/b). Interestingly, genes associated with immune 

function were also differentially regulated in Mdr2+/− compared with wt mice. For instance, 

genes involved in T lymphocyte polarization like irf4 and il12a were up-regulated in 

Mdr2+/− mice, whereas hepatic mRNA for genes linked to co-stimulation control of T-

lymphocytes like icos and cd27 were reduced (Figure 3c). These findings of MS-based 

global lipidomic and RNAseq studies raise the biological possibility that diminished hepatic 

expression of mdr2 renders the hepatic microenvironment to amplify pro-inflammatory 

responses upon challenge with appropriate triggers.

To test this hypothesis, we challenged neonatal Mdr2+/− and wt mice with an attenuated dose 

of RRV. By day 8pRRV, the virus was not actively replicating in the livers from mice of both 

genotypes, as shown by qPCR for the RRV specific viral protein VP6 (Figure 4a) and for 

NSP3 (data not shown). In the conventional model of RRV-induced EHBA using a higher 

virus dose, hepatic expression of these viral proteins peaks at day 7pRRV and rapidly 

disappears thereafter (13). Following RRV infection, Mdr2 mRNA expression was 

upregulated in wt and Mdr2+/− mice (Figure 4b). Using flow cytometry, we found increased 

infiltration of the liver with NK and CD8 lymphocytes in Mdr2+/− compared with wt 

littermates on d8pRRV (Figure 4c). Using multiplex-gene expression profiling we found 

upregulation (≥2-fold) of 16 pro-inflammatory genes including cxcl-10 and -11, inducible 

nitric oxide synthase (inos), and sele, encoding E-selectin, in RRV infected Mdr2+/− 

compared with wt mice for (Figure 4d). Candidate gene expression studies with SYBR 

green qPCR confirmed upregulation of the Th1 and Th2 cytokines interferon-gamma (ifnγ) 

and interleukin (il-5), respectively (Figure 4e). Both cytokines were previously recognized to 

be key drivers of neonatal bile duct obstruction (13, 20). The upregulation of inos in Mdr2+/− 

mice, whose role in murine EHBA is largely undefined, was corroborated by 
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immunohistochemical studies showing increased immunoreactivity against iNOS in 

inflammatory cells infiltrating the portal triads of livers from RRV infected (Figure 4f).

In order to ascertain whether aggravated hepatic inflammation and immune activation in 

RRV-infected Mdr2+/− mice influenced their EHBA phenotype, we determined plasma levels 

for total bilirubin, a circulating biomarker for biliary obstruction, and ductal patency by 

histomorphological analysis. Total bilirubin levels were significantly increased in RRV-

infected Mdr2+/− compared with wt littermates (Figure 5a). Furthermore, complete 

inflammatory obstruction of the bile ducts was found in four times more animals with 

heterozygous loss of mdr2 compared with controls (Figure 5b).

To validate our findings in human samples, we surveyed the patients at our institution with 

the clinical diagnosis of MDR3 disease and found one subject with the dual diagnosis of 

MDR3-disease and EHBA. The liver explant of this 23-months-old female was remarkable 

for biliary cirrhosis (Figure 6Aa). In addition to changes typically seen in EHBA, for 

instance, absent gallbladder, complete obliteration of the extrahepatic bile ducts (Figure 

6Ab) and bile duct proliferation with bile plugs (Figure 6Ad), features of MDR3 disease 

were also present, including intrahepatic gallstones (Figure 6Ac) and canalicular cholestasis 

(Figure 6Ae). This observation raised the possibility that in humans, similar to mice, reduced 

expression of the phospholipid floppase MDR3 predisposed to inflammatory hepatobiliary 

injury in the neonate. In order to further interrogate this hypothesis, we mined previously 

generated hepatic gene expression data from a cohort of 40 infants with EHBA (11). Based 

on the liver transcriptome, 36 of the subjects were assigned either an inflammatory (n=14) or 

a fibrosing molecular phenotype (n=22), using previously reported bioinformatics 

algorithms(21). In this cohort, mRNA expression for ABCB4 was significantly lower in the 

14 subjects with an inflammatory phenotype, characterized by upregulation of genes linked 

to activation of the pro-inflammatory transcription factors NFΚB and NFAT, compared with 

the group with a fibrosing molecular phenotype, in which genes were abundantly expressed 

which encode proteins with binding sites for the profibrogenic transcription factors E2F and 

SP1 (Figure 6B).

Discussion

We have demonstrated that heterozygous loss of Mdr2 in neonatal mice leads to alterations 

in the hepatic and plasma lipid profiles, differential expression of genes involved in lipid 

metabolism and immune function, and predisposes to pro-inflammatory and enhanced 

polarized lymphocyte responses in the liver upon postnatal challenge with RRV. Mdr2+/− 

mice display an aggravated obstructive phenotype of EHBA compared with wt mice. In 

humans, decreased hepatic expression of ABCB4 is associated with a molecular signature of 

inflammatory EHBA. Collectively, our data suggest that genetically determined alterations 

in hepatic PL metabolism may modulate hepatic immune function and confer susceptibility 

to inflammatory hepatobiliary injury in the neonate.

