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Comprehensive Multi-Dimensional 
MRI for the Simultaneous 
Assessment of Cardiopulmonary 
Anatomy and Physiology
Joseph Y. Cheng1, Tao Zhang2, Marcus T. Alley1, Martin Uecker   3,4, Michael Lustig5,  
John M. Pauly6 & Shreyas S. Vasanawala   1

Diagnostic testing often assesses the cardiovascular or respiratory systems in isolation, ignoring the 
major pathophysiologic interactions between the systems in many diseases. When both systems are 
assessed currently, multiple modalities are utilized in costly fashion with burdensome logistics and 
decreased accessibility. Thus, we have developed a new acquisition and reconstruction paradigm using 
the flexibility of MRI to enable a comprehensive exam from a single 5–15 min scan. We constructed a 
compressive-sensing approach to pseudo-randomly acquire highly subsampled, multi-dimensionally-
encoded and time-stamped data from which we reconstruct volumetric cardiac and respiratory motion 
phases, contrast-agent dynamics, and blood flow velocity fields. The proposed method, named XD 
flow, is demonstrated for (a) evaluating congenital heart disease, where the impact of bulk motion is 
reduced in a non-sedated neonatal patient and (b) where the observation of the impact of respiration 
on flow is necessary for diagnostics; (c) cardiopulmonary imaging, where cardiovascular flow, function, 
and anatomy information is needed along with pulmonary perfusion quantification; and in (d) renal 
function imaging, where blood velocities and glomerular filtration rates are simultaneously measured, 
which highlights the generality of the technique. XD flow has the ability to improve quantification and 
to provide additional data for patient diagnosis for comprehensive evaluations.

Pediatric cardiovascular and respiratory diseases, including congenital heart diseases (CHD), lung disease of 
prematurity, and cystic fibrosis, are common and result in serial imaging studies that assess the cardiovascular 
and pulmonary systems in isolation. Due to complex coupling between the cardiovascular system and respira-
tory system, a disease afflicting one system impacts the other1, 2. Therefore, better understanding of these disease 
states and more effective treatment would be enabled by comprehensive assessment of both cardiovascular and 
respiratory systems together.

Currently, no single comprehensive test exists for cardiopulmonary evaluation. The convention is to use mul-
tiple exams with patients in varying physiologic states3, 4: a lung scintigraphy scan for ventilation assessment, a 
perfusion scan with intravenous injection, and a computed tomography or magnetic resonance imaging (MRI) 
exam for cardiac evaluation. Each exam adds risk to already fragile patients. Moreover, logistics of performing 
multiple exams increase healthcare costs5, 6 and often delay care of patients who may require urgent management. 
Thus, only a subset of exams is typically performed, and major clinical decisions, such as surgical procedures, are 
based on incomplete information.

MRI has the potential to provide comprehensive evaluations for anatomy and function of different organ sys-
tems. However, the flexibility of this imaging modality increases the complexity of the exam; different techniques 
are optimized for each specific clinical question7, 8. Though simultaneous multi-modal imaging exists, such as MRI 
with positron emission tomography9, these systems further complicate imaging exams. Recently, major efforts have 
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been made to shorten and simplify the MRI protocol to address some of these issues. First, the entire MRI work-
flow can be simplified and made more efficient with automated protocol parameter optimization10. The number 
of scans required can also be reduced. For example, a single sequence can be optimized11 or randomized with MR 
fingerprinting12 to quantify multiple tissue properties (i.e., T1, T2*, proton density) as biomarkers. Additionally, 
contrast-enhanced volumetric cardiac-resolved flow imaging (4D flow)13, 14 has been shown to enable the assess-
ment of flow, function, and anatomy from a single MRI sequence15–19. Such a sequence is compelling for many 
clinical applications including the assessment of CHD in pediatric patients20. With current accelerated imaging 
techniques using parallel imaging and compressed sensing20–24, 4D flow with high spatial-temporal resolution is 
performed in a single 5–15 min scan25–28. We hypothesize that these accelerated imaging techniques can not only 
achieve clinical feasible scan durations but can also be exploited to lift 4D flow imaging to higher-dimensional 
space for multi-dimensional flow imaging. Conventional 4D flow imaging consists of cardiac-phase dimension, 
volumetric spatial dimensions, and three-dimensional blood flow velocities. In addition to the dimensions of 4D 
flow, we will also include respiratory-phase dimension and/or temporal dimension (for contrast enhancement).

The extension of conventional imaging approaches to higher-dimensional space has been recently shown 
to improve anatomical image quality for MRI29, 30. For scan durations of 5–15 min, scans are sensitive to errors 
introduced from patient motion, from physiological variations, and from changes in the contrast signal for 
contrast-enhanced scans. Correcting for these different effects can be quite challenging. For example, patient 
motion not only introduces phase changes in the k-space signal but the movement also changes the underlying B0 
field31, 32. L. Feng et al. proposed to resolve these different dynamics in the MR datasets as additional dimensions 
in an “extra-dimensional space,” or XD space, instead of explicitly correcting for them29. Here, our goal is to not 
only enable greater tolerance to motion and other previously ignored physiological variations by lifting 4D flow 
to a higher-dimensional space, but we also aim to enhance the MRI sequence with additional clinical information 
for a more comprehensive imaging study. Since this work is inspired by reconstructing in the XD space, we refer 
to the proposed multi-dimensional flow imaging as XD flow.

XD flow enables greater flexibility to probe physiology with MRI. By resolving respiratory motion, flow and 
function can be assessed for both inspiratory and expiratory respiratory phases33. Also, by resolving contrast 
dynamics, myocardial or lung perfusion can be quantified. By extending 4D flow into higher-dimensional space, 
the technique can potentially enable comprehensive exams, such as for cardiopulmonary diseases, from a single 
sequence. The purpose of this work is to develop the framework for transforming 4D flow to XD flow imaging and 
to demonstrate the feasibility of XD flow in a number of representative use cases for pediatric MRI.

