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Abstract Major depressive disorder (MDD) is a chronic and
potentially life threatening illness that carries a staggering
global burden. Characterized by depressed mood, MDD is
often difficult to diagnose and treat owing to heterogeneity
of syndrome and complex etiology. Contemporary antidepres-
sant treatments are based on improved monoamine-based for-
mulations from serendipitous discoveries made > 60 years
ago. Novel antidepressant treatments are necessary, as roughly
half of patients using available antidepressants do not see
long-term remission of depressive symptoms. Current devel-
opment of treatment options focuses on generating efficacious
antidepressants, identifying depression-related neural sub-
strates, and better understanding the pathophysiological
mechanisms of depression. Recent insight into the brain’s
mesocorticolimbic circuitry from animal models of depression
underscores the importance of ionic mechanisms in neuronal
homeostasis and dysregulation, and substantial evidence high-
lights a potential role for ion channels in mediating
depression-related excitability changes. In particular,
hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels are essential regulators of neuronal excitability. In
this review, we describe seminal research on HCN channels
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in the prefrontal cortex and hippocampus in stress and
depression-related behaviors, and highlight substantial evi-
dence within the ventral tegmental area supporting the devel-
opment of novel therapeutics targeting HCN channels in
MDD. We argue that methods targeting the activity of
reward-related brain areas have significant potential as supe-
rior treatments for depression.

Keywords Depression - antidepressants - HCN channels - I,
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Introduction

Depression is a highly debilitating mental disorder with a
heavy societal burden. The lifetime prevalence of major de-
pressive disorder (MDD) is > 16% and the recurrence of de-
pression episodes within 2 to 5 years is>40% [1-3].
According to the Diagnostic and Statistical Manual, 5th
Edition, MDD diagnosis is justified when a patient displays
atleast 5 of 9 possible criteria: chronic symptoms of depressed
or irritable mood, anhedonia, weight change, sleep disrup-
tions, psychomotor dysfunction, fatigue, feelings of worth-
lessness or guilt, diminished ability to concentrate, and recur-
rent suicidal ideation [4]. Core symptoms of depression in-
clude depressed mood and anhedonia. Heterogeneity of symp-
toms in patients meeting criteria for clinical depression has
resulted in multiple studies of differential treatments for pa-
tients with varying MDD symptoms and severity, spanning
efficacy of antidepressant combinations with or without ad-
junctive psychotherapy [5].

To date, pharmacological treatments for depression encom-
pass first-generation antidepressants, including tricyclic anti-
depressants and monoamine oxidase inhibitors, and second-
generation advances comprising selective serotonin reuptake
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inhibitors, serotonin-norepinephrine reuptake inhibitors, atyp-
ical antidepressants, and serotonin modulators. While first-
generation antidepressants have mostly fallen out of favor
owing to their adverse side effects, second-generation antide-
pressants are believed to have the same general efficacy [6].
These antidepressant medications all act to increase some or
all of the monoamine neurotransmitters [7]. Currently, selec-
tive serotonin reuptake inhibitors such as fluoxetine are the
most widely prescribed class of antidepressants [8]. A limita-
tion of these antidepressant treatments is the delay of several
weeks between treatment initiation and improvement of de-
pressive symptoms [8]. Another major issue in current depres-
sion treatment is improving therapeutic options for resistant or
refractory depression, a chronic condition resulting from a
lack of satisfactory response to antidepressant therapies [9].
Approximately 20% to 30% of patients are resistant to treat-
ment [2]. This patient population, in particular, highlights the
pressing need for better therapeutics to combat the recurrent
suffering and rising global burden of the disease.

Complexities in understanding both the pathophysiology
of MDD and mechanisms of antidepressant efficacy have
slowed the pipeline of new therapeutics, despite many impor-
tant discoveries. Historically, the catecholamine hypothesis of
depression served as the basis for development of antidepres-
sant treatments. This hypothesis posits that decreased levels of
the catecholamines serotonin, norepinephrine, and dopamine
(DA) contribute to the pathophysiology of depression [10].
While antidepressants reverse this monoamine deficit within
hours, their delayed behavioral action suggests downstream
changes, including signaling cascades, gene changes (epige-
netic, transcriptional, and translational plasticity),
neurogenesis, synaptic remodeling, and altered neurotrans-
mission [11-18]. Chronic neurotransmitter administration ap-
pears to induce plasticity mechanisms, ultimately leading to
antidepressant action. Recent clinical studies have identified
rapidly acting, glutamate/acetylcholine-targeting antidepres-
sant compounds (ketamine, scopolamine), which alleviate
symptoms of treatment-resistant depression and lower the risk
of suicidal ideation in patients with MDD. These novel gluta-
matergic approaches have expanded our understanding of ef-
fective treatment strategies and raised the possibility of more
direct pharmacological targets [11, 19-27].

In addition to elucidating mechanisms of antidepressant
action, it is also important to investigate the neurobiology of
depression and depression symptoms. While the complete eti-
ology of depression is unknown, genetic and environmental
stress factors have been shown to contribute to MDD onset.
Notably, prolonged stress is thought to catalyze the onset and/
or recurrence of depression [28]. Research into the neurobiol-
ogy of stress has helped inform better animal models of de-
pression for testing antidepressant efficacy and probing brain
structures involved in MDD. Preclinical models of depression,
particularly in mice, have vastly improved the ability to study

mechanisms of antidepressant action, as well as identify po-
tential targets for antidepressant treatment. Historically, anti-
depressants were tested for efficacy using the measure of acute
antidepressant response to behavioral despair, or an animal’s
active or passive response to a stressor, via the forced swim
test or tail suspension test [29—32]. However, most recent
preclinical studies assay additional measures of depressive-
like behaviors, including anhedonia, social interaction, anxi-
ety, memory dysfunction, and homeostatic symptoms in ro-
dent models of depression. Furthermore, genetically derived
lines of “depressed” animals have been selectively bred to
model and test particular depressive behavioral phenotypes
[33, 34]. Current animal models of stress-induced depression
have employed chronic social stress or chronic unpredictable
mild stressors to produce a constellation of depression symp-
toms [35]. These paradigms for the generation of depressive-
like behaviors in animals are designed to ethologically reca-
pitulate the environmental stressors that can exacerbate a vul-
nerability to depression in humans.

