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Genotypic variability based 
association identifies novel non-
additive loci DHCR7 and IRF4 in 
sero-negative rheumatoid arthritis
Wen-Hua Wei   1,2, Sebastien Viatte   1, Tony R. Merriman3, Anne Barton   1,4 &  
Jane Worthington1,4

Sero-negative rheumatoid arthritis (RA) is a highly heterogeneous disorder with only a few additive 
loci identified to date. We report a genotypic variability-based genome-wide association study 
(vGWAS) of six cohorts of sero-negative RA recruited in Europe and the US that were genotyped 
with the Immunochip. A two-stage approach was used: (1) a mixed model to partition dichotomous 
phenotypes into an additive component and non-additive residuals on the liability scale and (2) the 
Levene’s test to assess equality of the residual variances across genotype groups. The vGWAS identified 
rs2852853 (P = 1.3e-08, DHCR7) and rs62389423 (P = 1.8e-05, near IRF4) in addition to two previously 
identified loci (HLA-DQB1 and ANKRD55), which were all statistically validated using cross validation. 
DHCR7 encodes an enzyme important in cutaneous synthesis of vitamin D and DHCR7 mutations are 
believed to be important for early humans to adapt to Northern Europe where residents have reduced 
ultraviolet-B exposure and tend to have light skin color. IRF4 is a key locus responsible for skin color, 
with a vitamin D receptor-binding interval. These vGWAS results together suggest that vitamin D 
deficiency is potentially causal of sero-negative RA and provide new insights into the pathogenesis of 
the disorder.

Sero-negative rheumatoid arthritis (RA) is a complex and heterogeneous disorder where patients have no anti-
bodies detected against citrullinated peptides1. Sero-negative RA can be considered as a different disorder from 
sero-positive RA because of a distinct genetic background, e.g. a consistently weaker HLA-DRB1 association. 
The (narrow-sense) heritability of sero-negative RA (20%) is much lower than that in sero-positive RA (50%)2, 
suggesting a greater environmental component to susceptibility. Genome-wide association studies (GWASs) 
of sero-negative RA so far have identified only two loci reaching genome-wide significance (P < 5.0e-08): 
HLA-DRB1 and ANKRD553, 4, each conferring relatively moderate effects5. It is, therefore, of interest to test for 
any potential non-additive effects such as gene–environment (GxE) and gene–gene (GxG) interactions that may 
contribute to the disease heterogeneity.

Thus far efforts in dissecting non-additive signals have yielded only a few convincing examples in human 
complex phenotypes, each carrying only moderate interaction effects, indicating that any uncovered interac-
tions probably carry moderate/weak effects6–8. One obvious reason for the limited findings is that testing for 
non-additive interactions is more complicated than testing for additive signals, e.g. requiring markers to tag the 
causal variant in GxG at both loci6, and thus requires much larger sample sizes than individual GWAS data offer. 
Ideally, datasets should also include measurements of environmental exposures of interest, but such data are not 
always available. Also the genetic markers and/or environmental variables under consideration do not necessar-
ily represent the causal genetic variants and/or environmental factors leading to a reduced power of detection6. 
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While causal genetic variants can be captured by deep sequencing data, causal environmental factors are particu-
larly challenging because they are unknown in advance and thus unlikely readily available for GxE interaction 
tests9. Therefore, innovative approaches are needed.

The genotypic variability based genome-wide association study (vGWAS) is a promising approach that can 
prioritize potentially interacting loci without requiring prior knowledge of interacting factors10, 11. vGWAS can 
achieve this by considering substantial genotypic variability, i.e. differences of phenotypic variation across three 
SNP genotypes, as the potential aggregated interaction signatures tend to be weak when only additive effects 
are important but strong when non-additive effects such as GxE interactions are important12, 13. Using unused 
genotypic variability information available in existing GWAS data, vGWAS could provide data complementary 
to GWAS. It is important to acknowledge, however, that vGWAS loci may not necessarily mark non-additive 
interaction because other factors such as overdominance and scaling (i.e. various transformations) could also 
generate apparent genotypic variability14, 15. Additional explicit tests of GxE and/or GxG interactions would be 
needed but only for the identified vGWAS loci, leading to a power increase attributed to a much reduced multiple 
testing burden16, 17. The genotypic association with phenotypic variability approach has been successfully applied 
to several quantitative traits and has identified interacting loci also carrying major additive effects (i.e. identified 
in previous GWASs)16–21.