Results
XD flow covers a multi-dimensional space consisting of three spatial dimensions (x, y, z), one cardiac-phase 
dimension (c), one respiratory-phase dimension (r), one temporal dimension (t), and velocity-encoding echoes 
(f). To demonstrate the feasibility of XD flow, we projected the dataset into a smaller number of dimensions and 
performed the reconstruction in these subspaces to highlight different features (Fig. 1):

•	 Time-resolved, cardiac-resolved, high-resolution flow imaging in (x, y, z, t, c, f)-space: The acquisition was 
binned into 2–4 large temporal windows, and high-resolution cardiac-resolved volumetric flow data were 
reconstructed. Impact of respiratory motion (r) was minimized using soft-gating. This reconstruction focused 
on minimizing the impact from the contrast dynamics for contrast-enhanced scans and from bulk patient 
motion for high-resolution cardiovascular imaging (Fig. 1d).

•	 Respiratory-resolved, cardiac-resolved, high-resolution flow imaging in (x, y, z, c, r, f)-space: Cardiac-resolved 
volumetric flow datasets were reconstructed for each respiratory state. Here, the temporal component (t) was 
ignored. This reconstruction enabled the evaluation of the impact of respiration on cardiac function (Fig. 1e).

•	 Cardiac-resolved, dynamic-contrast-enhancement (DCE) or perfusion imaging in (x, y, z, t, c)-space: For a 
1–2 min window during the contrast injection, data were binned into ~2-s temporal windows with few car-
diac phases (≤5). A single echo (f = 0) was reconstructed with data from other echoes included with an extra 
weighting factor of 0.5. Impact of respiratory motion (r) was minimized using soft-gating. This reconstruc-
tion was used to enable perfusion analysis (Fig. 1f).

Implementation details are described in the Methods.
With Institutional Review Board approval and informed consent/assent, pediatric patients referred either for 

contrast-enhanced 3T MRI or contrast-enhanced 1.5T MRI were recruited and scanned. Specific scan parame-
ters are described in Table 1 and Supplementary Table S1. First, the R1 reconstruction (few temporal phases with 
many cardiac phases) was performed in a newborn study with the purpose of reducing image artifacts from bulk 
voluntary motion. The impact of variations in the blood pool signal due to contrast dynamics was emphasized in 
another study where gadolinium-based contrast was administered during the acquisition, and R1 was performed 
to reduce image artifacts. The impact of respiration on blood flow was investigated using R2 (respiratory-resolved 
reconstruction). Lastly, the potential of including image analysis on the contrast dynamics from XD flow using 
R3 (high temporal resolution with few cardiac phases) was assessed in a cardiac/pulmonary study and in an 
abdominal study. For comparison in each of these cases, a conventional 4D flow reconstruction25 from the same 
dataset was performed.

Comprehensive congenital-heart-disease MRI exam.  The high-resolution flow reconstruction was 
assessed in a 3-day-old non-anesthetized female with ferumoxytol administration as shown in Fig. 2. With the 
risks and complications from using anesthesia34–36, we aimed to perform exams for neonatal patients without 
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Figure 1.  Data acquisition overview. (a) Pulse sequence diagram. (b) Cartesian sampling masks generated 
using the variable-density and radial view-ordering (VDRad) design. (c–f) Single dataset acquired in the multi-
dimensional space reconstructed with different methods of data binning where each data block consists of 
three-dimensional spatial (x, y, z) and flow encoding (f). In (a) different dimensions are illustrated: dynamic 
contrast enhancement (t), respiratory phase (r), and cardiac phase (c). For volumetric flow quantification, 
four different flow-encoding gradients are used to sensitize the acquisition to four different velocities. The 
flow-encoding gradients provide the setup to intrinsically measure motion using Butterfly navigators. In (b) 
VDRad determines the order in which each (ky, kz)-sample is collected using the golden-ratio angle increment 
(~137.5°). The same samples can be divided into different number of sampling masks where fewer masks 
correspond to lower subsampling reduction factors (from R of 6.8 to 2.1). This property is important for 
retrospective binning of the data. The variable-density sampling provides ideal source data for compressed 
sensing reconstructions. Conventional 4D flow depicted in (c) ignores the r, c, and t dimensions. XD flow 
extends this same single dataset into higher-dimensional-space for highlighting different clinical indications. 
Three different examples of this flexibility is illustrated in (d–f).

#1 #2 #3 #4 #5 #6

(Fig. 2) (Fig. 4) (Fig. 5) (Fig. 6) (Fig. 7) (Fig. 8)

Age 3 days 11 months 3 years 2 years 8 years 15 years

Gender F F F M M M

Heart rate 135 bpm 111 bpm 107 bpm 75 bpm 98 bpm 90 bpm

TE/TR 1.7 ms/4.2 ms 1.8 ms/4.0 ms 1.8 ms/4.0 ms 1.7 ms/5.8 ms 1.7 ms/4.8 ms 1.8 ms/4.0 ms

Resolution (0.9, 0.8, 
1.4) mm (1.0, 0.9, 1.4) mm (1.0, 0.7, 

1.4) mm
(2.1, 2.0, 
3.0) mm

(2.0, 1.9, 
2.4) mm (1.7, 1.5, 2.0) mm

Bandwidth ±125 kHz ±83.33 kHz ±83.33 kHz ±100 kHz ±125 kHz ±83.33 kHz

VENC 250 cm/s 250 cm/s 250 cm/s 250 cm/s 100 cm/s 150 cm/s

Coil 32ch cardiac 32ch cardiac 32ch cardiac 20ch chest 32ch body 32ch body

Contrast Ferumoxytol Gadofosveset trisodium Ferumoxytol Gadobutrol Gadobutrol Gadofosveset trisodium