Systematic analysis of liver and plasma lipid and PL concentrations has not been performed 

in neonatal Mdr2−/− mice before. Previous studies in adult wt and Mdr2−/− mice 

demonstrated decreased concentration of serum PL in the knockout mice (22). Contrary to 
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the findings in adult mice, we found increased hepatic concentrations of PC and PE and 

lower levels of TAG in the neonatal Mdr2+/− and Mdr2−/− mice compared with wt animals.

The lipidomic profile of neonatal Mdr2+/− resembles more closely that of Mdr2−/− mice than 

wt mice. The reasons for this observation are unknown. We can only speculate that 

“physiologic cholestasis”, caused by the immaturity of the neonatal liver in terms of bile 

acid and organic anion transporter development (23) and specifically expression of Mdr2 

transcripts (24), further reduces Mdr2 mediated phospholipid floppase activity in neonates 

rendering the lipidomic profile in these mice more similar to homozygous knockout mice. 

The reduction of TAG in neonatal Mdr2+/− mice is noteworthy as loss in TAG storage 

capacity is critically linked to lipotoxicity and has been shown to exacerbate liver injury 

(25). Aiming at this metabolic pathway, high fat diet has been reported to increase hepatic 

TAG levels and to reverse liver injury in Mdr2−/− mice. Maternal intake of this diet was 

sufficient to inhibit development of sclerosing cholangitis and fibrosis in Mdr2−/− offspring 

(22).

Targeted quantitative analysis of liver tissue revealed increased total concentrations of PC 

and PE, and a decrease in the hepatic PC/PE ratio. These two classes of phospholipids are 

asymmetrically distributed in the plasma membrane: PC are mainly on the outer and PE are 

preferentially located on the inner leaflet, which makes the PC/PE ratio critical for plasma 

membrane permeability (26). Hepatic PC homeostasis is regulated by several processes, 

including biosynthesis from PE through the PE N-methyltransferase (pemt) pathway and 

efflux into the bile facilitated by mdr2. Mice deficient in pemt develop steatohepatitis and 

acute liver failure within 3 days of starting a choline-deficient diet (27) which is linked to a 

reduced PC/PE ratio and impaired membrane integrity. When this ratio is increased, liver 

injury can be prevented (19). Hepatic PC/PE has also been reported to be inversely 

correlated with the development of steatosis and inflammation in the progression of NAFLD 

(28). Consistent with the literature on disease progression in inflammatory liver diseases, our 

lipidomic data suggest that a decreased PC/PE ratio in Mdr2+/− mice may render these 

animals more susceptible to hepatobiliary injury during the neonatal period. To what degree 

our findings on lipid homeostasis in neonatal Mdr2+/− and Mdr2−/− mice in BALB/c 

background can be generalized to mice with impaired phospholipid floppase activity in other 

background strains requires further investigations. Progression of sclerosing cholangitis is 

reported to be accelerated in Mdr2−/− mice of BALB/c compared with FVB and C57BL6 

backgrounds (29). Whether strain-specific differences in cholesterol and phospholipid 

absorption and lipoprotein formation, for which the FVB-strain is known to be a high HDL 

producer conferring resistance to atherosclerosis(30), also influence the liver disease 

phenotype is unknown. Strain-specific differences for kinetics of serum biochemistries 

correlating with cholestasis in Mdr2−/− mice were recently reported (31, 32).

We also found increased plasma concentrations for individual LPC and DPC species. 

LysoPCs have previously been linked to control of inflammatory pathways, especially 

during sepsis (33). Furthermore, LPC is known to induce IFNγ production by CD4+ 

lymphocytes (34), linking local tissue regulation of LPC and T cell activation with 

inflammatory tissue destruction, for instance in atherosclerosis. Additional help to T cell 

activation may be derived from LPC associated maturation of professional antigen 
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presenting cells and control of toll like receptors on monocytes(35). In our experimental 

setting, increased plasma and liver LPC/DPC concentrations in neonatal (non-infected) 

Mdr2+/− mice were associated with upregulation of hepatic expression of IL12A and Irf4, 

encoding proteins polarizing naïve T lymphocytes to a Th1 or Th2 phenotype, respectively. 

