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SUMMARY

The genomes of malaria parasites contain many
genes of unknown function. To assist drug develop-
ment through the identification of essential genes
and pathways, we have measured competitive
growth rates in mice of 2,578 barcoded Plasmodium
berghei knockout mutants, representing >50% of the
genome, and created a phenotype database. At a
single stage of its complex life cycle, P. berghei re-
quires two-thirds of genes for optimal growth, the
highest proportion reported from any organism and
a probable consequence of functional optimization
necessitated by genomic reductions during the evo-
lution of parasitism. In contrast, extreme functional
redundancy has evolved among expanded gene
families operating at the parasite-host interface.
The level of genetic redundancy in a single-celled or-
ganism may thus reflect the degree of environmental
variation it experiences. In the case of Plasmodium
parasites, this helps rationalize both the relative suc-
cesses of drugs and the greater difficulty of making
an effective vaccine.

INTRODUCTION

Throughout the tree of life, the evolution of parasitism has been

accompanied by drastic reductions in genome size and gene

numbers (Jackson et al., 2016; Vivarès et al., 2002; Wolf and

Koonin, 2013). Prominent examples are found in the phylum Api-

complexa, one of themost successful taxa of parasitic protozoa.

The Apicomplexa include important parasites of livestock and

human pathogens, such as Toxoplasma gondii, which infects

approximately one-third of the human population and causes

pathology in immunodeficient individuals and malaria parasites

(genus Plasmodium), among which P. falciparum remains the

biggest killer of all parasites, leading to an estimated 214 million

clinical cases and 438,000 deaths annually (WHO, 2015).
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The evolution of Apicomplexa from a free-living, photosyn-

thetic ancestor with a red algal plastid and a broad repertoire

of genes was accompanied by drastic gene losses (Woo et al.,

2015). However, genomic reduction is not limited to parasites

and may be the predominant mode of genome evolution overall

(Wolf and Koonin, 2013). The consequences of shrinking ge-

nomes on the importance of the individual genes that are re-

tained has never been explored systematically. In free-living

organisms such as Escherichia coli, Saccharomyces cerevisiae,

Drosophila melanogaster, or Caenorhabditis elegans, the major-

ity of genes have no loss-of-function phenotypes when tested

under laboratory conditions (Dietzl et al., 2007; Gerdes et al.,

2003; Giaever et al., 2002; Kamath et al., 2003; Winzeler et al.,

1999), even though many genes are highly conserved in

evolution and must therefore fulfil important functions. In

S. cerevisiae, many loss-of-function phenotypes were only re-

vealed through pairwise gene disruptions, leading to the notion

of genetic buffering, i.e., that networks of functionally over-

lapping genes provide protection against mutation (Boone

et al., 2007; Costanzo et al., 2010). Functions for almost all genes

were found by varying the conditions under which growth assays

were conducted, supporting an alternative concept that most

genes in single-celled eukaryotes contribute to survival only in

specific environments (Hillenmeyer et al., 2008).

Whether these same models hold true in the reduced ge-

nomes of parasites is unknown, and there are plausible counter

arguments. On the one hand, parasites have outsourced impor-

tant metabolic functions to the host, and the smaller range of

challenges faced in an intracellular environment might predict

that each gene retained by the parasite should, on average,

contribute more to survival. On the other hand, for malaria para-

sites to gain access to the relatively predictable environment in-

side a red blood cell, they need a complex life cycle to travel be-

tween hosts. This involves transmission through a blood-sucking

mosquito vector in which the parasite reproduces sexually and

lives extracellularly, including being exposed directly to the im-

mune systemof the vector. In themosquito, and during the oblig-

atory intracellular liver stage that precedes colonization of the

blood, malaria parasites experience very different environments,

each requiring genes to fulfil stage-specific functions (Aly et al.,
by Elsevier Inc.
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2009). These factors could clearly lead to a gain in genome

complexity and a consequent increase in overall redundancy.

Understanding the pressures that influence gene function in

parasites is of more than theoretical importance. The repeated

and rapid evolution of antimalarial drug resistance remains the

largest single challenge to malaria control, with resistance to

artemisinin-combination therapies, the current front-line treat-

ment, now well established and spreading in Southeast Asia

(Saunders and Lon, 2016). The identification of drug targets is

therefore a continual and urgent need. Knowing the genes and

biochemical pathways that contribute to parasite growth during

the asexual blood stages, which cause all the symptoms and

pathology of malaria, will be critical to guide the discovery and

prioritization of targets for curative drugs. Furthermore, the

chance of finding compounds that act on multiple life-cycle

stages, a key priority for antimalarial drug development (Burrows

et al., 2017), will be directly related to the number of essential

genes with stage-transcending functions.

Plasmodium species possess compact genomes of 18–30Mb,

which encode 4,600–4,700 core protein-coding genes, alongwith

a varying number of largely subtelomeric multigene families,

distributed across 14 chromosomes (e.g., Otto et al., 2014).

No genome scale functional screen has been carried out in any

Plasmodium species, which are hard to transfect, have low

homologous recombination rates, and whose genomes are so

AT-rich and repetitive that manipulating their DNA in E. coli is

challenging. Recent innovations in the genetic system of

P. berghei, a malaria parasite infecting rodents, have overcome

major roadblocks for large-scale reverse genetic screens in this

species. Recombinase-mediated engineering of AT-rich DNA

(Pfander et al., 2011) has enabled the creation of the Plasmodium

genetic modification community resource, PlasmoGEM, which

contains knockout vectors that integrate efficiently and carry

gene-specific molecular barcodes (Schwach et al., 2015). Here,

we use this resource to measure growth rate phenotypes in

mice for 2,578 P. berghei genes, representing more than half of

its protein-coding genome. We estimate that almost two-thirds

of parasite genes contribute to normal asexual growth of the

blood stage in vivo, an unexpectedly large number for a single

phase of a complex life cycle, which we propose is a conse-

quence of genomic reduction during the evolution of parasitism.

RESULTS

Determining Growth Rate Phenotypes from Barcode
Counts
In the absence of a continuous culture system for asexual blood

stages, creating arrayed libraries of knockout clones would be

impractical in P. berghei. To increase scale, we therefore gener-

ated pools ofmutants by simultaneously co-transfectingmultiple

barcoded vectors. The optimal pool size was determined by the

overall transfection efficiency and by the variance in integration

rates between individual vectors. The library was screened in

58 pools of �100 barcoded vectors in inbred mice, as illustrated

in Figure 1A.

Following elimination of wild-type parasites by drug selection,

the relative growth rate (RGR) for each mutant was determined

by counting barcodes in daily blood samples on a next-genera-
tion sequencer (Gomes et al., 2015). Changes in barcode abun-

dance were normalized against seven control vectors each pool.

Some mutants increased over time, while others dropped out on

different days depending on their competitive fitness and their

initial abundance. We therefore aggregated data from at least

three replicate transfections into a single best estimate of RGR

and calculated a 95% confidence interval (CI) for each mutant.

To validate the initial screen the majority of vectors (69.6%)

were retransfected in at least one additional pool. These valida-

tion pools were configured with different compositions to assess

the impact of pool composition on phenotype, with the most

abundant mutants from the first rounds excluded from re-

screening to make rarer mutants more readily detectable.