Scan time 10:34 min 8:23 min 10:05 min 9:30 min 7:14 min 7:22 min

Scanner 3T (GE 
MR750) 3T (GE MR750) 3T (GE MR 

750)
1.5T (GE 
450 W)

3T (GE 
MR750) 3T (GE MR 750)

Table 1.  Summary of scan parameters.
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anesthesia. In the conventional 4D flow reconstruction, patient motion resulted in an increase in apparent noise 
and signal dropout. The recovery of the patient’s arm and the sharpening of the upper liver dome and myocardial 
borders can be seen in the XD flow reconstruction. A lower average flow (~0.25 L/min) that varies throughout 
time can be seen from the XD flow reconstruction compared to the conventional reconstruction (~0.35 L/min). 
Additionally, by dividing the acquisition into 4 temporal bins versus a single average, a reduction of the velocity 

Figure 2.  XD flow reconstruction of a 3-day-old female highlighting enhanced motion robustness. (a) 
Conventional 4D flow reconstruction for the 10:34 min acquisition. (b–e) The same dataset reconstructed into 
4 shorter temporal windows — each window was 2:39 min. (f) Peak speed in aorta. (g) Net flow in aorta. (h) 
Average flow for each temporal window compared to conventional 4D flow (dotted blue). Different reformats 
of a single cardiac phase are shown: axial slice, coronal 50-cm MIP, sagittal slice, and velocity/magnitude of 
aorta with segmentation. The non-sedated patient with ferumoxytol enhancement was observed to be moving 
as noted by different positions of the right arm (yellow arrow). Also, the region-of-interests (ROIs) segmented 
for each temporal phase of XD flow are combined to emphasize the movement of the aorta (far right of (a)). 
With motion corruption, the flow in the aorta is noisy with unrealizable flow vectors in the conventional 4D 
flow, but the flow is recovered in the XD flow reconstruction (dashed white). Similarly, the myocardial border 
(white triangle) and diaphragm (white arrow) are better depicted in the XD flow reconstruction. The blood flow 
measured from XD flow varies over time; this effect is ignored in conventional 4D flow.
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standard deviation (from ±6.2 cm/s to ±5.2 cm/s in Supplementary Table S2) and an increase in image sharpness 
(Fig. 3a) were observed.

The impact of variation in contrast dynamics was assessed in a contrast-enhanced study of an 11-month-old 
female using a gadolinium-based contrast, gadofosveset trisodium. To emphasize change in contrast dynamics, 
contrast was administered during the data acquisition. Conventional 4D flow reconstruction and two different 
variations of R1 (with 3 temporal bins) were performed. One R1 was performed without a temporal sparsity 
constraint in the compressed-sensing formulation (λt = 0 in equation (1)); a second R1 was performed with a 
temporal sparsity constraint. More residual noise-like artifacts remained for the conventional 4D flow reconstruc-
tion and the R1 without the temporal constraint compared to the R1 with the temporal constraint. In Fig. 4, the 
reduction of noise was observed in both the magnitude images and also in the velocity images. Conventional 4D 
flow resulted in sharper images compared to XD flow without the temporal sparsity constraint. With the temporal 
constraint included, image sharpness was improved over conventional 4D flow (Fig. 3b).

Respiratory-resolved 4D flow imaging.  With the respiratory-resolved 4D flow (reconstruction R2), 
respiratory-dependent blood flow can be measured33, 37. In Fig. 5, flow in the inferior vena cava (IVC) and the 
superior vena cava (SVC) were measured as a function of both respiratory phase and cardiac phase in an intu-
bated 3-year-old patient volunteer (Fig. 5a and b). The results were compared with conventional 4D flow where 
the respiratory-phase dimension and its effects were ignored or suppressed. Computing the respiratory variation 
of the flow measurements in the XD flow dataset, we observed a standard error of 0.77–3.5 mL/s in the IVC and 
0.34–1.0 mL/s in the SVC (Fig. 5c and d). A range of 0.75–0.84 L/min (mean of 0.74 L/min) for the SVC and a 
range of 0.15–0.69 L/min (mean of 0.44 L/min) for the IVC were observed when computing the total average 

Figure 3.  Image sharpness computed using the gradient entropy metric49 (lower values means sharper 
images). The spatial resolutions of the final reconstructed images were retrospectively lowered, and this metric 
was computed as a function of image resolution. In the plots, the resolution is normalized by the maximum 
resolution — 1 corresponds to the acquired spatial resolution, 2 corresponds to 2x lower spatial resolutions, 
and so on. The true underlying spatial resolution can be considered as the minimum of the curve. This analysis 
was performed for each XD flow dataset (green or with corresponding colors of the associated figure) and was 
compared to the original conventional 4D flow reconstruction (dotted blue): (a) subject #1 (Fig. 2) (b) subject 
#2 (Fig. 4) (c) subject #3 (Fig. 5) (d) subject #4 (Fig. 6), and (e) subject #5 (Fig. 7). Compared to conventional 
4D flow, sharper images was observed for XD flow that was able to resolve bulk patient motion as plotted in 
(a). In other situations, XD flow resulted in lower image resolutions when resolving high-temporal resolution 
dynamics compared to conventional 4D flow as plotted in (d).

http://S2
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flow as a function of respiration (Fig. 5e). The maximum flow in the IVC was observed during inspiration — an 
expected physiologic effect. From the conventional 4D flow reconstruction, a total flow of 0.40 L/min (without 
respiratory soft-gating) and 0.40 L/min (with respiratory soft-gating) in the IVC and a total flow of 0.72 L/min 
(without respiratory soft-gating) and 0.75 L/min (with respiratory soft-gating) were measured. In Fig. 3, XD flow 
resulted in sharper images compared to conventional 4D flow.