Chronic unpredictable/variable mild stress utilizes the in-
flexibility of animals to respond to a randomized variety of
mild stressors, including tail suspension, restraint, and foot
shock over weeks to months. Both female and male animals
that have undergone chronic mild stress will exhibit profound
anhedonia, fear, and anxiety behaviors that can be reversed by
chronic but not acute antidepressant administration, suggest-
ing an appropriate model for analyzing antidepressant plastic-
ity mechanisms [36-38]. Chronic social defeat stress (CSDS)
also requires repeated antidepressant administration for be-
havioral rescue. The ethological modeling of depression in
CSDS results from a robust chronic social stressor that utilizes
both the physical and psychological stress of social subordi-
nation [39]. Using retired CD-1 breeder mice that are screened
for aggressive territorial behavior, smaller genetically identi-
cal C57BL/6 mice are introduced to the home cage of the CD-
1 for a short physical interaction. Following social subordina-
tion, the C57BL/6 mice are further socially stressed with over-
night psychosensory exposure, as they are separated from the
CD-1 by a clear, perforated barrier for the remaining 24 h.
This procedure is repeated for 10 days with a different CD-1
every day, producing profound and lasting anhedonia and so-
cial avoidance, in addition to abnormalities in circadian
rhythm, metabolism, and hypothalamic—pituitary—adrenal ax-
is response [39, 40]. Interestingly, a subset of mice that under-
go this stress resemble control animals in their reward process-
ing, allowing researchers to parse animals that are
“susceptible” from animals that are “resilient” to social defeat
stress to investigate the mechanisms of susceptibility and re-
silience to depression [40-50].

In addition to preclinical studies in animal models of de-
pression, clinical investigations probing target brain regions of
antidepressant action, brain activity in depressed patients, and
the efficacy of deep brain stimulation have highlighted
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mesocorticolimbic circuitry as the general neural substrate for
depression-related behaviors and antidepressant efficacy [11,
40-43, 46, 47, 51-60]. This neural circuit encodes reward-
related behaviors and encompasses projections between brain
areas including the prefrontal cortex (PFC), hippocampus,
ventral tegmental area (VTA), amygdala, and nucleus accum-
bens (NAc). Mesocorticolimbic circuit dysfunction has been
implicated in a range of psychiatric disorders, including
MDD. Indeed, depressed patients exhibit increased activity
in limbic regions and decreased connectivity between
corticolimbic regions [61, 62]. Imbalances in activity of these
brain areas may result from both extrinsic factors (changes in
signaling between brain areas) and intrinsic factors (changes
in neuronal excitability). Thus, dysfunctional brain activity
and depression pathology may be due to changes in excitabil-
ity to maintain homeostasis [63]. Hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels are key regulators of
neuronal excitability [64-66]. As we will describe in this re-
view, HCN channels have been implicated in a number of
stress and depression-related behaviors, and our evolving un-
derstanding of the role of HCN channels in multiple brain
areas suggests that these channels are promising targets for
future therapeutics.

HCN Channels

Neuronal signaling within a region and at a circuit level is af-
fected by properties of neuronal excitability and ion-channel
distribution. Ion-channel dysfunction can lead to unbalanced
excitability and subsequent neuronal dysfunction. HCN chan-
nels are present throughout the brain, and modulate neuronal
excitability and activity [64]. HCN channels are known to reg-
ulate cell activity via the hyperpolarization-activated current, I,
(also known as h current), consisting of sodium and potassium
cations [65]. HCN channels are activated by hyperpolarized
states greater than —40 mV, increase their activation as the cell
becomes more hyperpolarized, and do not display inactivation
[66]. Since HCN channels are open at hyperpolarized states
greater than —40 mV, I, currents are often present during the
resting state [67]. This allows HCN channels to modulate neu-
ronal excitability by stabilizing the neuronal membrane poten-
tial against both excitatory and inhibitory inputs. HCN channels
consist of 4 subtypes, HCN 1-4, that can assemble in various
combinations and conformations. HCN channels can be mod-
ulated by cyclic nucleotide cyclic adenosine 3°,5°-
monophosphate (cCAMP) or protein kinase-mediated phosphor-
ylation of the channel subunits [68].

HCN channels are expressed in the brain, heart, and retina
[69, 70]. HCN1 appears to be the most common isoform pres-
ent in the hippocampus, neocortex, and cerebellar cortex.
HCN2 expression is predominant in the midbrain and thala-
mus, while HCN4 is the predominant isoform in the heart,
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thalamic nuclei, basal ganglia, and olfactory bulb [64, 71]. I,
currents in the central nervous system serve to mediate mem-
brane properties of particular cells, including resting mem-
brane potential, firing frequency, synaptic transmission, and
synaptic input integration [72—79]. This allows HCN channels
to influence the rhythmicity of neuronal networks, and to con-
trol the integration of cell signaling and firing activity. HCN
channels play other important roles; besides setting pacemaker
firing for the heart rhythm, HCN channels help regulate oscil-
latory networks, including sleep and arousal [80]. Importantly,
I;, and HCN channels influence neural activity and excitability
by affecting synaptic integration and plasticity [67, 81-86].
This has a profound impact on learning, memory, and
encoding of behaviors.

HCN Channels and Depression

Genetic studies of HCN channels in depressed patients have
not yet conclusively identified a strong association between
single-nucleotide polymorphisms in HCN channel genes with
depression and stress sensitivity [87, 88]. However, the gen-
eration of transgenic HCN channel null animals has allowed
researchers to probe the behavioral outcomes of dysregulated
neuronal activity from HCN signaling ablation. Since HCN
channel variations are present throughout the peripheral ner-
vous system [89], including in cardiomyocytes [90], re-
searchers have developed animal models with a selective
knockout of HCN1, HCN2, or tetratricopeptide repeat-
containing Rab8b interacting protein (TRIP8b) for exclusive
expression in the brain. TRIP8b is a brain-specific protein
encoded by the Pex51 gene that is involved in HCN traffick-
ing and appearance at dendrites [91-94]. When TRIP8b ex-
pression is eliminated, Ij, currents are attenuated. Since HCN
channels are important for vital functions outside of the brain,
targeting the TRIP8b is another method to test HCN function
exclusively in the brain.