We recently adapted vGWAS to analyze dichotomous disease phenotypes using a two-stage approach: firstly 
a mixed model to partition the dichotomous phenotypes into an additive component and non-additive environ-
mental residuals on the liability scale and then the Levene’s test to assess equality of the residual variances across 
genotype groups22. The vGWAS of sero-positive RA identified the major histocompatibility complex (MHC) as 
the key interacting locus in addition to the strongest additive signals in three sero-positive RA cohorts22. These 
results collectively indicate that vGWAS can be effective in providing additional insights into the major genetic 
loci (e.g. MHC) that not only act additively but also interact with other genes and/or environmental factors23, 24. 
The vGWAS observations are also in line with recent GxE simulation studies showing that GxE interactions could 
be detected even when the environmental exposure was misclassified, if the polygenic risk (i.e. the aggregated 
additive effects) was used as the G variable25, 26.

Nonetheless, vGWAS is yet to reach the potential of identifying loci carrying mainly non-additive effects and 
‘novel’ to GWAS. One obvious reason is that vGWAS has not been widely explored in meta-analyses of multiple 
cohorts. Another possible reason is that such novel loci might be detected in phenotypes with relatively low her-
itability that are driven mainly by major environmental factors. We therefore performed a vGWAS meta-analysis 
in sero-negative RA using six independent cohorts from the Rheumatoid Arthritis Consortium International for 
Immunochip, each genotyped with the Immunochip that is an Illumina Infinium genotyping chip containing 
195,806 SNPs for 186 loci known to be involved in any of 12 autoimmune diseases27. The cohort samples were 
recruited in the United Kingdom (UK), Swedish Epidemiological Investigation of Rheumatoid Arthritis (SEE), 
Swedish Umea (SEU), Netherland (NL), Spain (ES), and United States of America (US), respectively.

Results
In total 19,108 unrelated samples (3323 cases and 15,785 controls) and 107,144 autosomal SNPs were included 
in the vGWAS meta-analysis of the combined data of the six sero-negative RA cohorts (Table 1). The esti-
mate of polygenic heritability was 0.045 suggesting that Immunochip captured only a modest proportion 
of the total additive variance. The vGWAS identified lead SNPs rs9275428 (P = 2.0e-12, intergenic between 
HLA-DQB1 and HLA-DQA2) and rs2852853 (P = 1.3e-08, DHCR7) at the genome-wide significance level of 
5.0e-08, and rs71624119 (P = 5.9e-08, ANKRD55) and rs62389423 (P = 1.8e-05, intergenic near IRF4) at the 
Immunochip-wide level of 2.5e-05 (Table 2). These vGWAS signals all carried additive signals as well but only 

cohort case control male% location

UK 997 8414 55.0 Europe

US 593 2118 67.4 America

SEE 982 1927 72.1 Europe

SEU 237 941 68.7 Europe

NL 299 1991 45.3 Europe

ES 215 394 68.0 Europe

combined 3323 15785 59.5 mixed

Table 1.  Summary information of study cohorts and the combined data.

SNP chromosome position Gene vGWAS GWAS

rs71624119 5 56 144 903 ANKRD55 5.9e-08 2.6e-13

rs62389423 6 421 281 near IRF4 1.8e-05 7.3e-03

rs9275428 6 32 703 201 near HLA-DQB1 2.0e-12 1.5e-24

rs2852853 11 71 439 171 DHCR7 1.3e-08 5.1e-05

Table 2.  vGWAS signals identified in the combined data and their corresponding GWAS signals.
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the lead SNPs of HLA-DQB1 and ANKRD55 were genome-wide significant in the conventional GWAS where the 
effects of gender and cohort were corrected (Table 2, Fig. 1). The vGWAS quantile-quantile (QQ) plot suggested 
no inflation (Supplementary Figure S1). No genome-wide significant signals were detected in the vGWASs of 
each individual cohort.

We used cross validation for statistical validation of the four vGWAS lead SNPs in ten iterations, where the 
combined data were randomly split into two halves to be used as either discovery or replication per iteration. 
The HLA-DQB1 and ANKRD55 SNPs were discovered ten times at the genome-wide level; the DHCR7 SNP was 
discovered nine times at the genome-wide level (ten times at the Immunochip level) whereas the IRF4 SNP was 
discovered only two times at the Immunochip-wide level; all the four loci had evidence of statistical validation 
(P < 0.05) in every iteration (Supplementary Table S1). Of the four vGWAS signals only the DHCR7 lead SNP 
rs2852853 was within a conserved region, with a normalized score assigned by UCSC Genome Browser of 542 
calculated using the regional annotation in ANNOVAR28 and 46-way annotation track. This is in line with the 
observation of low recombination within the entire DHCR7 gene, where the majority of the vGWAS important 
SNPs were highly correlated with rs2852853, mapping to mostly transcriptional elements and also some regula-
tory elements such as enhancers or promoters (Fig. 2).