Comprehensive cardiopulmonary MRI exam.  The feasibility of using XD flow for assessing contrast 
dynamics was performed, and the results are shown in Figs 6 and 7. Conventional 4D flow imaging ignores 
contrast dynamics, and therefore, an additional scan is typically required for dynamic-contrast-enhancement 
imaging. Using reconstruction R3 of XD flow, a higher-temporal resolution dataset was reconstructed with 
fewer cardiac phases from the same dataset. In the study of a 2-year-old male with gadobutrol administra-
tion, the contrast uptake in the lungs can be seen in the dataset with a temporal resolution of 2 s (Fig. 6a). The 
contrast-enhancement curves agreed with normal physiology: first enhancement of the right ventricle, followed 
by the pulmonary artery (PA), then the two lungs, and lastly, the left ventricle. The slower uptake in the liver and 
myocardium was also observed. Using the signal time curves of the main pulmonary artery as an arterial input 
function, perfusion maps were generated. For the displayed slice in Fig. 6g, the mean transit time (MTT) of the 
lungs was estimated to be 4.0 ± 1.3 s (mean standard deviation). The pulmonary blood volume (PBV) and pul-
monary blood flow (PBF) were respectively estimated to be 22.2 ± 9.8 mL/100 mL and 359.4 ± 203.2 mL/100 mL/

Figure 4.  XD flow of a 11-month-old female with reconstruction R1 to minimize the impact of contrast signal 
fluctuations during the administration of gadofosveset trisodium. In (a), the conventional 4D flow of the 
8:23 min scan is displayed above the XD flow reconstruction without the temporal total variation constraint 
(middle) and with the temporal constraint (bottom). The recovery of fine pulmonary vessels (yellow arrow in 
magnified view) can be seen when exploiting the temporal dimension in the XD flow reconstruction. Surface 
renderings with velocity overlaid of each reconstruction (last temporal phases for the XD flow reconstructions) 
are displayed in (b). Reduction of noise in the velocity can be observed when comparing the XD flow with 
conventional 4D flow (white triangles). The lowest noise is observed in the XD flow reconstruction with the 
temporal total variation constraint. In (c), flow (net flow and peak speed) is measured in the aorta root. The 
average flow of 2.6–2.7 L/min for all three methods are similar.



www.nature.com/scientificreports/

7Scientific Reports | 7: 5330  | DOI:10.1038/s41598-017-04676-8

min. These quantities were in agreement with previously reported values for end expiration38: from 9 subjects, 
mean MTT of 4.2 s, PBV of 22 mL/100 mL, and PBF of 316 mL/100 mL/min. The same dataset was reconstructed 
to assess flow (Fig. 6b). Here, the third temporal bin out of three temporal bins was used to measure blood flow. 
The flow analysis had good internal agreement: flow in the main PA (1.9 L/min) approximately equals the flow in 
the aorta root (2.0 L/min), and flow in the main PA approximately equals the total flow through the left PA (0.9 L/
min) and the right PA (1.3 L/min). Image sharpness for XD flow was slightly reduced in comparison to conven-
tional 4D flow (Fig. 3d).

The proposed XD flow method can be applied for other clinical applications. As an example, a comprehensive 
kidney MRI exam was demonstrated in Fig. 7. Here, the third temporal phase out of a total of three was used to 
measure blood flow (Fig. 7a and b). The flow in the aorta was measured superior and inferior to the renal arteries. 
Good internal consistencies were observed: flow in the aorta before the renal arteries (2.0 L/min) approximately 
equals the sum of the flows in the right renal artery (0.3 L/min), left renal artery (0.3 L/min), and aorta after the 
renal arteries (1.5 L/min). Using reconstruction R3, the same dataset was reconstructed with 5 cardiac phases and 
3.9-s temporal bins. The contrast-enhancement curves measured in the aorta, liver, and kidney cortex are plotted 
in Fig. 7c. A subset of the corresponding magnitude images are displayed in Fig. 7d. From R3, a glomerular fil-
tration rate map was generated (Fig. 7e) with a mean of 0.18 ± 0.14 min−1 in the cortex of the left kidney for the 
displayed slice.

Discussion
A single rapid imaging test that can be used for flow quantification, cardiac/respiratory function analysis, ana-
tomical assessment, and contrast-enhancement/perfusion evaluation was developed. This comprehensive MRI 
sequence simplified the cardiac MR protocol and extended it to include kidney or pulmonary function assess-
ment. Furthermore, by generating different reconstructions from the same data acquisition, the post-processing 
analysis for each feature was automatically registered to each other. This advantage can be exploited to poten-
tially enhance post-processing analysis. For example, the contrast-dynamics for different vessels can be leveraged 
to aid in differentiating between arteries and veins for better visualization or for more robust automatic vessel 
segmentation.

In this work, the rapid test of XD flow imaging was developed and applied to several clinical examples. The 
XD flow technique relied on the adaptation and the combination of three key previous developments. First, a 
pseudo-random variable-density sampling and radial view-ordering (VDRad) technique25, 39 enabled retrospec-
tive re-sorting of the data to highlight different states and dimensions. Second, intrinsic Butterfly navigators25, 40  
provided the motion information needed, with no time penalty, to resolve respiratory motion and/or to sup-
press motion-induced image artifacts. Given the high temporal rate of the Butterfly navigators cardiac signal 
can also be extracted41. Thus, the entire XD flow acquisition can be performed with no external physiological 