The involvement of HCN channels in depression behaviors
was first investigated using these 3 knockout lines. While
anxiety-like behaviors, as tested by the elevated plus maze
and dark/light boxes, were not ameliorated in global HCN
knockout lines, mice with reduced I;, as a consequence of null
HCNI1, HCN2, and TRIP8D all displayed reduced behavioral
despair [94]. In all 3 HCN channel knockout lines, I;, dysfunc-
tion was shown to be involved in depression behaviors as
demonstrated by behavioral reductions in time spent immobile
and latency to immobility in forced swim and tail suspension
tests [94]. These findings highlight the importance of parsing
the roles of HCN channel subtypes in reward circuitry, in
order to determine the contribution of I, to discrete brain re-
gions and control of particular affective behaviors.
Importantly, HCN channels are expressed in brain areas in-
volved in reward, including the PFC, hippocampus, and VTA
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[69, 70]. While a number of depression studies have delineat-
ed the potential mechanism of HCN channel action in the
hippocampus and PFC, recent work in the VTA has also clar-
ified an important role for HCN channels in depression

(Fig. 1).

HCN Channels in the Hippocampus

Chronic stress has been shown to weaken hippocampal con-
nections [95]. Beyond the preclinical wealth of research im-
plicating the hippocampus in depression behaviors [96], pos-
itron emission tomography imaging studies have shown that
chronic antidepressants induce changes in the hippocampus,
as observed by regional glucose metabolism [52, 97-99], and
patients with severe depression show reduced posterior hip-
pocampal volume [100]. Consequently, the role of HCN chan-
nels in mediating depression behaviors within the hippocam-
pus is of particular interest.

HCN channels have been heavily studied in the CA 1 region
of the hippocampus, and decreases in excitability in the hippo-
campus are correlated with increases in I, current [101]. I, cur-
rents appear to modulate neuronal excitability, independent of
synaptic plasticity changes mediated by N-methyl-D-aspartate
(NMDA) receptor-dependent changes in excitability [101].
HCN channels are highly expressed along the distal dendrites
of pyramidal neurons in the CA1 region where they serve to
modulate network excitability for integrating incoming signals,
normalizing temporal summation, and mediating the propaga-
tion of information by dampening Ca** signaling [102—104]. In
particular, HCN channel density increases directly with dis-
tance from the soma to the distal apical dendrites in the hippo-
campal CA1 region [78]. Moreover, HCN channels are integral
for mediating the theta rhythmic properties of the hippocampus,
through involvement of the intrinsic resonance properties
[105—-107]. Thus, the ability of HCN channels to regulate intrin-
sic cellular excitability may represent a global homeostatic reg-
ulation of activity that prevents hyperexcitability by a negative-
feedback mechanism [101].

To investigate the potential antidepressant role of HCN
channels exclusively in the hippocampus, Kim et al. [108]
utilized lentiviral short hairpin RNA (shRNA) to target the
expression of HCN1 channels in the dorsal CAl region of
rats. Following knockdown of HCN1 channel proteins within
this region, pyramidal neurons exhibited expected alterations
in intrinsic membrane properties, including more
hyperpolarized resting membrane potentials, higher input re-
sistance, and slower membrane time constant. Pyramidal neu-
rons also exhibited increased cellular excitability, which ex-
tended to a widespread increase of hippocampal activity.
HCNI1 channel knockdown produced anxiolytic effects in
the open-field test and the elevated plus maze; animals spent
significantly more time in both the center of the open-field box

and the open arm of the elevated plus maze. HCN1 knock-
down was also antidepressant: compared with control ani-
mals, HCN1 shRNA-injected rats displayed less passive ac-
tivity in the forced swim test, behaving similarly to rats
injected with fluoxetine or ketamine [108].

TRIP8b knockout mice show the same antidepressant-like
reduction in time spent immobile in the forced swim test and
tail suspension test. Behavioral modifications stemming from
hippocampal HCN channel activity reduction can be bidirec-
tionally modulated through manipulation of the brain-specific
auxillary subunit TRIP8b [109]. Restoration of TRIP8b
through injection of TRIP8b-overexpressing adenoassociated
viral vectors into the CA1 region of TRIP8b knockout mice
rescues I}, current in CAl pyramidal neurons. This hippocam-
pal I, current recovery prevents rescue of the behavioral de-
spair observed in all global HCN knockout lines (HCNI,
HCN?2, TRIPS8b), underscoring the importance of the hippo-
campus in mediating depression behaviors. In both the forced
swim and tail suspension tests, Han et al. [109] found that the
reduction in time spent immobile of TRIP8b knockout mice
was absent in TRIP8b knockout mice expressing TRIP8b-
adenoassociated viral vector in the CA1 region of the hippo-
campus. Thus, by rescuing HCN channel expression in CAl,
the antidepressant effects of HCN knockdown were ablated.
These results highlight the importance of investigating region-
specific actions of depression; global and hippocampal-
specific knockdown of HCN channels produce antidepressant
behaviors, but anxiolytic effects are observed only with
hippocampal-specific ablation of I}, channels.

HCN Channels in the PFC

HCN channels also influence excitability in the PFC [110].
PFC HCN channels have important implications for stress-
induced psychiatric disorders, as evidenced by the role I}, cur-
rents play in strengthening PFC recurrent connections and the
consequences of HCN channel dysfunction in PFC. Chronic
stress is extensively damaging to the cognitive center of the
brain, affecting working memory, regulation of information
processing, and error computation [111, 112]. Working mem-
ory is critically regulated by the catecholamines norepineph-
rine and DA, which activate 2A adrenoceptors, DA DI re-
ceptors (D1Rs), and cAMP signaling in PFC. Chronic stress
induces both high levels of norepinephrine-x2A activity and a
disrupted balance of DA-DI1R activity that together disturb
recurrent PFC network activity and induce cognitive dysfunc-
tion in working memory [113-118].