We explicitly tested GxG and GxE interactions using each of the identified vGWAS signals as the G and 
each available environmental factor as the E in the combined data. We found the DHCR7 lead SNP rs2852853 
interacted with cohort (P = 2.0e-02) as well as gender (P = 2.6e-03), and the HLA-DQB1 lead SNP rs9275428 
interacted with cohort (P = 6.1e-04), where cohort and gender were both highly significant environmental fac-
tors in the logistic regression models based on Equation 2 in the Methods section (P < 1.0e-183 and P < 1.0e-
64 respectively). Indeed, the distributions of the residuals were substantially different across the six member 
cohorts (Supplementary Figure S2) and between cases and controls (Supplementary Figure S3). When adjusted 

Figure 1.  Manhattan plots of GWAS (left) and vGWAS (right) of the combined data in alignment. Each plot 
uses the -log10 scale for P values, red and blue lines for genome-wide and Immunochip-wide significance 
thresholds respectively, and a panel of gene annotations for loci exceeding the Immunochip-wide threshold in 
blue and the genome-wide threshold in red.

http://S1
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for multiple tests of four vGWAS signals per E (P = 0.05/4), these GxE interactions were either insignificant or 
marginally significant each carrying only weak/moderate effects in general. We found no statistically significant 
GxG interactions.

Discussion
We show for the first time that vGWAS can identify novel non-additive loci in complex diseases. It is also the 
first time that vGWAS has proven genetically more informative than GWAS in a disease phenotype with low 
heritability. This was possible because of meta-analysis of multiple cohorts where cohorts represented geograph-
ical locations that might capture certain causal influence on sero-negative RA. The DHCR7 signals were statis-
tically validated and were involved in interactions with cohort and gender. In addition, the vGWAS identified 
HLA-DQB1, a well-known GWAS locus involved in GxE interactions with cohort and epistatic local interactions 
within the MHC as previously reported22. Such GxE and GxG interactions were not potent and thus unlikely to 
be identified from conventional locus-by-locus genome-wide scans for non-additive interactions because of the 
multiple testing burden. Our results therefore support vGWAS as an innovative tool to detect non-additive loci 
from widely available GWAS data.

DHCR7 is a genome-wide significant locus associated with vitamin D deficiency and circulating vitamin D 
levels29, 30. DHCR7 encodes an enzyme 7-dehydrocholesterol reductase that plays an important role in cutaneous 
synthesis of vitamin D29–31. DHCR7 mutations are believed to be one of the key factors allowing early humans to 
adapt to Northern latitudes (e.g. Sweden, with inadequate sunlight) by generating additional cutaneous vitamin 
D331. Although Vitamin D deficiency is a common problem in RA patients, DHCR7 is moderately associated with 
sero-positive RA in the UK (i.e. rs4944076, P = 0.008, odds ratio 1.14) when considering only additive effects32. 
Here we also found only a moderate association of DHCR7 additive effects with sero-negative RA. These GWAS 
results, together with our vGWAS results, clearly support the hypothesis that aspects of vitamin D metabolism 
are causal of RA.

Latitude-dependent changes in cutaneous vitamin D3 levels may also be driven by pigment-based mech-
anisms (e.g. the lightest skin color and lack of ultraviolet-B exposure in northern Europe) and/or plausible 
mutations in other genes33, 34. Of relevance, vGWAS of the combined data identified not only DHCR7 but also 
IRF4 which is a key locus responsible for skin color35, 36 with a vitamin D receptor binding interval37. These 
vGWAS results together revealed potentially important biological insights into pathogenesis and heterogeneity of 
sero-negative RA at least in northern Europe.

This study also raised questions. First, are there any hidden causal environmental factors jointly driving the 
vGWAS signals in sero-negative RA? Because the additive genetic effects and the effects of gender and cohort 

Figure 2.  A regional view of DHCR7-integrated vGWAS results with ENCODE regulatory annotations.
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were removed at the first stage, the observed vGWAS signals could come only from unsolicited but associated 
environmental effects and non-additive effects. Given that only limited GxE interactions with cohort and gender 
were identified, our data seem to support existence of such causal factors and/or their GxE interactions with the 
vGWAS loci such as DHCR7. Dissection of such hidden factors would require further genetic and ecological 
epidemiological studies but may greatly improve understanding of the etiology of sero-negative RA. Second, is it 
time to consider modeling macro environmental factors (e.g. distinct geographic locations) in GxE interaction 
studies? Such macro environmental factors are likely causal of human adaptation and hence induce GxE interac-
tions that can hardly be detected when considering only one environment but can become obvious when analyz-
ing data from various environments together. Further studies will be required to address the questions above. In 
conclusion, we have demonstrated the potential of vGWAS analysis to identify novel loci for complex diseases.