Figure 5.  Ferumoxytol-enhanced XD flow reconstruction of a 3-year-old female highlighting the impact of 
respiration on flow analysis. The net flow through the inferior vena cava (IVC) and the superior vena cava 
(SVC) are plotted as a function of normalized cardiac and respiratory phase in (a) and (b). The average net 
flow across the different respiratory phases is plotted in (c) and (d) as a function of normalized cardiac phase. 
Blood flow measured in a conventional 4D flow reconstruction (with and without respiratory soft-gating) of 
the same dataset is also plotted in (c) and (d) as dotted and dashed lines. In (e), the total flow in the IVC and 
SVC is plotted as a function of normalized respiratory phase. The total flow is observed to be dependent on the 
respiratory phase. This feature is ignored in the conventional 4D flow reconstructions (dotted/dashed lines).
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signal monitoring, further simplifying scan setup. Third, the higher subsampling factors can be mitigated by 
leveraging the increase in data redundancies in higher-dimensional space with a compressed-sensing recon-
struction29. Here, separable constraints were applied for each data dimension. The reconstruction can be further 
improved with more sophisticated models that encompass multiple dimensions, such as the low-rank penalty in 
the spatial-temporal dimensions42, 43. This investigation will be our future work.

Ideally, the different datasets can be generated through one large reconstruction that properly shares the 
redundant information. However, such a reconstruction results in an optimization with millions of variables 
(each additional dimension increases the number of variables by approximately a factor of 10), which is currently 
too time consuming to perform clinically. Here, we compromised and performed three separate reconstructions 
that were relatively faster and more manageable in terms of required computation. Given the same data acquisi-
tion for the different reconstructions, results from one reconstruction can be easily used to initialize or constrain 
subsequent reconstructions. Each separate reconstruction was also highly parallelizable, and the entire frame-
work can be adapted to use parallel computing and cloud computing for even faster reconstruction times44. For 
a single dataset, a single set of ESPIRiT sensitivity maps45 was used for each separate reconstruction to reduce 
the time and memory needed for computing these maps that model the sensitivity profiles for each element in 
a coil-receiver array. Reconstruction accuracy can possibly be improved with more accurate ESPIRiT sensitivity 
maps for every c, r, t, and f. However, guaranteeing that sufficient data samples are collected for computing accu-
rate maps at each point becomes increasingly difficult with higher subsampling factors in this multi-dimensional 
space.

Figure 6.  Dynamic-contrast-enhancement/perfusion reconstruction with XD flow of a 2-year-old male with 
the administration of gadobutrol. Contrast dynamics (2-s temporal resolution) of specific tissues are depicted 
in (a) with the corresponding ROI drawn in (c). The same dataset can also be reconstructed to depict flow 
information as plotted in (b) and visualized in (d). In (a), the initial enhancement of the right ventricle can be 
seen with the initial peak. The contrast recirculating through the system can be observed with the secondary 
peak. Pulmonary enhancement can be seen with the ROIs drawn on the right and left lungs. Pulmonary 
perfusion maps are displayed as pulmonary blood volume (e), pulmonary blood flow (f), and mean transit time 
(g). The enhancement of the lungs is after the enhancement of the right ventricle and pulmonary artery.
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Lifting dimensionality while maintaining scan durations results in highly subsampled datasets, though the 
increase in dimensionality does not correspond to the increase degrees of freedom. Increase data redundancy 
allows for the recovery of the increase number of missing samples. Unfortunately, no real gold standard exists to 
assess the impact of this process on spatial and temporal resolutions. A fully sampled XD flow acquisition will 
require over an hour of continuous scanning. Phantom studies are an alternative, but compressed-sensing-based 
methods can leverage the simplicity of artificial models to produce high quality reconstructions. Additionally, 
reconstruction techniques can be designed to favor one dimension over the others. For example, simple keyhole 
reconstruction46, 47 produces fully sampled datasets at each time point which results in high spatial resolutions at 
the cost of temporal resolutions. Minimal sharing of information between time points results in highly subsam-
pled datasets with residual aliasing and blurring, but temporal information can be extracted with high temporal 
resolutions48.

As an initial assessment, we compared XD flow with the original soft-gated 4D flow which has been previously 
validated for structure, flow, and function19, 25. All acquisitions were originally optimized for 4D flow, and this 
setup provided a baseline for comparison when we reconstructed these same acquisitions as XD flow. A major 
advantage of this approach was that no additional acquisitions or external data were required to assess image 
quality for the different XD flow reconstructions. Here, we performed this comparison in terms of image sharp-
ness using the gradient entropy metric49, and the analysis demonstrated whether spatial resolutions were gained 
or lost with XD flow. For future work, internal consistency will be essential to indicate the quality of XD flow 
datasets. These internal consistency checks include blood flow through the aortic root should equal blood flow 
through the main pulmonary artery, volumetric change in the cardiac ventricles should equal total cardiac blood 
flow output, and total pulmonary perfusion should equal total blood flow through the pulmonary arteries. The 
advantage of assessing internal consistency of measurements is that these measurements themselves are critical 
for diagnosis; in certain applications, the accuracy of these measurements are more important than the apparent 
image quality.

The techniques discussed can be directly applied to non-Cartesian approaches to flow imaging, such as 
three-dimensional radial imaging50 or stack of spiral51. These special k-space trajectories innately provide the 
properties that VDRad is designed to replicate: robustness to motion and variable-density sampling for com-
pressed sensing. When exploring different k-space sampling trajectories, one must consider the increase in com-
putation time needed for reconstructing non-Cartesian datasets with compressed sensing.