The intrinsic mechanisms underlying working memory im-
pairment involve excessive cAMP production, which targets
HCN channels [68, 113]. I;, currents vulnerable to cAMP
modulation are heteromers of HCN1 and HCN2 subunits
[69, 119, 120] and are most highly expressed in cortical layers
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Fig. 1 Role of hyperpolarization-activated cyclic nucleotide-gated
(HCN)1 in depression behaviors. (A) Global HCN knockout (KO) in
the brain produces reduced behavioral despair in forced swim test and
tail suspension test for all transgenic lines (HCNI’/’, HCN27, and
TRIP8b )[94]. (B) Selective dorsal hippocampal (HPC) reduction of
HCNI1 by short hairpin RNA (shRNA) HCNI1 exhibited reduced
behavioral despair in forced swim test, and, interestingly, anxiolytic
effects in the open-field test and elevated plus maze test [108]. (C)
Selective blockade of HCN channels in the prefrontal cortex (PFC) by

with a high concentration of «2A adrenoceptors [69, 113,
121-123]. Within the PFC, HCN channels are also co-
localized with D1Rs on dendritic spines [115]. Increased
cAMP is associated with increased conductance of I}, current
and increased opening of HCN channels [113]. HCN channels
are found on the distal apical dendrites of layer V and on the
dendritic spines of deep layer III pyramidal cells in PFC [113,
114]. Since HCN channels are largely localized to dendrites, I},
currents serve to regulate synaptic inputs. Specifically, the
dendritic I;, may serve as an electrotonic shunt to limit the
spread of excitatory action potentials.

HCN channel activity disruption results in increased recur-
rent network interactions, as measured by both intracellular
and extracellular multiple unit recordings in layer V pyramidal
cell slices [113]. The effects of I}, current reduction can be
tested with ZD7288, an HCN blocker. Blockade of HCN
channels by ZD7288 also increases functionally connected
firing activity. This suggests that HCN channels play a role
in PFC network firing properties. Furthermore, HCN channel
blockade by ZD7288 produces working memory improve-
ments. Prior to high DA D1R stimulation, the working mem-
ory dysfunction induced by the DIR agonist SKF38393 can
be prevented with ZD7288, likely through a cAMP—protein
kinase A phosphorylation mechanism [115, 124].
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ZD7288 or knockdown by shRNA HCNI1.1 or shRNA HCN1.2 show
improvements in working memory [113]. (D) Microinfusion of HCN
blockers ZD7288 or DK-AH 269 into the ventral tegmental area (VTA)
of susceptible/depressed mice reversed social avoidance behaviors [41].
Unexpectedly, chronic HCN channel potentiation by repeated lamotrigine
administration or overexpression of HCN2 in dopamine neurons by
herpes simplex virus—LSIL-HCN2 in susceptible animals induced
resilience to depression behaviors [43]

Working memory perturbations can be investigated in an-
imals using shRNA to knock down HCN1 channels or with
ZD7288 to block HCN channels. Rats that received HCN1
channel knockdown or blockade demonstrated improved spa-
tial working memory, as tested through T-maze memory per-
formance [113]. Thus, increasing cAMP signaling suppresses
prefrontal firing via opened HCN channels on dendrites of
pyramidal neurons, either through «2A adrenoceptors or
DIRs. This suggests that HCN channels are well positioned
to regulate PFC network dynamics by gating neuronal firing
from cortico—cortico connections to influence the strength of
the prefrontal microcircuit and output efficacy.

When chronic stress and consequent HCN channel dys-
function desynchronize cortical networks, the “top-down”
control of other brain areas is disinhibited. This may affect
prefrontal control over behavior, emotion, and cognition.
While chronic cAMP is necessary for the synaptic plasticity
observed in long term potentiation of hippocampal cells,
cAMP typically plays a transient role in working memory
signaling; high levels of cAMP from dysregulated o2A
adrenoceptor or D1R-mediated signaling after chronic stress
can lead to lowered PFC strength from open HCN channels
[113, 115, 118]. This results in disrupted PFC network con-
nectivity, weakened network connections, and reduced control
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of other brain areas, including the amygdala and striatum [111,
112]. During stress, reduced and unpatterned PFC networks
will project an incorrect representation of working memory
and may incidentally disinhibit affective and stress pathways
in the brain.

HCN Channels in the VTA

Chronic stress may strengthen the activity of limbic circuitry,
including that of the amygdala and striatum [125-127]. This
positive feedback loop may be reinforced by disinhibition of
the PFC on limbic pathways. Stress increases VTA DA activ-
ity and release in target regions [126, 128, 129]. HCN chan-
nels reduce the excitability of the PFC and hippocampus.
Within the VTA, I, currents may also serve to modulate neu-
ronal excitability. HCN channels appear on the dendrites of
VTA DA neurons [130], and regulate the amplitude and du-
ration of the afterhyperpolarization observed after an action
potential [75, 76, 131, 132]. While HCN1 is the main channel
subunit within the PFC and hippocampus, HCN 2—4 channels
are most expressed in midbrain DA neurons [133]. While
HCN2 appears to be the most abundantly expressed channel
subunit, all HCN subunits are expressed within the VTA [64,
69]. We have observed an increase in activity of the VTA and
reward neurocircuitry following chronic stress; in particular,
HCN channels appear to play a role in reward dysfunction and
depression in VTA DA neurons.

Midbrain VTA DA neurons exhibit 2 types of firing activ-
ity: single-spike “tonic” firing or “phasic” short multispike
burst firing, which are believed to maintain basal levels of
DA in the extracellular space and signal reward or aversion
through a transient increase of DA, respectively [134—138].
Pathologically, DA neuron-firing activity in response to acute
and chronic stress can be incredibly complicated [42, 118,
139]. DA neurons are identified in vivo by a slow firing rate
of 2 to 10 Hz, duration of unfiltered biphasic action potential
waveform > 2.2 ms, and sensitivity to DA or DA receptor
agonists [140]. Classically, in vitro VTA or substantia nigra
DA neurons have been identified by a large I, current [76,
141], but more recent research has conclusively shown that
this criterion is insufficient [131, 142]. These researchers and
others have highlighted the heterogeneity of VTA DA neuron
characterization [143]. VTA DA neurons are functionally het-
erogeneous, and HCN channel expression within the VTA
subpopulations of VTA DA projection neurons is variable.
VTA DA neurons that project to the NAc exhibit a large,
pronounced I, current, while VTA DA neurons that project
to the PFC have a small I}, current [43, 76, 131, 144]. The
previously standard identification of DA neurons by the I,
current underlies its importance in the physiological firing
activity of most VTA DA neurons and possible involvement
in pathological perturbations.

