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in addition to its roles as a physical barrier. Moreover, its ab-
normal changes like mutation, copy number alteration and 
mislocalization of molecules, have been associated with vari-
ous pathologic conditions such as cancers, genetic disorders, 
and neurodegeneration [2-6]. So, investigating its mechanism 
and disease-associated changes should be helpful for devel-
oping novel therapeutic strategies. These abnormal changes 
could be potential drug targets. Moreover, the necessity to de-
liver therapeutic DNA or proteins into the nucleus has arisen 
to treat diseases such as cancer and genetic diseases. Recent 
progresses in the research of the molecular mechanism for the 
nuclear transport via NPC, factors affecting the nuclear trans-
port and the application for therapeutics will be summarized 
in this review.

Nuclear Transport Cycle

Transportation of macromolecules including protein or 
RNAs between nucleoplasm and cytoplasm occurs through 
NPC in the nuclear envelope. NPC is highly selective and 
bidirectional transporter for various cargo molecules. There 
are four important factors for the nuclear transport: (1) nu-

Introduction

The nuclear envelope is a physical barrier which regulates 
the traffic between nucleoplasm and cytoplasm. It is a phos-
pholipid bilayer membrane which consists of two layers; inner 
and outer membrane [1, 2]. Inner and outer membranes are 
separated by the perinuclear space. The cytoplasm is con-
nected to the nucleoplasm via nuclear pores. Although small 
size of molecules (less than 30 kDa) freely move through the 
nuclear pore, bigger molecules need the help of special carrier 
proteins. In the nuclear pore, the nuclear pore complex (NPC) 
limits the transportation of macromolecules including protein 
or RNAs. 

Recently, new roles of the nuclear pore in gene expression, 
chromatin organization and DNA repair have been reported 
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cleoporins (NUPs) that are constituent proteins of NPCs, (2) 
RanGTPase that allows for active transport and directionality, 
(3) karyopherins (importin/exportin/transportin) that can 
recognize cargo molecules, (4) nuclear localization signals 
(NLSs) or nuclear export signals (NESs) in cargo molecules. 
NLSs or NESs are recognized by karyopherins. After briefly 
reviewing the overall process of nuclear transport cycle, four 
factors will be discussed.

Import cycle
First step of the nuclear transport cycle is the formation of 

importin-cargo complex. Importins can bind cargo molecules 
after recognition of their NLSs. Depending on types of NLSs, 
different importins are involved. For example, classical NLSs 
can be recognized by importin-α in the cytoplasm where 
RanGTP is very rare. Then, the N-terminus (importin-β 
binding domain) of importin-α binds to importin-β (Fig. 1A) 
[2, 7]. However, importin-β can directly recognize proline-
tyrosine (PY) NLS without importin-α, and this pathway is 
fast and efficient (Fig. 1B) [7-12]. 

After the formation of importin(s)-cargo complex, im
portin-β is specifically recruited to NPC in the nuclear pore 
and then the complex can pass through the nuclear pore. 
In the nucleoplasm, binding of RanGTP to importin-cargo 
complex facilitates dissociation of cargo, and then RanGTP-
bound importin is exported to the cytoplasm. Recycling of 
importin-α is mediated by a nuclear export receptor, cellular 
apoptosis susceptibility protein (CAS), but CAS is not neces-
sary to export of importin-β (Fig. 1). 

Export cycle
Cargos containing NES are recognized by exportins. 

The NES-bound exportin forms a complex with RanGTP. 
RanGTP is 100-fold more abundant in the nucleoplasm than 
in the cytoplasm. Binding of RanGTP to exportins induces 
the high affinity of exportin for its cargo molecule [2, 13]. The 
exportin-cargo-RanGTP complex specifically binds the dock-
ing site of NPCs and then passes through nuclear pore. Ran-
GAP in the cytoplasm hydrolyzes RanGTP in the complex, 
which leads to the dissociation of the complex (Fig. 1) [2, 13, 
14]. RanGDP is reimported into the nucleoplasm with help of 
nuclear transport factor 2 [13, 15].