RGR measurements were generated for 2,578 genes (Table

S1), increasing more than 5-fold the number of P. berghei genes

for which phenotype data had previously been recorded

(RMgmDB) (Khan et al., 2013). The screen covered all 14 chro-

mosomes evenly (Figure 1B), with the exception of the subtelo-

meric regions, as discussed below. In Figure 1C, growth mea-

surements for all mutants are plotted against a measure of

confidence, which we derive from a model of the variance un-

derlying the barcode counts. The observed variance between

independent measurements of the control genes was low (Fig-

ure 1D), showing RGR values to be robust. Four growth pheno-

types could be distinguished: essential genes, slow growing

mutants, dispensable genes, and fast growers. These are

color-coded in Figure 1C and defined and illustrated with

examples in Figure 1E. A phenotype database was built to

browse, search, download, and analyze RGR measurements,

which also offers access to the raw daily barcode ratios from

individual transfections (http://plasmogem.sanger.ac.uk). The

computed confidence score for RGR in one pool of vectors

was a strong predictor of reproducibility for the same gene

tested in a second validation pool, showing phenotypes could

be measured reliably in a way that was largely independent of

pool composition and validating both the re-screening and

analysis strategy (Figure 1F).

Most P. berghei Genes Are Required for Normal Growth
of Asexual Blood Stages In Vivo
We found 44.9% of genes were essential, and a further 18.0% of

mutants showed reduced growth (Figure 2A). Thus, 62.9% of

genes were required for normal asexual growth of P. berghei

in mice, an unexpectedly large proportion considering that

genome-wide knockout screens in other organisms showed

much lower levels of essentiality (Figure 2A; Table 1) (Alsford

et al., 2011; Barquist et al., 2013; Giaever et al., 2002; Kamath

et al., 2003; Sidik et al., 2016).

Genes in the screen were representative of the genome with

respect to all parameters tested, including gene length, AT

content, expression profiles, and functional annotation. The

only exception were members of a large multigene family of

Plasmodium interspersed repeat (pir) genes with roles in

immune evasion, which were underrepresented in the vector

resource, probably due to their repetitive DNA sequence (Figures

S1A–S1D; Table S2). The pir family accounts for only 2.0%

of P. berghei genes (Otto et al., 2014). The impact of the

underrepresentation of pir genes on the unexpected phenotype
Cell 170, 260–272, July 13, 2017 261

http://plasmogem.sanger.ac.uk


Figure 1. A BarSeq Screen for Parasite Growth Rate

(A) Schematic illustration of screen design.

(B) Circos plot showing, from the outer to inner circle, chromosome, mutant RGR (color coded by phenotype as in E), extent of previous phenotyping as reported

on RMgmDB, and coverage in our screen.

(C) Screenshot of the PlasmoGEM phenotype viewer showing RGR measurements plotted against confidence expressed as the negative logarithm of their

variance. See (E) for color coding of phenotypes.

(D) Frequency distribution of the >50 RGR replicates available for six control genes compared to essential ribosomal genes.

(E) Asexual growth phenotypes defined using confidence intervals (CI) and illustrated with representative genes.

(F) Graph on the left showing percentage of genes with at least one RGR measurement at a given confidence limit (black circles) and how confidence relates to

experimental reproducibility (blue squares). Reproducibility of independent duplicates is illustrated by the regression plot on the right for confidence 4 or above, a

level reached by at least one measurement for 85% of genes in the screen.

See also Figure S1 and Table S1.
distribution is therefore minimal, although we find most pirs un-

surprisingly dispensable.

Comparing RGR data with previously published data showed

the rate of technical failure was low, as the screen correctly clas-

sified 190 of 207 known viable P. berghei mutants recorded in
262 Cell 170, 260–272, July 13, 2017
RMgmDB (Figure 2B). It additionally identified 48 viable mutants

for genes that had previously been targeted without success.

Most of these new viable mutants had attenuated growth pheno-

types, which provides a rationale for previous failed attempts to

create and clone these mutants. Ten of these unexpectedly



Figure 2. Most P. berghei Genes Are

Required for Normal Growth of Asexual

Blood Stages In Vivo

(A) Frequency distribution of phenotypes in

P. berghei compared to published data from other

eukaryotes. Data from yeast are for growth in rich

medium. Data from T. gondii are from a CRISPR-

Cas9 screen in human foreskin fibroblasts. Genes

required for normal growth are hatched red/blue

since lethality and reduced growth phenotypes

were not distinguished. Salmonella Typhimurium

genes are for normal growth in medium (red) or

additionally required for oral colonization of farm

animals (hatched). T. brucei data is from an RNAi

in vitro screen. See text for data sources.

(B) BarSeq phenotypes compared to published

data from RMgmDB.

(C) Average RGR and phenotype distribution for

predicted essential genes. Gene numbers per

category shown next to pie charts. Enrichment for

essential genes is significant at p < 0.001 for ribo-

somal genes and p < 0.1 for known drug targets.

(D) All expressed genes covered by the screen

were grouped into nine clusters depending on their

relative expression across five life-cycle stages. All

genes within a cluster were weighted equally.

(E) For each cluster, the proportion of normalized

read counts from sexual (gametocyte and ooki-

nete) versus asexual developmental stages was

calculated (‘‘sexiness’’) and plotted against the

proportion of dispensable genes in that cluster.

Ring, ring stage parasites; Tro, trophozoites; Sch,

schizonts; Gam, gametocytes; Ook, ookinetes.

See also Figures S2 and S3 and Tables S3 and S4.
dispensable genes were selected for individual experimental

validation and all were confirmed as dispensable in single trans-

fections (Figure S2A), suggesting the longer homology arms of

PlasmoGEM vectors increase targeting efficiency and reveal

phenotypes previously masked by technical failure. In such

past experiments, locus inaccessibility may have been mistaken

for gene essentiality. We tested this by transfecting matched

C-terminal tagging vectors for one pool of mutants (Figure S2B).

These were able to target the majority of essential genes, indi-

cating that essential loci were generally accessible. In summary,

experimental validation and benchmarking against published

data lead us to conclude that only 2%–3% of all genes in the

screen are misidentified as essential. Estimates for how many

essential genes were falsely identified as dispensable are more

difficult to generate, because very few Plasmodium genes have

been confirmed as essential by strong experimental evidence

due to the relatively recent development of tightly regulatable

conditional genetic systems. However, we believe the number
of false dispensable genes to be low, as

the list of essential genes concurred with

previous findings. The screen correctly

recognized ribosomal genes and known

drug targets as important for parasite

growth (Figure 2C; Table S3), and the ratio

of sexual versus asexual expression of a
gene (Figure 2D; Table S4) was a strong predictor of phenotype

in the asexual blood stage, as would be expected. Genes with

high expression in asexual blood forms were characterized by

very low dispensability of �25%, rising to 88% in a cluster of

209 genes with highest expression in gametocytes (Figure 2E).

In summary, we conclude that RGR phenotypes are reproduc-

ible and reflect biological function for a large majority of genes.