In the CSDS model of depression, we have observed a
similar phenomenon of VTA I, current induction and VTA
DA neuron hyperactivity that mediates behavioral susceptibil-
ity to CSDS [40]. Since I, currents are implicated in the ex-
citatory drive of VTA DA neurons, we investigated the I,
current as a pathological mechanism underlying VTA DA
hyperactivity [40—43, 76, 132]. We found that CSDS in-
creased the I;, current in susceptible animals, and that HCN
channels play a role in the pathophysiological increase in fir-
ing rate characteristic of susceptibility [43]. VTA
microinfusion of I, inhibitors ZD7288 or DK-AH 269 rescued
social avoidance in susceptible animals [41]. Moreover, fol-
lowing chronic administration of the antidepressant fluoxe-
tine, susceptible animals exhibited a rescue of social avoid-
ance behavior, as well as a return of I, current to baseline
levels [41]. These findings suggest that I}, current inhibition
is a potential target for antidepressant treatment and expand
upon prior findings in the PFC and hippocampus.

Unexpectedly, further investigation of the resilient subpop-
ulation of defeated animals revealed a more complex mecha-
nism of I, current mediation of depression-like behaviors
(Fig. 2). We found that resilience involves a dynamic induc-
tion of homeostatic plasticity that maintains adaptive behav-
ioral responses to stress. Resilient animals exhibited VTA DA
firing activity that resembled that of control animals, despite
undergoing strenuous social stress [40—43]. We therefore ex-
pected the I, current in resilient animals to be similar to that of
control animals. Instead, recordings of the VTA DA I, current
of resilient animals revealed an I}, current larger than that of
susceptible mice [43]. Further investigations into the excitabil-
ity of VTA DA neurons following CSDS revealed intrinsic
changes in both susceptible and resilient mice; the decreased
excitability of resilient animals compared with control mice
corresponded with the increased potassium current observed
in the VTA DA of resilient mice [43, 46]. These findings
suggest that social defeat stress induces an increased I, current
in resilient animals that may trigger an active, “self-tuning”
mechanism that restores firing rate to control animal levels.

In order to probe the functional role of VTA DA I, currents
in susceptible and resilient behaviors, Friedman et al. [43, 82,
145, 146] utilized multiple techniques, including pharmaco-
logical, viral, and optogenetic manipulations. Lamotrigine
(LTG) is a Food and Drugs Administration (FDA)-approved
I;, current potentiator that is used as anticonvulsant and a mood
stabilizer for bipolar disorder. Chronic microinfusion of LTG
into the VTA of susceptible animals produced a reversal of
social avoidance behavior, as measured by time spent in the
interaction zone with a novel social target, and anhedonia, as
measured by sucrose preference [43]. LTG infusion also in-
creased I, and potassium currents in test mice compared with
vehicle-treated animals. However, as LTG has multiple known
ion-channel targets, including sodium channels, we virally
infected VTA DA neurons to overexpress HCN2 channels.
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Fig. 2 I, current bidirectional modulation in the ventral tegmental area
(VTA) of susceptible animals. (A, C) Microinfusion of hyperpolarization-
activated cyclic nucleotide-gated (HCN) blockers ZD7288 or DK-AH269
into the VTA of susceptible animals rescues the social avoidance
depression phenotype [41]. (B, D) HCN channel potentiation of
susceptible animals by 5-day microinfusion of lamotrigine (LTG)

HCN2 overexpression in VTA DA neurons of susceptible
mice rescued social avoidance behaviors, sucrose preference
deficits, behavioral despair in the forced swim test, and the
corresponding increase in I;, and potassium currents [43].

Although the alterations in I;, and potassium currents rescued
susceptible behaviors, we performed additional experiments to
further investigate the physiological resilient phenotype. To
probe the hyperactivity of VTA DA neurons resulting from
social defeat stress, we induced excessive activation of VTA
DA neurons using optogenetics, light-activated channels that
can temporally control the firing activity of neurons [147, 148].
We infected VTA DA neurons with light-activated
channelrhodopsin-2 and repeatedly increased the firing rate of
VTA DA neurons in susceptible animals. Chronic, excessive
hyperactivity of VTA DA neurons rescued social avoidance
behavior, sucrose preference, behavioral despair in the forced
swim test, and induced control firing activity and excitability
with increased potassium currents [43]. Previous investigations
into the functional and behavioral heterogeneity of VTA DA
neurons attributed this pathological hyperactivity to VTA DA
neurons projecting to the NAc (VTA-NAc pathway) but not
those projecting to the mPFC in susceptible animals, suggesting
that the VTA-NAc pathway mediates hyperactivity to encode
susceptible behaviors [42]. This finding further supported the
involvement of I, currents in VTA-NAc DA-mediated suscep-
tibility, as the VTA-mPFC has a smaller I,. Further confirming
the preferential role of VTA-NAc I, currents, excessive
optogenetic stimulation of the VTA—mPFC and VTA-NAc
DA pathways produced induction of I;, and potassium currents
specifically in the VTA-NAc DA pathway [43]. These results
support the involvement of HCN channels in depression behav-
iors, and provide multiple therapeutic strategies for the reversal
of depression or induction of resilience.
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induces homeostatic plasticity mechanisms in the VTA for resilience-
like behavior and unsusceptible defeat stress phenotype. (E, F) Five-day
LTG microinfusion produces larger I, currents, which induces
compensatory potassium currents to rescue social interaction behavior
[43]

Collectively, these results support published literature find-
ing that I, currents are involved in reward and learning, and
demonstrate that HCN channel pathology may mediate de-
pression behaviors. Interestingly, HCN channels have been
studied in the context of the rewarding aspects of ethanol.
The increase in firing rate of VTA DA neurons from ethanol
is blocked with the I, inhibitor ZD7288, and chronic ethanol
administration decreases the density of HCN channels in VTA
DA neurons [75]. Stress may regulate Ij, through a noradren-
ergic mechanism, as demonstrated by the decrease in I, cur-
rent amplitude when &2-adrenoreceptors are activated within
the VTA [149]. The effects of this noradrenergic mechanism
may be similar to those observed in PFC following cAMP
inhibition [113]. Furthermore, increased VTA DA neuronal
firing following corticotropin-releasing factor application is
blocked by I;, current inhibition [132]. Since stress promotes
the release of corticotropin-releasing factor, activating the glu-
cocorticoid stress hormone pathway in the hypothalamic—pi-
tuitary—adrenal axis, and subsequently the mesolimbic DA
system [150, 151], the relationship between depression and
HCN channels in the VTA requires additional investigation.