Figure 7.  XD flow imaging using reconstruction R3 in the abdomen of an 8-year-old male with gadobutrol 
administration to enable comprehensive kidney assessment. Blood flow velocities are visualized with a surface 
rendering in (a) and net flow plotted in (b). The blood flow in the aorta was measured superior (solid red) and 
inferior (dashed red) to the renal arteries (blue) to demonstrate internal consistencies with flow measurements. 
The same dataset is reconstructed at a 3.9-s temporal resolution. The signal enhancement curves are plotted in 
(c) and the dynamics are highlighted in the left kidney in (d). From this dataset, a glomerular filtration rate map 
is generated and displayed in (e).
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The ability to add a temporal dimension to flow velocity provides a tool for potentially more robust flow imag-
ing of uncooperative patients. An alternative is to prescribe a shortened flow imaging acquisition with reduced 
resolutions in either the cardiac-phase or the spatial dimensions. However, in such an approach, the acquisition 
is innately limited to those prescribed resolutions. A higher-resolution imaging sequence that is slightly longer 
has the potential to produce high-resolution flow images if the patient is cooperative during the acquisition. In 
the situation of the pediatric patient becoming restless during the scan, XD flow has the ability to still produce 
clinically useful images by temporally binning the data. Further, the additional data from neighboring temporal 
bins provide information that can be exploited in the compressed-sensing-based reconstruction. The temporal 
component can also be exploited by correcting for patient motion between temporal bins and combining the 
different temporal bins in a final reconstruction. This approach will improve SNR and reduce motion-induced 
image artifacts.

The ability to quantify blood flow velocities in higher-dimensional space provides a tool for potentially more 
accurate and reproducible flow quantification. The impact of respiration on cardiac flow velocities has been 
demonstrated here. If the pediatric patient respiratory pattern changes from one MRI exam to the next or if the 
pediatric patient is intubated in one exam and not in the other, flow quantification can differ. By enabling the 
ability to select any arbitrary respiratory phase to investigate flow, more consistency in the state of the patient 

Figure 8.  Processing of motion estimates for physiological signal monitoring. From the 4 different velocity-
encoded echoes (4 flow echoes), 4 different directions of motion are measured using the Butterfly navigators and 
are plotted in terms of image pixels in (a). Each color represents a different channel from a 32-channel cardiac 
coil receiver. In (b), these estimates are rotated to the conventional right/left (R/L), anterior/posterior (A/P) and 
superior/inferior (S/I) directions. In (c), a low-pass filter tuned with a cut-off frequency based on the recorded 
cardiac rate is used to remove the cardiac signal and noise. In (d), a high-pass filter is applied to remove the low-
frequency drifting that is partially attributed to the contrast administration. In (e), a coil-clustering algorithm 
is used to extract the dominate motion. Afterwards, the motion estimates can be directly used to compute soft-
gating weights (f) or further processed for respiratory-resolved imaging (g). For respiratory-resolved imaging, 
the respiratory trigger points can be located and used to determine respiratory phases. Soft-gating weights based 
on residual patient motion from changing respiratory depth or bulk patient motion can then be computed.
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can possibly be achieved to better measure flow, and its changes in evolving diseases. Respiratory-resolved flow 
imaging will also provide the tool to investigate how intubation or anesthesia impacts flow measurements and to 
investigate the relationship between respiratory and cardiac systems.

Though the proposed approach has been migrated into our clinical practice and we have demonstrated its 
potential to provide more accurate flow quantification and yield additional diagnostic information, a thorough 
clinical validation for specific disease indications is beyond the scope of this work and will be our focus for future 
efforts. Here, we propose a framework for XD flow and demonstrate the feasibility with results from a variety 
of example cases. Further work will be required to assess different aspects of XD flow, including the impact of 
velocity-encoding gradients on the accuracy of perfusion/DCE analysis and the impact of contrast enhance-
ment and respiration on flow quantification accuracy. This type of validation work is nontrivial even in phantom 
studies, which do not accurately reflect in vivo scans. However, the proposed framework provides a means to 
improve current 4D flow studies. As a 5–15 min scan, it also has the potential to investigate some of these issues 
in a clinically-realizable manner. XD flow imaging has been developed to improve image quality and to provide 
additional information (respiratory, contrast dynamics) for assessment.

Methods
Data acquisition.  A standard Cartesian 4D flow sequence was used on 1.5T and 3T MRI scanners. This 
RF-spoiled gradient echo sequence included velocity-encoding gradients that produced non-zero first moments 
that resulted in linear phases proportional to the velocity. These gradients can be designed using bipolar gradi-
ents, but to achieve shorter echo times (TE), these gradients were combined with spatial encoding gradients52. 
Velocity images were computed from the phase difference of images encoded with a different velocity-encoding 
gradient (with a different first moment). At least 4 different gradient configurations are needed to compute 3D 
velocities — more than 4 configurations are useful for increasing the signal-to-noise ratio while minimizing phase 
wraps53. For a shorter scan duration, we used the minimum number of 4 configurations.

This standard Cartesian 4D flow sequence was modified to use a variable-density sampling and radial 
view-ordering technique (VDRad)39 to produce unique pseudo-random sampling patterns for each cardiac phase 
and for each velocity-encoding echo. For MRI, spatial information in (x, y, z) are acquired in the corresponding 
k-space domain (or frequency domain) as (kx, ky, kz) with kx fully sampled for Cartesian imaging. With VDRad, 
(ky, kz)-views on a Cartesian grid were grouped into variable-density spiral spokes. The acquisition of different 
spiral spokes were ordered according to the golden-ratio angle increment54.

VDRad should be optimized for different clinical questions. Here, we focused on resolving pulsatile blood 
flow dynamics; thus, the acquisition scheme was optimized for cardiac-triggered imaging. This view-ordering 
design is described in detail in refs 25, 39 and is described briefly here. The VDRad scheme was first used to 
generate Nc × Ne sampling masks where Nc is the desired number of cardiac phases and Ne is the number of 
different velocity-encoding echoes. Each individual sampling mask specifies what (ky, kz)-views to collect and 
in what order. Due to the golden-ratio angle increment ordering, each adjacent mask was complementary to the 
other. Combining samples from adjacent masks will decrease undersampling reduction factor R (Fig. 1b). R was 
adjusted for the receiver coil array, patient size, and gains from compressed sensing. During data acquisition, the 
(ky, kz)-sample to collect was determined by the corresponding sampling mask of the current velocity-encoding 
echo and current cardiac phase.