Of 2,578 mutants, just two grew significantly faster than wild-

type parasites. The top hit (RGRCI: 1.15–1.34) is the knockout of

ap2-g, the master regulator of gametocytogenesis, a transcrip-

tion factor that functions as master regulator of gametocytogen-

esis by diverting a proportion of replicating asexual parasites into

non-proliferative gametocytes (Sinha et al., 2014). Spontaneous

mutations in ap2-g, which increase their rate of asexual growth,

occur if parasites are not regularly transmitted through mosqui-

toes to select against loss of gametocyte production (Sinha

et al., 2014). A second gene, PBANKA_145120 (RGR CI: 1.01–

1.25) is barely significant and may represent a false positive.
Cell 170, 260–272, July 13, 2017 263



Table 1. Gene Essentiality and Genome Size of Selected Species

Species

Genome

Size (Mb)

Protein

Coding

Genes

Genes

Contributing

to Normal Growth % Assay Method Reference

S. cerevisiae 12.1 5,916 1,105 essential 34.9 competitive growth

in rich medium

barcoded mutants

quantified on

nucleotide arrays

Giaever et al., 2002;

Deutschbauer et al.,

2005
962 slow

Trypanosoma

brucei

35.0 7,500 2,745 36.6 6-day extracellular blood

stream forms in vitro

RNA interference Alsford et al., 2011

Toxoplasma

gondii

63.0 8,158 3,263b 40.0 intracellular tachyzoites

in cultured fibroblasts

CRISPR gRNA screen Sidik et al., 2016

P. berghei 18.5 4,616a 2,123b essential 62.9b relative asexual

intraerythrocytic growth

in vivo

BarSeq this study

803b slow

aCore genome according to Otto et al. (2014).
bExtrapolated from the covered genome.
Other genes required for gametocyte formation (Boisson et al.,

2011; Guttery et al., 2014) do not provide a growth advantage

in the current screen because they act after the point when

commitment to sexual development has become irreversible.

This scarcity of fast growing mutants was expected, because

kin selection would create a strong evolutionary pressure to

minimize mutational targets that allow parasites to grow faster

at the expense of ending transmission from a host.

A total of 915 mutants lacked a significant growth phenotype,

but their relative abundance nevertheless varied reproducibly

over two orders of magnitude (Figure S3A), mainly because vec-

tor-specific rates of homologous recombination were deter-

mined by the length of their homology arms (Figures S3B and

S3C). Integration efficiency was poor for a small number of vec-

tors with geometric mean arm length below 1.25 kb, the mini-

mum arm length for robust BarSeq screening (Figure S3D), but

continued to increase with increasing arm length up to at least

10 kb (Figure S3C). The phenotype distribution shown in Fig-

ure 2A was calculated with 200 suboptimal vectors omitted to

avoid biasing the result toward essential genes.

Phenotype Distribution Is Determined by Phylogeny, Not
the Experimental System Used
A recent CRISPR screen in T. gondii grown in cultured human

cells identified a much lower proportion of genes contributing

to normal growth (Sidik et al., 2016). The higher rate of essential

and slow growing mutants in our screen, which was carried out

in vivo, raised the possibility that in vitro systems may fail to

reveal phenotypes for many loss-of-function mutations. If true,

this would limit the utility of the important and widely used

in vitro culture system for P. falciparum, so we systematically

compared the P. berghei and T. gondii data. Of 2,034 genes

with 1:1 orthologs in P. berghei and T. gondii, 1,140 have pheno-

typic data in both screens (Table S5). The proportion of genes

important for normal growth is increased in this conserved set

(Figure 3A), but gene functions are only moderately correlated

between species overall (Figure 3B). GO terms enriched in genes

with discordant phenotypes (Figures 3C and 3D) either recapitu-

late known biological differences between species, such as an

increased importance of mitochondrial energy metabolism in
264 Cell 170, 260–272, July 13, 2017
T. gondii (essential tricarboxylic acid cycle) (MacRae et al.,

2012; Ke et al., 2015), confirm anticipated results (homology-

based repair of double strand breaks is more important in

P. berghei, which lacks the alternative NHEJ pathway) (Kirkman

et al., 2014), or reveal unexpected differences (e.g., less

redundancy among prenylation and palmitoylation enzymes in

P. berghei).

The considerable level of disagreement between phenotypes

in T. gondii and P. berghei might reflect differences between

taxa or between experimental conditions (in vitro versus in vivo).

We therefore asked which of these screens best agreed with a

curated database of P. falciparum gene disruption attempts

(Sanderson and Rayner, 2017), all conducted in vitro. We saw

that genes important for growth in P. bergheiwere almost invari-

ably impossible to disrupt in P. falciparum (50 out of 57 genes),

irrespective of their phenotype in T. gondii (Figure 3E). When

the analysis was extended beyond 1:1:1 orthologs to all homol-

ogous pairs (Figure 3F), P. berghei remained by far the best pre-

dictor of gene function in P. falciparum. While many dispensable

P. berghei genes do have failed disruption attempts reported in

P. falciparum, we interpret this as reflecting themore challenging

genetic system in P. falciparum. Collectively, this analysis shows

that the high number of essential genes in P. berghei probably

extends to P. falciparum, and it reflects the selection pressures

under which parasite genomes evolve, rather than the experi-

mental system under which they are assayed.

Opposing Evolutionary Pressures Are Shaping the
Plasmodium Genome
The high proportion of essential genes in P. berghei seems at

odds with the fact that many well-studied aspects of Plasmo-

dium pathogenesis involve expanded gene families that allow

parasites to use alternative erythrocyte invasion pathways

(e.g., Duraisingh et al., 2003) or mechanisms for cytoadherence

and immune evasion (Maier et al., 2008). Consistent with current

concepts, we find that many proteins on themerozoite surface or

secreted frommicronemes during host cell invasion are dispens-

able (Figure 4; Table S3). Gene products exported into the host

erythrocyte contain an even larger proportion of dispensable

genes, while the conserved machinery for exporting these



Figure 3. Comparison of Phenotypes for Orthologous Genes across Three Apicomplexan Species

(A) The distribution of 1:1 orthologous genes inP. berghei and T. gondii (data fromSidik et al., 2016) is significantly shifted toward essentiality as compared to non-

shared genes.

(B) There is highly significant correlation of phenotypes between species for orthologous genes, but there are also numerous genes without conserved

phenotypes.

(C) All significantly enriched GO terms among genes that are more dispensable in P. berghei (shaded area).

(D) Same as in (C) but for genes more dispensable in T. gondii (shaded area).

(E) Left: data as in (B) but overlaid with published P. falciparum phenotypes (Sanderson and Rayner, 2017). Right: data from pairwise comparisons. P. falciparum

phenotypes are color coded (green, viable mutant; red, confirmed essential or disruption failed).

See also Table S5.
proteins from the parasite (plasmodium translocon of exported

proteins [PTEX]) is predictably important (Figure 4).

Most redundant gene products acting at the parasite-host

interface have evolved recently in the genus, and we therefore

asked more generally how the evolutionary history of genes

was related to their current phenotype. Genes under purifying

selection in African populations of P. falciparum, or character-

ized by a higher degree of amino acid conservation, contribute

more strongly to normal growth in P. berghei (Figures 5A–5C;

Table S6). Looking beyond the genus Plasmodium, the history

of genes during apicomplexan evolution predicted gene function
in P. bergheimore generally. In particular, genes acquired during

twomajor genomic reduction events, i.e., the loss of 3,862 ortho-

log groups during the emergence of the Apicomplexa and then

the loss of a further 1,199 with the acquisition of an intraerythro-

cytic lifestyle by the Hematozoa (Woo et al., 2015), were much

more likely to contribute to asexual stage growth than genes ac-

quired at other points during the ancestral lineage leading to

Plasmodium (Figure 5D). A substantial group of 1,174 genes

has resisted gene loss and are present in all hematozoan ge-

nomes analyzed to date. Eighty-six percent of this large class

contributes to blood stage growth, including many functionally
Cell 170, 260–272, July 13, 2017 265



Figure 4. Reduced Essentiality among

Genes Involved in Direct Interactions with

the Host

Phenotype distributions for secreted and surface

proteins of the invasive merozoite and for proteins

exported from the asexual intraerythrocytic para-

site are shown as pie charts using the same colors

as in Figure 2. Gene numbers in each category are

next to violin plots showing RGR. Enrichment in

dispensable genes is significant for bir (p < 0.02),

fam, and ‘‘other exported’’ (both p < 0.01).