Failure of HCN and KCNQ Homeostatic Plasticity
in Depression

In order to maintain excitability at a basal level, neurons may
undergo intrinsic changes to adjust or return cell activity to a target
range for nonpathological firing, a concept introduced as neuronal
plasticity or homeostatic plasticity [ 152, 153]. In the social-defeat
model, resilient mice have a large I}, current and increased potas-
sium currents in both peak and sustained components, suggesting
the involvement of multiple potassium channels in regulating the
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excitability of VTA DA neurons for the resilience phenotype [43].
The induction of a large I, current in susceptible mice by LTG
appears to indirectly produce increased potassium currents in
VTA DA neurons that bring neuronal firing back to control levels,
suggesting a homeostatic plasticity mechanism and providing
another therapeutic target to promote resilience or reverse suscep-
tibility to depression [43, 154]. Previously published microarray
data found an upregulation of KCNQ3 (kv7.3) channels in resil-
ient animals, providing a more specific potassium channel target
for antidepressant treatment [40, 46]. KCNQ3 channels are slow
voltage-gated potassium channels, and all KCNQ channels are
inhibitory potassium currents that are important for maintaining
neuronal resting membrane potential, neuronal excitability, and
action potential activity in concert with HCN channels [ 155—-159].
KCNQ channels mediate “M” currents, since they can be closed
by muscarinic receptor stimulation [160]. From a therapeutic po-
tential, KCNQ channels have been studied in anxiety and bipolar
disorders as a secondary consequence of HCN channel neuronal
excitability changes [161-164].

Thus, we sought to elucidate the role of KCNQ3 in suscep-
tibility and resilience to social-defeat stress. Overexpression
of KCNQ3 channels in VTA, intra-VTA infusion of pharma-
cological KCNQ potassium openers flupirtine, retigabine, or
BMS-204352, or intraperitoneal injection of retigabine nor-
malized VTA neuronal activity and rescued social avoidance,
anhedonia in the sucrose preference test, and behavioral de-
spair in the forced swim test [46]. Notably, targeting KCNQ
channels with retigabine (ezogabine) [165], an FDA-approved
potassium channel opener for treatment of epilepsy, has anti-
depressant efficacy in depressed patients [166]. Based on
these observations, multiple avenues can be exploited to target
homeostatic plasticity within the VTA and induce antidepres-
sant therapeutic effects: normalizing the pathological increase
of I, currents or promoting KCNQ channel function.

This interaction of KCNQ channel and HCN channel activity
has also been observed in the PFC and may influence stress-
induced impairments in working memory [110, 115, 156].
cAMP activity increases I}, currents in PFC and cAMP-PKA
signaling increases the probability of KCNQ channel current
[120, 155]. HCN and KCNQ channels may work in concert to
reduce firing and stress-induced dysfunctional DA signaling
within the PFC, particularly through D1Rs [115]. Since HCN
and KCNQ channels also mediate the excitability of CA 1 hippo-
campal pyramidal cells, KCNQ mechanisms may be involved in
the processing of stress within the hippocampus [167].
Altogether, these results suggest another ion channel therapeutic
target for antidepressant treatment.

HCN Channels: Ketamine Targets

As classical antidepressants require several weeks to produce
therapeutic benefit, a major priority of the field is the

identification of antidepressants that work rapidly [168].
Ketamine, an anesthetic that is a noncompetitive ionotropic
glutamatergic NMDA receptor antagonist, produces long-
lasting and rapid antidepressant responses in some patients
with treatment-resistant MDD when administered at even a
single subanesthetic dose (0.5-10 mg/kg) [25]. While the bulk
of current research aims to define the glutamatergic locus of
antidepressant action, interestingly the synaptic and behavior-
al effects of ketamine also involve HCN channels [169, 170].
In particular, ketamine interacts with HCN1 homodimers and
heterodimers (HCN1-HCN2 configurations) exclusively to
inhibit I, currents [170].

In animals, the antidepressant effects of global HCN abla-
tion appear to be linked to the effects of low-dose ketamine
[169]. Ketamine induces membrane hyperpolarization, in-
hibits I, currents, and reduces resonant properties of cortical
pyramidal neurons in wild-type mice as measured ex vivo.
HCNI ablation also produces aberrant cortical synchrony
and rhythmicity [170]. These effects are not observed in
HCNI1 knockout mice ex vivo, suggesting ketamine targets
and inhibits HCN1 channels. When animals lacking HCN
channels are administered ketamine, the behavioral actions
of ketamine appear to be occluded; anhedonic measures of
behavior, such as sucrose preference, can no longer be rescued
by ketamine [169, 170]. Ketamine was also ineffective in
rescuing depression-like behaviors in HCN knockout mice
tested for novelty suppressed feeding, a measure of stress-
induced anxiety and chronic antidepressant responsiveness.
Interestingly, ketamine also increased behavioral despair in
the forced swim test in these animals. As mentioned earlier,
HCN knockout normally produces a reduction in time spent
immobile in the forced swim test in mice. Ketamine is thought
to promote an NMDA-mediated increase of surface abun-
dance of HCNI1 channels and an increase in HCN channel
activity via NMDA receptor activation-induced calcium in-
flux [91, 101]. This provides credence that I, is involved in
mediating an excitation—inhibition balance that likely modu-
lates depression-related behaviors.