Following low dose RRV challenge, hepatic gene expression for Ifnγ and Il5 was higher in 

Mdr2+/− compared with infected wt mice. Both cytokine pathways have previously been 

linked to ductal obstruction in EHBA(36). Surges in expression of pro-inflammatory 

cytokines in Mdr2+/− mice correlated with liver infiltration with NK and CD8 lymphocyte 

responses, both found to be effector lymphocytes of neonatal bile duct obstruction (14, 37), 

and an aggravated EHBA phenotype. Several details on how the metabolic hepatic 

microenvironment predisposes to accelerated hepatobiliary injury in neonatal Mdr2+/− mice 

remain unknown. Although our experiments demonstrate that mRNA and protein 

expressions for mdr2 are both significantly reduced in neonatal, non-infected Mdr2+/− mice 

compared with wt mice, RRV infection causes upregulation of Abcb4 mRNA expression in 

Mdr2+/− mice, resulting in similar expression levels of Abcb4 in Mdr2+/− and wt mice 

following viral challenge. We speculate that the processes driving upregulation of pro-

inflammatory gene expression and recruitment of effector lymphocytes to the liver begin 

early after viral challenge and are linked to the specific metabolic profiles observed in non-

infected mice rather than to those developing following viral infection. Absence of viral 

replication at d8pRRV in both Mdr2+/− and wt mice suggests that hepatic Mdr2 reduction 

does not worsen the EHBA phenotype via promoting virus replication and direct virus 

cytopathic effects.

In validation studies using human tissue, we identified one African subject with a dual 

phenotype of EHBA and MDR3 disease harboring two non-synonymous variants in ABCB4. 

In addition, expression of ABCB4 mRNA was decreased in livers from patients with EHBA 

and upregulation of pro-inflammatory genes compared with those of a fibrosing molecular 

phenotype. Comparison of liver transcriptomic data from studies in experimental RRV-

induced EHBA with those in infants with EHBA is difficult given the plethora of 

environmental triggers implicated in the pathogenesis of human EHBA, including toxins and 

various viruses. Nevertheless, it is intriguing that SELE, encoding the endothelial vascular 

adhesion protein E-selectin, is upregulated in RRV-infected Mdr2+/− compared with wt mice 

and is also found to be preferentially expressed in infants with inflammatory EHBA and 

reduced ABCB4 expression. Collectively, our data indicate that decreased hepatic expression 

of ABCB4, through either polymorphisms or inheritance of heterozygous deleterious 

mutations in this gene, may predispose infants to aggravated inflammatory responses in the 

liver conferring susceptibility to the development of EHBA. This conclusion is further 

supported by a recent pilot study demonstrating that the prevalence of the heterozygous non-

synonymous variant p.A934T in ABCB4 was higher in African American subjects and 

segregated with worse outcome, as evidenced by the need for early transplantation in a 

cohort of 195 children with EHBA (unpublished data) (38). None of the 97 subjects who 

survived with the native liver beyond the first 4 years of life carried this variant.

Here we provide mechanistic data linking reduced PL transporter expression with 

accumulation of biologically active lipid compounds (LPC) and polarization of immune 

responses, which if met by an environmental trigger may determine degree of liver 
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inflammation and disease phenotype. Whether in children with BA and pro-inflammatory 

phenotype, especially in those harboring non-synonymous mutations in ABCB4, 

inflammatory PLs are retained and the PC/PE ratio is decreased requires further 

investigations. In addition, future studies may aim at better understanding of the processes 

besides genetic predisposition which reduce expression of ABCB4/MDR3 in the neonatal 

liver, and whether pharmacological interventions targeting MDR3 expression or activity, i.e. 

through fibrates (39), have the potential to ameliorate the disease phenotype of EHBA.
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Figure 1. 
Liver lipidomic patterns distinctly differ between neonatal wild type (wt) and Mdr2+/− mice. 

Protein blot analysis by SDS-PAGE was performed of crude hepatic protein extracts from 

neonatal mice. Numbers on blot in the left panel denote relative densitometry values for the 

intensity of the Mdr2-band at 140kDa normalized against the specific band recognized by 

the anti-Actin antibody at 43kDa in the right panel (a). Principal component analysis (PCA) 

of total 7281 features (4502 negative compound ions, 2779 positive compound ions) 

detected by mass spectrometry (MS) on liver tissue homogenates from neonatal Mdr2−/− 

mice (denoted as circles), Mdr2+/− (squares) and wt mice (triangles) following exhaustive 

lipid extraction; MS analysis was performed in triplicate for each sample and the intensity of 

each compound ion is reported as average of three injections (b). S-plot comparing Mdr2+/− 

(right upper quadrant) with wt (left lower quadrant) with each point representing one of the 

2779 positive compound ions. Compounds farthest away from Y-axis correspond to 

significantly changed metabolites in each group (c). Quantification of lipid species from 

metabolomic analysis shows that phosphatidylcholines (PC) and phosphatidylethanolamines 

(PE) accumulate while several triglyceride (TAG) species are reduced in livers of Mdr2+/− 