See also Table S3.
unannotated genes (Table S6), which may have conserved roles

in the erythrocytic life style of Hematozoa. Together, these data

link the dramatic reduction of the genome during hematozoan

evolution to a marked functional optimization, probably resulting

in the high degree of genetic essentiality in the conserved core

genome.

Growth Rate Phenotypes Identify Essential Biological
Pathways
The identification of 1,196 genes likely to contribute to normal

parasite growth in vivo provides an opportunity to define the

biological pathways crucial for blood-stage growth, which

will help validate or deprioritize targets for future antimalarial

drugs. 74 gene ontology (GO) terms and metabolic pathways

are significantly enriched in essential, dispensable, or slow

phenotypes (Figure S4A; Table S7). We identify potentially

druggable pathways, key metabolic processes, housekeeping,

and biogenesis functions. Over a third of P. berghei genes

still lack known domains or predictable functions, but many

of these are nevertheless important for normal growth

(Figure S4B).

As expected, essential genes were enriched in most basic

cellular processes, including transcription, mRNA splicing,

translation, vesicular transport, and proteasomal protein degra-

dation. Among the lipid metabolic pathways, glycosylphosphati-

dylinositol (GPI) anchor biosynthesis is the most clearly essential

in blood stages (p < 0.05, Figure S4C). GPI-anchored surface

proteins have important functions in specific life-cycle stages

and the essential nature of the pathway, which is druggable in

fungi (Mann et al., 2015), may thus provide targets formulti-stage

inhibitors. Enzymes involved in phosphatidylcholine biosyn-

thesis, which are thought to include the targets of bis-thiazolium

drugs (Wengelnik et al., 2002) were associated with severely

reduced growth (p < 0.05). In marked contrast, although Plasmo-

dium blood stages can synthesize sphingolipids de novo and the

pathway has been proposed for drug development (Pankova-

Kholmyansky and Flescher, 2006), none of the implicated genes
266 Cell 170, 260–272, July 13, 2017
were important for normal growth in vivo,

suggesting that sphingolipids may be

scavenged from the host (p < 0.02).

Unstudied cellular functions enriched in

attenuated growth phenotypes include

biosynthetic pathways for glutamate and

glucosamine (all p < 0.05), genes involved
in cellular stress responses (p < 0.02), and methyltransferases

with likely functions in chromatin regulation (p < 0.05), all of which

may be promising targets for future drug development.

Apicomplexan parasites possess a highly derived mitochon-

drial genome, which could indicate adaptation to parasitic

existence and is reflected in a reduced set of mitochondrial

metabolic pathways relative to model organisms (Vaidya and

Mather, 2009). Plasmodium mitochondria are nevertheless

essential, housing parts of critical pathways supplyingmolecules

essential for nucleic acid metabolism, DNA replication, DNA

repair, transcription, and maturation of various components of

the parasite’s translational apparatus (Figure 6A). The mito-

chondrially located enzyme dihydroorotate dehydrogenase is

important for the synthesis of pyrimidines and is supported by

the mitochondrial electron transport chain (mtETC). Other meta-

bolic processes depend on a number of enzymes requiring iron

sulfur cofactors, which are ultimately supplied by the mitochon-

drial iron-sulfur cluster biogenesis system. Thus, dihydroorotate

dehydrogenase, many components of the mtETC and assembly

factors, the ubiquinone biosynthesis pathway, and the iron-

sulfur biogenesis pathway are essential, as are the supporting

maintenance machinery, including mtDNA polymerase, mito-

chondrial ribosomes, the protein import machinery, and several

transporters.

Asexual blood-stage parasites obtain most of their ATP via

aerobic glycolysis in the cytoplasm, and glycolytic enzymes

are largely essential as expected. Conversion of pyruvate from

glycolysis to mitochondrial acetyl-CoA in Apicomplexa is medi-

ated by the branched-chain keto acid dehydrogenase (BCKDH)

complex (Oppenheim et al., 2014), all tested subunits of which

have an attenuated growth phenotype (Figure 6A). Similarly,

the mitochondrial tricarboxylic acid (TCA) cycle, which uses

acetyl-CoA to power the mitochondrial electron transport chain,

and the ATP synthase complex, are significantly enriched for

slow growth phenotypes, although some of its enzymes are

entirely dispensable for asexual blood stage growth, as reported

previously for P. falciparum (Ke et al., 2015).



Figure 5. Genomic Reduction and High

Gene Essentiality during the Evolution of

Hematozoa

(A) Phenotype distributions for the P. berghei

orthologs of genes under purifying selection in

P. falciparum (dN/dS <1) and genes potentially

under positive selection inP. falciparum (dN/dS >1)

compared to P. berghei genes without orthologs in

P. falciparum.

(B) Genes highly conserved between Plasmodium

species are enriched for essential phenotypes.

Genes are ranked by their conservation between

P. chabaudi and P. falciparum (according to the

MalariaGEN Plasmodium falciparum Community

Project, 2016) with the phenotype distribution of

P. berghei orthologs and different conservation

levels plotted.

(C) Phenotype is significantly predictive of inter-

species conservation score (***p < 0.0001).

(D) The evolutionary history of P. berghei is

shown through the gain and loss of groups of

orthologs as reconstructed using a Dollo parsi-

mony model (* taken from Woo et al. [2015]). Bar

charts show relative distribution of P. berghei

phenotypes among extant genes belonging to

the orthologous groups gained during each

phase: Phase I, from the free-living proto-

apicomplexan to the first apicomplexan; Phase

II, from the first apicomplexan to the ancestor of

the piroplasms and coccidians; Phase III, from this ancestor to the first hematozoan; Phase IV, from the first hematozoan to the first malaria parasite; and

Phase V, from the first malaria parasite to P. berghei.

See also Table S6.
Malaria parasites have a relic plastid known as the apicoplast,

which has lost the ability to photosynthesize, but fulfils crucial

biosynthetic functions. Our screen confirms chemical supple-

mentation of in vitro cultured blood stage P. falciparum that

showed isopentenyl pyrophosphate (IPP) synthesis as a critical

apicoplast function in erythrocytes (Yeh and DeRisi, 2011) (Fig-

ure 6A, p < 0.05), as well as Fe:S cluster synthesis, which sup-

ports IPP synthesis enzymes. Conversely, fatty acid synthesis,

which is only essential during the liver phase in P. berghei

(Shears et al., 2015), is clearly dispensable (p < 0.1). Heme syn-

thesis is shared across the mitochondrion, cytosol, and apico-

plast and is essential during the mosquito phase of the

P. berghei life cycle but not the blood phase (Sigala and Gold-

berg, 2014), and we find it enriched for dispensable phenotypes

(p < 0.1). The machinery to replicate, repair, transcribe, and

translate the apicoplast genome, which encodes �30 proteins,

is essential (p < 0.1–0.001) (Figure 6A). Also crucial, is the ma-

chinery to import �500 nucleus-encoded, cytosol-synthesized

apicoplast proteins and chaperones and proteases to maintain

quality control of these proteins (p < 0.01). Apicoplast trans-

porters, most with unknown but apparently critical roles, are

similarly indispensable. Our screen flags hundreds of priority api-

coplast targets, all of which are prokaryotic in ancestry and thus

predisposed to high selectivity against the human host equiva-

lents in a similar vein to antibacterials. Table S3 lists the pre-

dicted components of apicoplast and mitochondrial pathways

and their growth phenotypes.