The data acquisition window was extended to include velocity-encoding gradients. These velocity-encoding 
gradients were repeatedly applied throughout the scan and sampled the same trajectories in k-space. Thus, 
these gradients were used as intrinsic MR navigators to monitor patient motion with high temporal fidelity25. 
As an adaption of a previous technique39, we refer to this approach with the same name of “Butterfly” naviga-
tors. Further, with a multi-channel coil receiver array, each element provided localized sensitivity that can be 
exploited to help extract physiological signals and the time of initial contrast injection. In this work, the velocity 
was encoded using a minimum echo time (TE) configuration52, but any standard velocity-encoding configuration 
can be used.

The sequence was prescribed to run for 5–10 min. Contrast was intravenously administered either before the 
sequence or 1–2 min after the sequence was started. See Fig. 1a for a graphical description of the data acquisition. 
Specific scan parameters are summarized in Table 1.

Image reconstruction.  From one data acquisition, different compressed-sensing-based parallel-imaging 
reconstructions21, 24, 29, 55 were performed with the following optimization problem:

λ λ λ λ= − + + + + .m̂ W Am y R m R m R m R marg min1
2

( ) ( ) ( ) ( ) ( ) (1)m
x x t t c c r r2

2

Matrix A models the acquisition process with coil-receiver sensitivity maps, Fourier transform, and subsam-
pling. Sensitivity maps were estimated using the ESPIRiT algorithm45 from a calibration k-space region (with a 
size of 24 × 24 × 24) that was generated by projecting the entire data acquisition for a single flow-encoding echo 
into a single spatial volume. The generated calibration data was robust to motion effects due to the VDRad sam-
pling design with variable-density sampling and repeated sampling of the k-space center. This calibration strat-
egy has been previously demonstrated for both dynamic-contrast-enhancement imaging43 and 4D flow imaging 
applications25.

Matrix A transforms the image set m, fully resolved XD flow images, to the acquired k-space data y. For com-
pressed sensing, regularization functions R*(m) and regularization parameters λ* penalize non-sparse solutions 
in the spatial (x), temporal (t), cardiac-phase (c), and respiratory-phase dimensions (r). Temporal dimension 
refers to time over the scan (relative to contrast injection bolus for perfusion). In this work, the 1-norm of the 
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Daubechies D4 wavelet transform was used for x, and the 1-norm of the finite difference was used for all other 
dimensions. Regularization parameters λ* were empirically determined for each reconstruction (R1, R2, and R3) 
and held constant for subsequent datasets. Single x-slices (2D in the spatial) were used to rapidly determine these 
parameters. The regularization parameters are adjusted based on the sparsity constraint, because different func-
tions for R*(m) result in different degrees of sparsity and different scaling factors. Specifically, we started with 
λx = 1 × 10−5 for the wavelet transform, and we started with λt = 0.01, λc = 0.01, and λr = 0.01 for the finite differ-
ences. These parameters were then tuned for each reconstruction type.

The Butterfly signal was used to determine the respiratory phase of each data point and time of contrast injec-
tion. Data were binned according to time of acquisition, respiratory phase, and cardiac phase. Matrix W weighed 
the data according to how far the data was from the center of each bin and how much patient motion occurred 
during the acquisition of that particular data point (see Supplementary Fig. S1). For non-respiratory-resolved 
imaging, W soft-gated the data to suppress image artifacts from respiratory motion39, 56. How the values in W were 
computed will be described below.

To enable the application of different regularization constraints in equation (1), the reconstructions were 
performed using Alternating Direction Method of Multipliers (ADMM)57, 58. The benefit of including multiple 
constraints was demonstrated in Fig. 4. To reduce the dataset size, coil compression59 was used to transform the 
multi-channel data to 6 virtual coils. This number of virtual coils was recommended in ref. 59 for the 32-channel 
coil, and no noticeable difference in performance was observed for the same number of virtual coils for the 
20-channel coil.

Soft-gating weights.  k-Space data were binned based on the (ky, kz) location, the time the data point was 
acquired, the cardiac phase, and the respiratory phase. Because this binning process discretized time, cardiac 
phase, and respiratory phase, each data point was weighted by the distance of each point from the center of each 
bin. This process avoided the need of gridding the data and was straightforward to include in the soft-gating 
framework of equation (1). In this work, weights were computed using a simple Hanning window.

As an example, the weight for the n-th k-space data, placed into the t0 temporal bin, the c0 cardiac bin, and the 
r0 respiratory bin, was computed as

= × × × .w n t c r w n t w n c w n r w n[ , , , ] [ , ] [ , ] [ , ] [ ] (2)t c r d0 0 0 0 0 0

Function wt[n, t0] for the acquisition number n was computed as
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The repetition time (TR) specifies the time increment between each data point, and Tt specifies the width of 
the temporal window. Both quantities have the same time units, e.g. ms. Similarly, functions wc[n, c0] and wr[n, 
r0] were computed as
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Functions c[n] and r[n] respectively specify the cardiac phase and the respiratory phase of the n-th acquisi-
tion; these were normalized between 0 and 1. The number of desired cardiac phases and the number of desired 
respiratory phases are represented as Nc and Nr. Function c[n] was derived from the scanner’s cardiac triggering 
system. Function r[n] was computed from the respiratory motion derived from the Butterfly navigators. Function 
wd[n] considered other types of patient motion and was also derived from the Butterfly navigators. The processing 
of Butterfly navigators will be described in the subsequent paragraphs and is summarized in Fig. 8.