Antidepressant actions of ketamine involving hippocampal
HCN channels have also been identified. Electrophysiological
investigations of the role of ketamine in the expression of HCN
channels have revealed amainly presynaptic mechanism of HCN
in ketamine’s actions [169]. To distinguish between presynaptic
and postsynaptic HCN action, HCN channel blockers (ZD7288,
zatebradine) that block postsynaptic HCN channels and isolate
presynaptic excitatory transmission are applied to the CA1 hip-
pocampal preparation. In this configuration, stimulation of
Schaffer collateral pathways and measurement of field excitatory
postsynaptic potentials indicates that ketamine still enhances pre-
synaptic excitatory transmission. HCN channels appear to be
critical to ketamine’s actions in the hippocampus antidepressant
action of ketamine and hippocampal synaptic markers are elim-
inated by inhibition or deletion of the HCN1 channel.
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Considering the findings of I;, current pathology in
mesolimbic DA circuitry following social defeat stress, as
well as the observed antidepressant effect of HCN knockout
models, we can hypothesize that ketamine may act to block
HCN channels and rescue the behavioral deficits linked to
increased I, current in susceptible animals. Thus, ketamine
may recapitulate the antidepressant effects of attenuating I,
current globally in the brain, the hippocampus, the PFC, or
the VTA. Use of the antidepressants fluoxetine or imipramine
also reverses the susceptible phenotype, but only following
chronic administration [39, 57, 171—173]. Chronic antidepres-
sant treatment with fluoxetine reverses the observed patholog-
ical increases in I;, currents within the VTA of susceptible
mice, mirroring the behavioral rescue of susceptible animals
with I, current blockers ZD7288 or DK-AH269 [41].
Conventional antidepressants may work to indirectly influ-
ence HCN channel activity through signaling cascades involv-
ing cAMP or cAMP-dependent kinase mediated phosphory-
lation of the HCN channel subunits [68, 119]. Another target
for therapeutic action could be the signaling protein brain-
derived neurotrophic factor (BDNF), as both antidepressants
and ketamine activate BDNF signaling via cAMP response
element-binding protein transcriptional regulation throughout
mesocorticolimbic brain areas (including hippocampus and
NAc) [12, 23, 39, 40, 174—180]. Notably, when HCN1 chan-
nel function is ablated with HCN1 shRNA, producing antide-
pressant and anxiolytic behaviors, BDNF is also increased
[108]. These BDNF effects may work in concert with gluta-
mate signaling activation, another process implicated in HCN
function [91, 101, 181]. While low-dose ketamine has yielded
promising clinical results, a number of issues require further
examination. Beyond the risks for neurotoxicity, addiction and
abuse, ketamine produces dissociative and psychotomimetic
side effects and its antidepressant efficacy appears to be un-
sustainable with serial infusions [182, 183]. Thus, targeting
HCN channels may be a promising alternative therapy to
ketamine.

Therapeutic Potential of HCN Channels

Neuropsychiatric diseases, particularly depression, are charac-
terized by a change in the intrinsic membrane excitability of
neurons, a phenomenon that affects the responsiveness of neu-
ronal populations in various brain areas to stimuli. HCN chan-
nels exert an important role in neuronal excitability, mediating
rhythmic activity, resting membrane potential, neurotransmis-
sion, and synaptic plasticity within multiple reward-related
brain regions. There are multiple findings attributing an im-
portant role to HCN channels in expression of depression-like
behaviors. This suggests that pharmacological regulation of I,
currents offers a novel therapeutic approach for depression
treatment (see Table 1 for clinically relevant therapeutics).
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HCN channels have been implicated in several human dis-
eases, namely cardiac-associated diseases and neurological
diseases involving epilepsy and neuropathic pain [184—189].
HCN channel therapeutics are most well known to control
cardiac activity. Blockers of HCN channel activity, such as
DK-AH269, ZD-7288, zatebradine, and ivabradine, are effi-
cacious in lowering heart rate in patients with cardiac diseases
but produce side effects, including bradycardia (abnormally
lowered heart rate) and phosphenes (transiently enhanced vi-
sual brightness) [190—192]. While all 4 blockers have been
used for preclinical investigations [193—196], ivabradine is
the only FDA-approved HCN-specific blocker [197].
Ivabradine is a relatively well tolerated and commonly pre-
scribed HCN blocker for cardiac disease that is unique in its
use-dependency clinical property. As I, current increases,
ivabradine is able to better access the inner pore of the HCN
channels to block activity [198]. Ivabradine has shown effica-
cy in preclinical and clinical studies of neuropathic pain [199].
Since ivabradine does not cross the blood-brain barrier, a
brain-permeable derivative will be necessary for therapeutic
action within the central nervous system [200]. Regardless,
DK-AH269, ZD-7288, zatebradine, and ivabradine are useful
as HCN channel blockers and I, current inhibitors for preclin-
ical analysis of HCN in depression [193—195].

LTG and gabapentin are well-tolerated and FDA-approved
anticonvulsant/epilepsy drugs that are known to potentiate I,
currents [184, 196, 201]. LTG and gabapentin may be useful
for neuropathic pain [202], particularly gabapentin [203-205].
Gabapentin has also been evaluated in patients with bipolar
disease. There are relatively mixed results for use of
gabapentin as monotherapy to stabilize moods in bipolar dis-
ease, but it appears to be relatively well tolerated as an adjunc-
tive therapy [206-213]. The efficacy of gabapentin in unipolar
depression is also unclear [214, 215]. However, gabapentin
was successful in treating anxiety, nightmares, and insomnia
in patients with post-traumatic stress disorder, including those
who also suffered from MDD [216, 217]. Gabapentin may be
particularly useful for insomnia, as alleviation of sleep depri-
vation was also observed in alcohol-dependent individuals
[218, 219]. For treatment of anxiety disorders, specifically
social phobia and panic disorder, gabapentin may serve well
as an adjunctive medication [220-222]. In conjunction with
fluoxetine, gabapentin was effective in treating obsessive
compulsive disorder, although the psychiatric symptoms
rebounded after discontinuation of gabapentin [223, 224].