In a parasite whose metabolism is intertwined with that of the

host, solute transporters can assume particular significance, and
our screen confirms that among the 79 targeted transporters of

known and unknown specificity (Martin et al., 2009) 26 are

essential and a further 19 are required for normal growth. Unsur-

prisingly, many of the transporters that support fundamental re-

quirements of the cell, such as the acquisition and distribution of

energy and the generation of transmembrane ion gradients, are

essential or have slow growth phenotypes (Figure 6B). When

considered alongside published knockout phenotypes (Table

S8), the data also reveals that a number of the transporters

with putative roles in lipid scavenging and the generation of

membrane lipid asymmetry are required for normal growth

(Figure 6B).

Transporters also play a central role in drug resistance, and

to date, 12 Plasmodium transporters have been implicated as

drug targets and/or mediators of resistance (Table S8). The

essentiality of three of the transporters (CRT, MDR1, and

UGT) was not unexpected (Figure 6B) given that resistance-

conferring polymorphisms in these proteins impart fitness

costs to the parasite (Rosenthal, 2013). The conflicting evolu-

tionary forces acting upon these resistance determinants

could be exploited by rationally designed drug combinations

(Summers et al., 2012). The observation that many of

the resistance determinants are not essential (e.g., MRP2,

ABCG1, and ACT; Figure 6B) highlights the risk in dismissing

transporters with slow or dispensable phenotypes as unimpor-

tant. Dispensable transporters offer the parasite the means

to develop drug resistance without incurring a significant

fitness cost and thus represent opportunities for evolution

and adaption.
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DISCUSSION

Obligate intracellular parasites have, until recently, posed insur-

mountable technical challenges for large reverse genetic screens.

Here, we have demonstrated that simultaneous phenotyping of

barcoded P. berghei mutants offers a systematic and unbiased

way of measuring phenotypes, identifying gene functions on a

genome scale in an intracellular parasite in vivo. Screening a

representative vector library covering more than half of all

P. berghei protein-coding genes, we identify 1,652 genes

required for parasite growth in mice. By extrapolation, we predict

62.9% of the core P. berghei genome to be important for normal

development during asexual blood stages. This is in marked

contrast to studies in free-living model organisms and other par-

asites (Table 1) reporting a high degree of functional redundancy,

which have posed a quandary because all genes must be subject

to selection pressures that cause them to be retained throughout

long periods of evolution.

Formulticellular organisms, an explanation for themissing phe-

notypes was offered by data showing that most loss-of-function

mutations had subtle effects on overall fitness that were only re-

vealed either by using a broad phenotyping pipeline, as in the

mouse (White et al., 2013), or by letting C. elegans mutants

compete over many generations (Ramani et al., 2012). In yeast,

substantially more phenotypes were revealed in genetic-interac-

tion screens. Disrupting genes in a pairwise fashion identified

phenotypes for most yeast genes, which gave rise to the idea

that dispensable genes can provide a buffer for genetic mutations

(Boone et al., 2007) allowing these to persist longer and recom-

bine within the gene pool of a sexually-reproducing population.

Plasmodium genomes are very polymorphic (Manske et al.,

2012), and the abundance of essential genes in P. berghei, which

undergoes obligatory sexual reproduction and is haploid in the

blood stages, suggests that buffering does not play a significant

role in the Plasmodium genome.

An alternative explanation for the abundance of dispensable

genes in most eukaryotes, compared to the much reduced num-

ber in P. berghei, is that the robustness of genetic networks re-

flects an ability to survive in different environments. That most

mutants will reveal a phenotype if assayed under the right condi-

tion is supported by screens of haploid yeast mutant collections

undermany different conditions (Hillenmeyer et al., 2008), but we

have shown here that the highly-reduced Plasmodium genome

does not pose a missing-phenotype quandary. However, para-

sites experience less environmental variation than most free-

living organisms because their hosts act as homeostats that con-

trol their internal milieu within narrow physiological parameters,

which is thought to lead to the strong trend among parasites to-

ward genomic reduction. Our data support the model that this
Figure 6. Knockout Phenotypes of Selected Organellar Pathways and

(A) RGR and phenotype distribution of putative mitochondrial and apicoplast ge

distributions with the horizontal line indicating the median. Number of genes per

(B) Knockout phenotypes of selected Plasmodium transporters. Dispensable, slo

respectively. The phenotypes are from this study (top box) and from published

primary active transporters) are shown in pink and carriers (i.e., uniporters, symp

the resistance determinants are listed below each transporter.

See also Figure S4 and Tables S7 and S8.
limited environmental variation is also responsible for the lack

of functional redundancy in the Plasmodium genetic network.

The high degree of gene essentiality in P. berghei is not simply

a feature of a pathogenic lifestyle per se. Screening of dense

transposon libraries of Salmonella enterica serovar Typhimu-

rium, for instance, has revealed that only �7.5% of genes are

required for growth in rich medium (Barquist et al., 2013), rising

to an estimated 24%–36% for effective intestinal colonization

(Chaudhuri et al., 2013). In the extracellular blood parasite,

Trypanosoma brucei, whose genome carries relatively fewer

signs of genomic reduction (Jackson et al., 2016), only 36.6%

of 7,435 genes contribute to normal growth in culture (Alsford

et al., 2011), and in the obligate intracellular parasite, T. gondii,

only �40% of �8,000 genes contribute to normal growth in

cultured human fibroblasts (Sidik et al., 2016) and far fewer are

thought to be truly essential. T. gondii tachyzoites can replicate

in a wide range of tissues in birds and mammals, which maxi-

mizes their chances of transmission. Environmental variation

may thus provide an explanation for both their larger genome

and greater proportion of dispensable genes.

An alternative explanation for differences in phenotype distri-

bution between P. berghei and T. gondii could be the use of an

in vitro culture model by Sidik et al. (2016). In the absence of

an efficient culture system in P. berghei, we could not test this

possibility directly, but a comparison with published data for

324 P. falciparum genes generated in vitro revealed no evidence

that culturing Plasmodium-infected erythrocytes would fail to

detect large numbers of functionally-important parasite genes.

This is reassuring because cell-based screens for antiplasmodial

compounds rely heavily on P. falciparum in vitro culture models.

It should be noted that the relatively small curated P. falciparum

essential gene set may not be representative of the genome as a

whole, and suspected essentiality of a P. falciparum gene often

relies on anecdotal evidence that a gene cannot be disrupted.