In order to extract motion from the multi-channel motion, the following steps were performed. First, the 
motion was estimated from the raw Butterfly k-space data using the method detailed in ref. 40. Second, each 
motion estimate from each coil element was filtered using a low-pass filter with a cut-off frequency of 95% the 
measured heart rate. This process removed both high-frequency noise and cardiac motion from the estimates. 
The 95% factor accounted for possible variations in the heart rate. A high-pass filter with a cut-off frequency of 
0.1 Hz was also applied to remove drifts in the motion estimates. For contrast-enhanced studies, contrast changes 
induced a drift in the estimates. Third, a single motion estimate d0[n] was extracted from the multi-channel data 
using an automated coil clustering algorithm41. For the Butterfly navigator, three-dimensional motion was meas-
ured; therefore, d0[n] is a 3-element vector. Finally, the norm of d0[n] was computed and then normalized by its 
standard deviation:

= .d n n
n

d
d

[ ] [ ]
std( [ ] ) (6)1

0

0
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For reconstructions R1 and R2, the respiratory motion was not resolved. Instead, soft-gating was used to sup-
press artifacts from respiratory motion. In this case, wr[n, r0] from equation (5) was set to 1 for all values of n and 
r0, and wd[n] was computed as

β=






> .
α β− −

w n e d n[ ] , [ ]
1, otherwise (7)

d

d n( [ ] )

Equation (7) is based on refs 40, 56. A histogram analysis was performed on d1[n], and the motion was cen-
tered on the motion position with the largest bin: d[n] = d1[n] − dref. Constant β specified the cutoff value where 
anything below this value was accepted as uncorrupted data with weights of 1. Any values below β were expo-
nentially weighted down by factor α. The values of these constants were based on reported literature40: α = 1.0 
and β = 0.25.

For the respiratory-resolved reconstruction R3, d[n] was further processed. With the cardiac signal sup-
pressed with the low-pass filter, the dominant signal in the motion estimate was respiratory motion. Thus, d[n] 
was processed to determine the triggers for respiration, and a peak finding algorithm was used to extract res-
piratory triggers. These respiratory triggers were used to derive the respiratory-phase function r[n], normalized 
between 0 and 1. To consider unaccounted patient motion, d[n] can be further filtered with a low-pass filter tuned 
with a cut-off frequency of 95% the derived respiratory rate. This final d[n] can then be centered based on the 
histogram analysis and finally used to compute wd[n] in equation (7). Given the extremely high subsampling fac-
tors when constructing the dataset in higher-dimensional space, we did not incorporate these respiratory-filtered 
soft-gating weights when resolving respiratory motion.

The VDRad design and the discretization of the multi-dimensional space resulted in multiple measurements 
for the same (kx, ky, kz, t, c, r) locations. To simplify the formulation, these repeated samples were replaced by the 
weighted average of the samples. The weights in this weighted average were the square of the soft-gating weights, 
(w[n, t0, c0, r0])2. The soft-gating weights were then replaced by the square root of the sum-of-squares of these 
weights. As described in more detail in the Supplementary Methods, this modification did not impact results, 
enabled the use of the original solver, and minimized memory needed for computation.

Post-processing analysis.  For flow quantification, phase-contrast images were first corrected for Maxwell 
phase errors60 and gradient nonlinearity61. Background phase errors were estimated from the static tissue using 
a third-order polynomial model and were subtracted from the velocity images. Different region-of-interests 
(ROI’s) were drawn to quantify blood flow velocities. Post-processing software (Arterys, San Francisco, 
California, USA) was used to assist in this image analysis. Additionally, standard deviation of the velocity meas-
urements was derived. The standard deviation was calculated based on velocities of the static tissue. Because the 
compressed-sensing formulation with total variation reduces variance in the cardiac-phase dimension, a single 
cardiac phase (normalized cardiac phase of 0.75) was used for the standard deviation calculations.

The resulting volumetric time-series magnitude images from R3 reconstructions were T1-weighted and provided 
the source data for pulmonary perfusion quantification62–64. An arterial input function was estimated from the main 
pulmonary artery. For each image pixel, the magnitude time series images were de-convolved by this input function 
using truncated singular value decomposition65. Pulmonary blood volume, pulmonary blood flow, and mean transit 
time were then derived from the resulting signals. An open-source OsiriX plug-in was used for this analysis66.

The time series images with dynamic-contrast-enhancement can also be used to assess kidney function using 
pharmacokinetic modeling. For the post-processing analysis of the kidneys, a three-compartment model67 was 
used to calculate the glomerular filtration rate (GFR). An ROI was drawn in the aorta to estimate the concentra-
tion time curves of the arterial input function. Specific details of the GFR calculations can be found in ref. 48. The 
focus of this study was to evaluate the feasibility of XD flow. Thus, correction for signal concentration linearity 
was not performed for either the pulmonary perfusion or kidney function analysis.

Image sharpness was quantified using the gradient entropy metric where lower values corresponded to 
sharper images49. The spatial resolution of the final image reconstruction was retrospectively lowered, and the 
metric was computed as a function of image resolution. This metric should ideally be monotonically increasing 
as a function of pixel size: lower resolutions (or larger pixel sizes) should result in reduced sharpness (or higher 
gradient entropy values). The true underlying spatial resolution can be considered as the image resolution with 
the minimum gradient entropy value. To provide an initial assessment of image quality, XD flow was compared 
with the original soft-gated 4D flow acquisition since the data acquisition was optimized for conventional 4D flow 
and this 4D flow has been extensively validated19, 25. For volumetric Cartesian imaging, k-space subsampling was 
performed in the (ky, kz)-plane; thus, subsampling impacts spatial resolution in only the (y, z)-plane. As a result, 
the image sharpness analysis was simplified by selecting only the center x-slice.

Code availability.  Reconstruction was implemented in MATLAB and C/C++ using Berkeley Advanced 
Reconstruction Toolbox (BART)68, 69. This toolbox can be found at http://mrirecon.github.io/bart.
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