LTG is an approved medication for bipolar disorder, pro-
ducing relief of depression symptoms and a decrease in mania
[225-236]. LTG is often administered in conjunction with
lithium to stabilize mood [237, 238]. In particular, chronic
LTG administration decreased impulsivity, mood instability,
and suicidal behaviors in patients with bipolar disease
[239-243]. As a mood stabilizer, LTG has also been studied
in patients with schizophrenia, where it had strongest efficacy
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Table 1  Selected therapeutic drugs known to influence hyperpolarization-activated cyclic nucleotide-gated (HCN) channels

Drug Action Therapeutic use References

Ivabradine/procoralan ~ HCN channel blocker Coronary artery disease, ventricular [184, 185, 187, 189—193, 197-200]
(Servier) dysfunction, neuropathic pain

Ketamine I;, current inhibitor Anesthesia, MDD [19,23-26, 168-171, 182, 183]

Lamotrigine/lamictal I, current potentiator Bipolar disorder, neuropathic pain, [43, 145, 146, 184, 186189, 201,

(GlaxoSmithKline)

epilepsy, schizophrenia, MDD, PTSD,

202, 214, 215, 225-264]

alcohol dependence, OCD, substance abuse

Gabapentin/gabapen I;, current potentiator
(Pfizer)

Guanfacine/intuniv Inhibition of cAMP HCN signaling ADHD, schizophrenia
(Shire)

Neuropathic pain, epilepsy, MDD, PTSD,
anxiety, insomnia, alcohol dependence, OCD

[184, 187189, 196, 201-224,
265, 270]

[113,275-279]

This chart lists drugs that may be pertinent to investigations of brain areas involved in depression for novel antidepressant treatments, and their clinical
use in diseases, including psychiatric disorders. In particular, listed disorders that are bolded are clinically approved for use, and listed disorders that are
italicized are in preliminary clinical investigation for use. Postea and Biel [184] provide a detailed review for HCN channels as bradycardic, anticon-

vulsant, analgesic, and anesthetic therapeutics

MDD =major depressive disorder; PTSD = post-traumatic stress disorder; OCD = obsessive compulsive disorder, cAMP = cyclic adenosine 3°,5-

monophosphate; ADHD = attention-deficit/hyperactivity disorder

as an adjunctive therapy [244-249]. Notably, LTG has been
used off label to combat treatment-resistant depression, sug-
gesting efficacy in this patient population [214, 215,
250-252], although its use as an antidepressant augmentation
agent requires further analysis due to mixed success [253,
254]. Investigations of the effectiveness of LTG in other mood
disorders, such as post-traumatic stress disorder, suggest that it
can be useful to reduce symptoms including avoidance, numb-
ing, and re-experiences of flashbacks or nightmares [255].
However, additional studies of LTG treatment in OCD are
necessary to clarify its therapeutic value [256, 257]. LTG
may also be useful for combating comorbidities of substance
abuse with bipolar disorder for cocaine addiction [258-260],
or cocaine dependence only [261].

LTG has shown relative efficacy in patients with alcohol
dependence [262]. When LTG was administered in conjunc-
tion with clozapine as an antipsychotic medication for patients
with schizophrenia and alcohol dependence, patients
displayed a decrease in alcohol seeking and consumption
[263]. Patients with comorbidities of bipolar disorder and al-
cohol dependence show improvements in depression, mania,
alcohol craving, and alcohol consumption [264]. Gabapentin
has also demonstrated efficacy in treating alcohol dependence
[265]. The use of LTG and gabapentin to combat alcohol
abuse is interesting; although the mechanism of ethanol action
is not specific, acute ethanol influences HCN channels by
increasing I, currents [75, 266], and repeated ethanol and
withdrawal from ethanol results in a decrease in I, currents
within the VTA in DA neurons [75, 267]. Ethanol also dis-
rupts PFC function and affects I}, current within the hippocam-
pus, although this phenomenon is far less studied in these 2
brain regions [268, 269]. These findings suggest that possible
pathology of the reward circuitry in response to ethanol use
can be remedied through potentiation of Ij, currents. Thus,

while LTG is useful for treatment of bipolar disorder, the ben-
efit of gabapentin seems limited to anxiety and alcohol depen-
dence [270]. Further research is required to conclusively de-
fine a role for gabapentin and LTG in other psychiatric
disorders.

From a practical standpoint, it is important to develop more
specific HCN channel drugs. HCN channel agonists, LTG and
gabapentin, have multiple molecular mechanisms of action
besides potentiating I, currents, including regulation of
voltage-gated sodium and calcium channels [82, 196, 205,
236]. I}, current-specific action of DK-AH269 and ZD-7288
have been elucidated particularly well in pyramidal neurons of
the CA1 hippocampal region to probe the modulation of ex-
citatory postsynaptic potentials; there is a lack of consensus
regarding actions of HCN channels in hippocampal mossy
fiber plasticity [271-274]. These findings suggest that HCN
blockers DK-AH269 and ZD-7288 have off-target effects,
particularly through putative glutamate-receptor mediated sig-
naling [272, 274]. Guanfacine is another indirect modulator of
HCN signaling that works through inhibition of cAMP-HCN
signaling via activation of x,4-adrenoreceptors. Guanfacine
has been investigated for efficacy in schizophrenia, and is
currently prescribed for attention-deficit/hyperactivity disor-
der [275, 276] to improve working memory, impulse control,
stress control, and emotional regulation [277-279]. Off-target
effects of these drugs highlight the need to develop selective
compounds.

A caveat of HCN channel modulation in the brain as a
treatment for psychiatric disorders, in particular use of HCN
channel blockers, is the essential role of I, currents in cardiac
pacemaker activity. Developing drugs to target specific HCN
channel isoforms, such as HCN1 versus HCN4 specific an-
tagonists, could alleviate negative side effects. However, since
TRIP8D is a critical protein for HCN activity within the brain
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and is not expressed in the heart, developing TRIP8b-specific
drugs could surpass these current therapeutic limitations
[280]. TRIP8b knockout is antidepressant in mice [94].
Thus, antagonizing TRIP8b binding to HCN channels, partic-
ularly at the C-terminal tail, can impair trafficking of the HCN
channel and reduce I}, current, producing an antidepressant
effect [94, 281-284]. A fluorescence polarization screen for
small molecules disrupting TRIP8b and HCN interactions
demonstrated the feasibility of identifying compounds that
modulate HCN channel activity and neuronal excitability
through TRIP8b [280].

Currently, there are limited therapeutic options designed
for I, current modulation in the brain. Increased focus on
developing novel therapeutics to target HCN channels may
produce benefit for patients with depression who are under-
served by the current standard of care, especially since pre-
clinical research has highlighted the antidepressant promise of
reducing HCN channel activity.
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