(gray fill columns) and Mdr2−/− (no fill columns) compared with wt mice (black fill 

columns) in (d).
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Figure 2. 
Neonatal Mdr2+/− mice accumulate total and individual phosphatidylcholine (PC) and – 

ethanolamine (PE) species. Phospholipids were extracted from liver homogenates and 

plasma of 10-day-old mice of Mdr2+/− and wt mice and subjected to targeted mass 

spectrometry measurement for PC (a), for PE (b) and for individual lyso- and 

diacylphosphatidylcholines (LPC/DPC) (c). Black fill columns denote Mdr2+/− mice (n=8) 

and no fill columns denote wt mice (n=9). Unpaired T test was applied to test for statistically 

significant differences between groups with *p<0.05, **p<0.01, and ***p<0.005. Each dot 

in (a) and (b) represents a value from an individual animal.
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Figure 3. 
Global transcriptomic profiles in livers of neonatal Mdr2+/− and wt mice. RNAseq studies 

were performed on total hepatic RNA from 10-day-old Mdr2+/− and Mdr2+/+ mice. Based 

on pathway enrichment analysis, 16 pathways comprising significantly up- or downregulated 

genes in Mdr2+/− compared with Mdr2+/+ control mice are depicted with p values for these 

pathways plotted as –log10 (a). Differentially expressed genes regulating lipid metabolisms 

are listed in (b). 40 genes from pathways relevant for immune function are displayed in the 

heatmap with expression levels normalized to control Mdr2+/+ mice (c).
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Figure 4. 
Hepatic pro-inflammatory gene expression and effector lymphocyte recruitment following 

postnatal viral challenge of wt and Mdr2+/− mice. Livers were harvested on DOL10 

following post-natal administration of RRV or NS. Hepatic expression of RRV-specific VP6 

in Mdr2+/− and Mdr2+/+ mice (n=3/group) was quantitated by SYBR green qPCR and 

compared to expression levels in infected cholangiocytes serving as positive control (a). 

Regulation of Abcb4 mRNA expression following RRV infection was determined by 

TaqMan qPCR, with hepatic mRNA from an Mdr2−/− mouse serving as negative control (b). 

Hepatic mononuclear cells were subjected to flow cytometry and specific lymphocyte 

frequencies were determined within the size-gated lymphocyte population. Every dot 

represents % lymphocytes in an individual animal. No fill circles denote wt, black filled 

circles Mdr2+/− mice (c). Multiplex qPCR for 88 cytokines and chemokines was performed 
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using TaqMan Mouse Immune Arrays. The heatmap shows genes with >2-fold up-regulation 

in RRV-infected Mdr2+/− vs wt mice (d). Candidate gene expression studies on hepatic RNA 

were performed using SYBR green qPCR. No fill columns denote wt, black fill columns 

represent Mdr2+/− mice with n=6 animals/group (e). Protein expression of iNOS was 

detected by immunohistochemistry (f). Unpaired t test was applied to test for statistical 

differences between groups in c and e, with *p<0.05, **p<0.01, and ***p<0.005.
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Figure 5. 
Reduced Mdr2 expression predisposes to extrahepatic bile duct obstruction following RRV 

challenge. Total bilirubin was measured by colorimetric analysis from plasma obtained from 

neonatal Mdr2+/+ (denoted by no fill circles) and Mdr2+/− mice (black fill circles) 8 days 

after either low-dose RRV or normal saline i.p. injection on DOL2 (a). Bile ducts were 

microdissected on day 8 p RRV, and H&E stained longitudinal consecutive sections were 

examined for patency or obstruction. Representative photomicrographs from bile ducts of 

both groups of mice with * denoting the bile duct lumen are shown in b. Unpaired t and 

Fisher exact tests were applied to test for statistical differences between groups in a and b, 

respectively, with *p<0.05, **p<0.01.
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Figure 6. 
Association between hepatic expression of ABCB4 mRNA and inflammatory molecular 

signature in infants with EHBA. (Aa), Explanted liver of a 23-month-old-Somalian female 

with the clinical diagnosis of MDR3 disease, supported by bi-allelic non-synonymous 

variants in ABCB4. The explant shows biliary cirrhosis as well as (Ab) complete fibrous 

obliteration of the extrahepatic bile duct, (Ad) bile duct proliferation with bile plugs, (Ac) 
intrahepatic gallstones, and (Ae) canalicular cholestasis. Decreased hepatic expression of 

ABCB4 in subjects with a transcriptomic profile of inflammatory EHBA is shown in (B). 

Hepatic microarray gene expression data from a study on 40 subjects with EHBA identifying 

molecular signatures for inflammatory and fibrosing phenotypes were mined for the relative 

expression levels of ABCB4. Unpaired t test was applied to test for statistical differences 

between the groups with *p<0.05.
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