Despite these caveats, which illustrate the value of this first sys-

tematic genetic screen in a Plasmodium parasite, these consid-

erations collectively support our interpretation that a high pro-

portion of genes contributing to normal growth may coincide

with the genomic reduction in the evolutionary lineage that led

to the acquisition of an intraerythrocytic life style by the ancestral

hematozoan (Woo et al., 2015). It is also intriguing that genome-

scale knockout screens from protozoan parasites consistently

identify �3,000 genes as important for normal growth of a single

life-cycle stage (Table 1), regardless of the particular assay and

genetic methodology used.

To find that parasite genes whose products interact directly

with the host are more likely to be dispensable is no surprise, but

is shown here systematically for the first time. Antigenic diversi-

fication and functional redundancy represent the response of the
Transport Functions

nes. See Table S3 for genes in each category. Violin plots show growth rate

category is stated.

w, and essential phenotypes are indicated by the green, blue, and red boxes,

P. berghei (middle box) and P. falciparum (bottom box) studies. Pumps (i.e.,

orters, and antiporters) in aqua. Examples of the antimalarial drugs affected by

Cell 170, 260–272, July 13, 2017 269



parasite to a changeable environment that results not only from

the adaptive immune response of the host, but also from an

ongoing evolutionary arms race thought to have given rise to

the human ABO blood group system (Cserti and Dzik, 2007),

among other polymorphisms. They also pose major challenges

to malaria vaccine development (Crompton et al., 2010). Impor-

tantly, however, we also show the evolutionary trend toward

functional redundancy affects only a small and well-defined

part of the genome, while the majority of genes contribute

significantly to normal asexual growth. This means there must

be substantially more druggable targets in Plasmodium than,

for instance, in bacteria.

The fact that P. berghei needs to deploy most of its reduced

genome to grow optimally suggests the transcriptome must be

similarly optimized, which may explain the oft-noted limited

capacity of P. falciparum to mount adaptive transcriptional re-

sponses (e.g., Rovira-Graells et al., 2012). Even more impor-

tantly, it means that most genes must function at multiple points

in the life cycle, which helps rationalize whymany antiplasmodial

compounds discovered through their ability to kill cultured blood

stages can also function as the multi-stage drugs now consid-

ered crucial for malaria eradication (Burrows et al., 2017). Recent

progress in this area can now be understood in the light of a high

degree of genetic essentiality in the Plasmodium genome.

Further experimental support for the concept of abundant

pleiotropic functions of Plasmodium genes will require the devel-

opment of a knockout system that is both scalable and inducible

to identify essential gene functions systematically at multiple life-

cycle stages. In the meantime, BarSeq, with the available vector

library, will enable detailed phenotyping of slow growing mu-

tants, screens for other blood stage phenotypes, and functional

characterization of dispensable genes at other life-cycle stages.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Amaxa P3 Primary Cell 4D-Nucleofector

X Kit S

Lonza V4XP-3032

4D-Nucleofector Core Unit Lonza AAF-1002B

4D-Nucleofector X Unit Lonza AAF-1002X

MiSeq Reagent Kit v2 (300-cycles) Illumina MS-102-2002

MiSeq Sequencing System Illumina N/A

Deposited Data

P. berghei relative growth rate phenotypes This paper http://plasmogem.sanger.ac.uk/

phenotypes

Experimental Models: Cell Lines

Arrayed library of E. coli TSA cells harboring

linear plasmids containing P. berghei gene

targeting vectors.

PlasmoGEM resource (http://plasmogem.

sanger.ac.uk/search)

Table S1

Experimental Models: Organisms/Strains

Rat: RCC Han Wistar outbred (female) Envigo+++ RccHan:WIST

Mouse: BALB/c inbred (female) WTSI & Envigo+++ BALB/cOlaHsd

P. berghei: ANKA cl15cy1 wild-type

parasites

N/A cl15cy1

E. coli: BigEasy-TSA Lucigen 60224

Recombinant DNA

BigEasy v2.0 Linear Cloning Kit (pJAZZ-OK

Blunt Vector)

Lucigen 43036

Sequence-Based Reagents

Oligonucleotide primers for barcode

amplification and index tagging

Gomes et al. 2015 http://plasmogem.sanger.ac.uk/info/

primers

Oligonucleotide primers for qPCR based

genotyping

N/A http://plasmogem.sanger.ac.uk/search

Software and Algorithms

R https://www.r-project.org 3.3

topGO Bioconductor 3.4

Count http://www.iro.umontreal.ca/�csuros/

gene_content/count.html

N/A
CONTACT FOR RESOURCE AND REAGENT SHARING

All requests may be directed to Oliver Billker (ob4@sanger.ac.uk). PlasmoGEM reagents are freely available under a material transfer

agreement for not-for-profit research and should be requested directly from the PlasmoGEM resource (http://plasmogem.sanger.ac.

uk/request/howto).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Parasites and animals
All experiments used the sequenced reference clone cl15cy1 of P. berghei ANKA. All animal research was conducted under licenses

from the UK Home Office, and protocols were approved by the Animal Welfare and Ethical Review Body of the Wellcome Trust

Sanger Institute. Rodents were kept in specific-pathogen-free conditions and subjected to regular pathogen monitoring by sentinel
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screening. They were housed in individually ventilated cages furnished with autoclaved aspen woodchip, fun tunnel and Nestlets at

21 ± 2�C under a 12:12 hr light-dark cycle at a relative humidity of 55 ± 10%. They were fed a commercially prepared autoclaved dry

rodent diet and water, both available ad libitum. The health of animals was monitored by routine daily visual health checks. The para-

sitemia of infected animals was determined by methanol fixed and Giemsa-stained thin blood smears.

Female RCC Han Wistar outbred rats (Envigo, UK) aged eight to fourteen weeks were infected with P. berghei wild-type parasites

by intraperitoneal injection. Infected rats served as donors for ex vivo schizont cultures typically on day four to five of infection, at a

parasitemia of�1%–5%. Rats were housed with two cage companions. Rats were terminally anaesthetised by vaporised isoflurane

administered by inhalation prior to terminal bleed. Rats were used because they give rise to more schizonts with higher transfection

efficiency compared to mice. Transfection efficiency is critical when screening pools of vectors.

Mice were bred at WTSI or purchased from Envigo. Transfected parasites were injected intravenously into the tail of female adult

BALB/c inbred mice aged 8-22 weeks (median age 10 weeks). This animal model was chosen tominimize host genetic variability and

to obtain robust infections with a low incidence of cerebral pathology. Experimental groups consisted of threemice housed together.

Three internally controlled biological replicates per parasite pool proved adequate to identify phenotypes with confidence.

METHOD DETAILS

Pooled transfections
Each of 2578 knockout vectors was assigned to one or more vector pools, creating a total of 58 pools of vectors. For each pooled

transfection, vectors were prepared and transfected largely as described (Gomes et al., 2015) with minor modifications. Briefly,

groups of �96 targeting vectors were prepared in parallel by growing 1 mL liquid cultures inoculated from glycerol stocks into dupli-

cate 96X deep-well plates, incubated shaking at 37�C for 16 hr. Saturated cultures were then pooled and DNA extracted in a single

midiprep reaction (QIAGEN Plus Midi Prep Kit) using one column per plate and pooling DNA from duplicates after purification. A total

of 30 mg (approximately 100 ng of each vector, in triplicate), including spike-in DNA of control vectors, was digested overnight with

NotI to release the targeting vector from the linear plasmid backbone.