Materials and Methods
Study cohorts, genotyping and quality control.  The six sero-negative RA cohorts used in this study 
have been described in detail elsewhere3. Briefly, the cohorts were recruited in four European countries: the 
United Kingdom, Sweden, Netherland, Spain, and the United States of American respectively. All RA patients ful-
filled the 1987 criteria of the American College of Rheumatology and were negative for anti-citrullinated peptide 
antibody tests. All participants provided written informed consent for participation. This study was approved by 
the North West Research Ethics Committee (MREC 99/8/84). All experiments (e.g. genotyping) were performed 
in accordance with relevant guidelines and regulations.

SNPs on the sex chromosomes and samples of non-European origin were excluded. Quality control was con-
ducted for each cohort to ensure: minor allele frequency > 0.01, SNP call rate > 0.95, sample call rate > 0.99, 
deviation from Hardy–Weinberg Equilibrium P < 1.0e-04. The six cohorts were merged into a combined data 
based on the common set of SNPs.

Two-stage vGWAS for case-control disease phenotypes.  The two-stage approach previously devel-
oped for case-control disease phenotypes22 was used to conduct vGWAS analyses for each individual cohort and 
the combined data. Stage one: a mixed model implemented in GCTA38 was used to compute the genetic relation-
ship matrix (GRM) and subsequently the first ten principal components (PCs), and then to predict polygenic 
liability risk for each unrelated individual by imposing a GRM relatedness threshold of 0.15 recommended for 
the Immunochip39 while setting the disease prevalence as 0.01 and fitting gender and the first 10 PCs (and cohort 
in the combined data) as covariates in the mixed model. The parameters used in the GCTA command were: gcta 
--reml --grm-gz --pheno --mpheno --reml-pred-rand --grm-cutoff --prevalence --covar --thread-num --out.

Stage two: the resultant residuals were tested for variance heterogeneity across three SNP genotypes using the 
Levene’s (Brown-Forsythe) test implemented in an R package VariABEL40:
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where the residuals were the trait y; Zi = |yi − ỹgi| is the deviation of y of the ith sample (yi) and the median of y in 
samples with genotype g (ỹgi); N is the sample size and k is the total possible genotypes; nj is the number of sam-
ples with genotype j; Zj. is the mean deviation from the median for genotype j and Z.. is the mean deviation from 
the overall median. When N is large, T2 is an approximate χ2 test taking two degrees of freedom.

The Levene’s (Brown-Forsythe) test requires no assumption of normally distributed phenotypes and hence is 
suitable for vGWAS of case-control disease phenotypes. For simplicity, the GWAS consensus threshold of 5.0e-08 
is adopted as the genome-wide significance threshold, and a threshold of 2.5e-05 previously derived from permu-
tation22 is used as the Immunochip-wide suggestive threshold.

Cross validation.  Given a vGWAS signal G from a cohort with N cases and M controls, the following steps 
were used to cross validate G:

	 a.	 to randomly select 50% N and 50% M and split the cohort into two independent set1 and set2
	 b.	 to perform vGWAS for both sets
	 c.	 to record the P values of the vGWAS signal G and check whether it was discovered at either the genome- 

wide or Immunochip level and/or statistically validated (i.e. the same SNP with a vGWAS P < 5.0e-02)
	 d.	 to repeat the above (a to c) steps 10 times and count successes of discovery and replication

Interaction tests.  We used the following logistic regression model to test GxE or GxG interactions for an 
identified vGWAS SNP G:

µ β β β β
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 −
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where p is the probability of an individual being a case rather than a control in a population, µ is the model con-
stant, β is the effects of fixed covariates (e.g. gender and/or cohort), βg is the effect of a vGWAS SNP G, βf is the 
effect of the interacting factor F that can be an environmental factor (i.e. testing GxE) or another SNP (i.e. testing 
GxG), βgf is effect of interactions between G and F, e is the random error.
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The βgf = 0 hypothesis test took 2 degrees of freedom (df) for interactions between G and gender, 10 df 
between G and cohort in the combined data and 8 df in the reduced data, 4 df for GxG between G and another 
Immunochip SNP.

Variant annotation and visualization.  ANNOVAR28 was used to annotate the identified vGWAS SNPs 
and to calculate their conservation scores. Enlight41 was used to generate plots of vGWAS regions (50 kilobases 
flanking the lead SNP) of interest.

Data Availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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