The universal control vectors included in each transfection were as described previously (Gomes et al., 2015). Briefly, four sexual

stage specific genes (p25, p28, p230p and soap) had wild-type growth phenotypes and their weighted mean growth rate on a given

day was defined as 1. Three additional controls were chosen for their known reduced growth phenotypes (Gomes et al., 2015). Iden-

tification numbers for all vectors included in this study are shown in Table S1 and can be used to access details of each vector design,

including quality control data, through the PlasmoGEM database (http://plasmogem.sanger.ac.uk).

Following restriction digests the vector pools were purified by ethanol precipitation and DNA for each triplicate pool was

resuspended in 18 mL of nuclease-free water. Rat derived P. berghei schizonts were harvested after 22 hr in culture and

purified on a Histodenz (Sigma) gradient. Purified parasites were pelleted at 450 g for 3 min, resuspended in 54 mL P3 Primary

Cell 4D-Nucleofector solution (Lonza) and added to the DNA solution. Of thismixture exactly 26 mLwere transferred into each of three

separate wells of a 16X 4D-Nucleofector strip cuvette. Cells were electroporated using the FI115 program on the 4D-Nucleofector

core system equipped with an X Unit (Lonza). Transfectant parasites were injected intravenously into mice and selected with 0.07mg

/ mL pyrimethamine in drinking water (pH �4.5) from day one post infection (p. i.).

Measuring relative growth rates
Infections were sampled at the same time of each day between days four to eight p. i., except in a few instances, when mice devel-

oping signs of disease on day seven led to early termination of the experiment. Transfectionmixture from the electroporation cuvettes

was also sampled to verify pool compositions, so that only vectors verified in the input were included in the analysis.

To measure in vivo growth, we used the gene-specific 11 base pair barcodes included in PlasmoGEM vectors (Schwach et al.,

2015), which were amplified linearly from genomic DNA extracts and counted on an Illumina MiSeq.

Parasite genomic DNA was extracted from tail blood samples collected daily, using the phenol/chloroform method, as previously

detailed and resuspended in 50-100 mL nuclease-free water. Barcodes present in each of these samples were counted through Illu-

mina sequencing. For that, amplicon-based Illumina sequencing libraries were prepared using a nested PCR approach that targeted

constant regions flanking each gene-specific 11 nt barcode. See the Key Resources Table for information in index primers used. The

resulting libraries consisted of 234 bp long amplicons containing sample-specific indexes that were pooled equimolarly, typically in

groups of 32 these were then sequenced using theMiSeq Reagent Kit v2 (300 cycle) from Illumina (MS-102-2002) and diluted to 4 nM

prior to loading at low cluster density (4x105 clusters/mm2) with �40% of PhiX spike-in.

Validation of gene disruption for selected vectors was achieved using individual transfections and quantitative polymerase chain

reaction (qPCR). Parasites were transfected as described previously (Gomes et al., 2015) with 1-5 mg of a single PlasmoGEM vector.

Selection with pyrimethamine was initiated on day 1 post-transfection. On day 6 or 7 post-transfection gDNA was extracted from

purified parasites using the QIAGEN Blood and Tissue kit. The presence of the locus in question was assessed by conducting a

qPCR reaction with primers QCR1 and QCR2 for each vector - the template for these primers is only available if the gene is intact.

Two control reactionswere run in each case: onewith generic primers (QCR1 andQCR2 for an unrelated gene - PBANKA_061520) on

the extracted DNA to control for the number of parasite genomes in the sample, and onewith gene-specific QCR1 andQCR2 onwild-

type DNA to control for differential primer efficiencies. All reactions were carried out in duplicate or triplicate. Locus depletion was
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computed using the delta-delta Ct method. The proportion of parasites with an intact gene was then calculated as 2-DDCt. Control

reactions A and B consist respectively of the PBANKA_082850 knockout assessed with the PBANKA_120060 primers, and the

PBANKA_120060 knockout assessed with PBANKA_082850 primers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of barseq results
It was necessary to develop a nuanced statistical approach for computational analysis of barcode data. Mutants varied in abun-

dance, both due to differences in vector integration efficiency and because of differential fitness. This variation, as well as the

sampling errors inherent to rare mutants and sampling variance associated with barcode counting, resulted in different accuracies

for the inferred individual mutant fitnesses. This necessitated a statistical model to estimate the expected error for each read count

measurement, and a way of propagating these uncertainties to the barcode ratios and the daily RGRs calculated from them.We then

weighted RGR measurements from all days and replicates by the inverse of their variance, giving the most robust measurements

the greatest impact on the combined value. Finally, where multiple measurements were available for the same gene, these were

combined, again weighted by inverse variance.

Procedure

Raw reads from the sequencer were separated based on their sample (a specificmouse infected with a specific pool and sampled on

a certain day, or the transfection input), as represented in Illumina index tags. The sequence data from each sample were analyzed by

a script which selected reads with correct flanking sequences and then counted the barcodes carried between them. Only perfectly

matching barcodes were counted. These barcodes were then transformed into gene IDs using a look-up table.

Abundances were calculated for each barcode in each sample by dividing the number of counts for that barcode by the total num-

ber of barcode counts in the sample, and any mutant with an abundance of less than 0.1% in the input sample was discarded from

subsequent analysis (and abundances recalculated for remaining mutants).

To estimate sampling variation, the approximate number of parasite genomes put into the barcode PCR was calculated using the

typical parasitemia per day of experiment, an estimate of the efficiency of DNA extraction, and the proportion of the extracted DNA

used as template. The variance at this first stagewas calculated for eachmutant using the binomial distribution as np(1� p)where n is

the expected number of parasite genomes in the sample and p the barcode-abundance seen for the mutant. This variance was

increased by a factor representing the noise added by PCR, calculated by simulating 45 cycles of PCR repeatedly on a range of input

concentrations and observing the resulting distribution. It was further increased by considering a second binomial distribution rep-

resenting the loading of barcodes on the PCR where n represented the total number of reads for the sample.

The result of this procedure was an estimate of the error associated with the barcode abundance for eachmutant in eachmouse on

each day of the experiment. These error estimates were propagated to all downstream calculations as we calculated estimates for

the relative growth rate ofmutants. For eachmutant in eachmouse, on each day (except the final day), the barcode abundance on the

following day was divided by the abundance on the current day to obtain an un-normalized relative growth rate. The error in this value

was also calculated, using the estimation for propagation of variance in a ratio between random variables.

The same set of growth-rate controls were added to the transfection pool for each experiment to serve as controls. Four of these

have wild-type growth rates and three have attenuated growth. The aggregate pre-normalization RGR of the wild-type growth con-

trols was calculated on each day for eachmouse by taking the inverse-variance weighted average of their values, and the variance in

this aggregate value was calculated. Every RGR was now normalized by dividing it by the aggregate value of wild-type growing mu-

tants in the sample from which it came. This leaves wild-type growing mutants with a normalized RGR of 1. The errors in both com-

ponents were propagated to this normalized value.

Typically for each experiment there were 12 measurements of RGR – from 3 mice on each of 4 days, these were aggregated

together using the inverse-variance weighted mean function. Variances were scaled by a constant factor of 3 at this point, which

was found to improve thematch between true experimental reproducibility and estimated confidence – likely reflecting the additional

stochastic effects not modeled in the previous analysis. This gave a single value per mutant per experiment, with an associated vari-

ance (and hence a 95% confidence interval).

Wheremultiple valueswere available from separate experiments analyzing the samemutant, themultiple single fitness valueswere

combined using the inverse-variance weighted mean.

Mutants were binned into phenotype categories based on statistical testing. P values were calculated representing the probability

that the true value of the RGR was > 0.1 (not essential) or < 1 (not dispensable) or > 1 (fast). P values were adjusted and phenotypes

were assigned as follows. If the RGRwas not dispensable and not statistically different from essential it was considered Essential. If it

was not essential and not significantly different from dispensable it was considered Dispensable. If it was significantly different both

from dispensable and essential it was considered to give Slow or Fast growth depending on the RGR, and if it was not distinguishable

from either it was considered that there was Insufficient data to call a phenotype.

A number of minor heuristics were added which were found to improve phenotype calling: 1) In combining the RGRs from all days

into a single value, if the most confident result was also the minimum RGR result, its confidence was set to the same as that of the

second-most confident. This avoided effects where one spurious sample could dominate the result with an erroneous value. 2)

When calculating the apparent RGR of normal-growth parasites in order to normalize other results we found that, after conducting
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the analysis once, we could additionally use the RGR of the slow-growth controls by calibrating them to their known values. This

allowed all 7 measurements to be used for calibration. 3) Where mutants which obtained an initial phenotype of Insufficient data

were analyzed a second time, we observed a strong association with Essential phenotypes. We therefore elected to use an endpoint

assay to classify a portion of Insufficient datamutants - those that had an abundance in the population on day 6 less than 0.1%of their

abundance in the input (calibrated to a control gene) were considered to be Essential. 4). In light of an increased apparent ratio of

essential phenotypes for vectors with a geometric mean homology arm length of less than 1.25 kb (Figure S3A), these vectors

were excluded when calculating the overall phenotype ratio for the genome, and essential calls in this category were marked as

low confidence.

Gene conservation analysis
Scores for inter-species conservation between P. falciparum and P. chabaudi, and of dN/dS in P. falciparum populations, were taken

from (MalariaGEN Plasmodium falciparum Community Project, 2016). These were matched to P. berghei genes by orthology and

binned into categories and plotted against P. berghei phenotype.

Reconstruction of gene losses and gains
The evolution of gene sets in the Apicomplexa was analyzed much as in Woo et al. (2015). We downloaded OrthoMCLDB/EuPathDB

OG5 groups for all species shown on Figure 5D and in addition four outgroups (Chromera velia, Vitrella brassicaformis, Tetrahymena

thermophila andChlamydomonas reinhardtii) (Aurrecoechea et al., 2010). The presence or absence of orthologs in each species was

then analyzed using Count (Csurös, 2010) to infer ancestral ortholog presence using Dollo parsimony.

GO term enrichment
Gene ontology terms were downloaded from GeneDB, both for P. berghei and for the better annotated P. falciparum. P. falciparum

annotations were assumed to also apply to any 1:1 orthologous P. berghei genes. The topGORpackage (Alexa et al., 2006) was used

to calculate enrichment with the weight01 algorithm, which takes account of GO tree topology.

Expression analysis
FPKMdata fromOtto et al. (2014) was processed as follows: the average ofmultiplemeasurements from each stagewas taken, these

average absolute values were partitioned per gene into proportions of the total FPKM from each of the five life-stages. K-means clus-

tering was applied to sort genes into 9 clusters. Ameasure of ‘‘sexiness’’ was calculated by dividing the FPKM from the sexual stages

(gametocytes and ookinetes) by the total.

DATA AND SOFTWARE AVAILABILITY

Themajority of analysis was conducted in R. In the interest of reproducibility, we include a file archive (Data S1) containing an R script,

along with the raw barcode counts for each experiment. This script will process and analyze the raw barcode data and generate the

figures presented.
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Supplemental Figures

Figure S1. Genes in the Screen Are Largely Representative of the Genome, Related to Figure 1 and Table S2

(A and B) Genes for which targeting vectors could be generated were similar (A) in size and (B) in A+T nucleotide content.

(C) Targeted genes had expression levels representative of the genome across all life stages (RPKM data from Otto et al., 2014).

(D) Relative representation of GO terms andmultigene families in the genome and and the screen. The screen was largely representative with the exception of the

P. berghei pir family (BIR) which we suspect is underrepresented due to its subtelomeric genomic location and repetitive nature. However, the well represented

FAM family is shown for comparison.



Figure S2. Validation of Dispensable and Essential Phenotypes, Related to Figure 2

(A) For 10 genes whose disruption had previously failed (RMgmDB), quantitative PCRwas used to measure the proportion of parasites that retained the wild-type

locus following transfection of individual deletion vectors. In each case the population was dominated by viable mutant parasites, validating the screen result.

Controls A and B show a reciprocal primer swap for mutants in PBANKA_082850 and PBANKA_120060.

(B) Relative growth rates were determined using KO or C-terminal tagging vectors for the same set of genes. Phenotype calls are color coded. Green = RGR not

significantly different from of 1. Red = RGR not significantly different from 0.1 Blue = Intermediate RGR.



Figure S3. Vector Properties Determine Homologous Integration Rates, Related to Figure 2

Vector-specific integration efficiencies were calculated for the set of 915 dispensable genes by normalizing the relative abundance of a mutant during the

infection to the relative abundance of the vectormeasured from the electroporation cuvette, and by using the four normally growing controls to normalize between

experiments.

(A) Vector integration efficiencies were highly reproducible between independent experiments (log-log R2: 0.76).

(B) Relative abundances of dispensable mutants became normally distributed after applying a square root function, suggesting targeting efficiency might be the

result of two independent variables interacting in a multiplicative fashion.

(C) Modeling the effect on targeting efficiency of homology arm lengths, which in the PlasmoGEM resource varies from 400 bp to 14.8 kb. Initial analyses revealed

the length of each homology arm to be independently linked with integration efficiency. This effect plateaus at around 5 kb due to the confounding fact that the

lengths of the two homology arms are inversely correlated, since they trade off against each other for space on the vector. The graph shows a three dimensional

model fitted to the data, and illustrates increasing targeting efficiency of vectors with arm length up to at least 10 kb. The product of homology arms lengths

explained around 60% of the overall variation in targeting efficiency (log-log R2: 0.42). The remaining non-stochastic variation may be due to DNA structure and

chromatin state, but combining a number of data sources with machine learning approaches failed to model these factors to improve predictive accuracy.

(D) Assessment of calculated phenotypes across a range of geometric-mean homology arm lengths (groups are, as far as possible, of equal sizes). There is an

even phenotype distribution across the space of homology arms, with the possible exception of a technical bias toward essential calls for vectors with a

geometric mean homology arm length less than 1.25 kb. As a result, this set of vectors was discarded when calculating overall genome essentiality.



Figure S4. Analysis of Gene Functions Associated with Phenotypes, Related to Figure 6 and Table S7

(A) GO terms significantly enriched for genes with essential, slow or dispensable phenotype (p < 0.05). See Table S7 for genes in all significant categories.

(B) Phenotypes of genes of unknown function. In both panels violin plots show RGRs, with the median indicated by a black dot. Gene numbers per category are

given next to pie charts showing phenotype distributions. Color scheme as in Figure 2.

(C) Phenotypes mapped onto genes involved in GPI-anchor biosynthesis.
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