Factors Affecting Nuclear Transport

Nucleoporins
NPC is a complex basket-like structure with huge molecu-

lar mass of 120 MDa in humans. It made up of NUPs with 
100–150 nm in diameter and 50–70 nm in thickness accord-
ing to the species [16-18]. Each NPC has a central hole (~30 
nm in diameter and ~50 nm in long) that connects between 
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Fig. 1. The nuclear transport cycle of proteins. (A) Import cycle for 
importin-αβ. (B) Import cycle for importin-β. (C) Export cycle. See 
main text for details. NLS, nuclear localization signal; NPC, nuclear 
pore complex; NES, nuclear export signal.
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the nucleoplasm and the cytoplasm [17]. Main structures of 
NPC include the inner pore ring, the nuclear and cytoplasmic 
rings, the nuclear basket, and the cytoplasmic basket. NPC 
is composed of multiple copies of 30–50 different NUPs and 
500–1,000 NUPs are integrated into the NPC structure. They 
are functionally conserved throughout eukaryotic cells [2, 17, 
19, 20]. 

NUPs serve as an architectural scaffold and a permeability 
regulator. Some NUPs have intrinsically disordered domains 
rich in repeating amino acid sequences such as FXFG (Phe-X-
Phe-Gly), Phe-Gly (FG), or GLFG (Gly-Leu-Phe-Gly), which 
act as docking sites for karyopherin-βs (importin or exportin) 
[16, 18-31]. These repeating sequences line the central hole 
and regulate the passage of cargo molecules. NUP62 com-
plex which consists of NUP62, NUP58, and NUP54 has been 
shown to include FG-repeats [32]. 

Ran
RanGTP gives the nuclear transport directionality. The as-

sociation of RanGTP with exportins moves the complex out 
of the nucleoplasm. However, its association with importins 
leads to the dissociation with cargo molecules. RanGTP is 
about 100-fold more abundant in the nucleoplasm than in the 
cytoplasm, which is possible due to the fact that Ran’s gua-
nine-exchange factor RCC1 is located in the nucleoplasm but 
Ran GTPase activating protein, Ran GAP in the cytoplasm [2, 
13]. 

Karyopherin: importin and exportin
More than 20 karyoperins in human have been reported. 

Among them, 11 karyopherins (importin-β, importin-β2, 
importin-4, importin-5, importin-7, importin-8, importin-9, 
importin-11, transportin-SR, importin-13, exportin-4) are 
involved in import or bidirectional transport of cargo mol-
ecules. Eight exportins (exportin-1–exportin-7, exportin-t) 
are involved in the export of cargo molecules. Each karyo-
pherin has its own specific cargo molecules. For example, 
CAS (exportin-2) contributes to the export of importin-α and 
exportin-t to the export of t-RNA [14]. 

Importin-β have high molecular flexibility because it can 
have structural changes using their tandem Huntingtin, elon-
gation factor 3 (EF3), protein phosphatase 2A (PP2A), and 
the yeast kinase TOR1 (HEAT) repeats which can be thought 
as a helical spring [17, 33-35]. A single HEAT motif consists 
of a pair of α-helices and both helices are amphiphilic. Be-
cause of an unusual hydrophobic core that supports intra-

molecular helix-helix interactions, the molecular structure 
of importin-β is highly flexible [15, 36, 37]. CAS has similar 
structure to importin-β and it is based on 19 HEAT repeats 
[15, 37].

Importin-α has been shown to contain a tandem series of 
Armadillo (ARM) repeats that are composed of an array of 
Trp, Asn, and acidic residues on the inner surface [2, 38-40]. 
Although ARM motif has three helical structures instead of 
two in HEAT motif, the superhelical 3D structure of ARM 
repeats is similar with that of HEAT repeats. 

Karyopherins can also export nucleotide motif including 
tRNA, miRNA, rRNA, viral RNA, and uridine-rich small 
nuclear RNAs with or without ribonucleoprotein as an adap-
tor [7, 14, 41-44]. However, structure of mRNAs is highly 
diverse unlike other RNAs, so that they can be transported by 
processing and assembly into mRNs [14].

NLS and NES

NLS
The best well characterized NLS is classical NLSs for the 

nuclear protein import. Classical NLSs contain monopartite 
or bipartite signals that can be recognized by importin-α. A 
first characterized classical monopartite NLS is simian virus 
40 (SV40) large T antigen (PKKKRKV) (Fig. 2). Bipartite 
NLSs have two clusters of basic amino acids sequence. The 
prototypical bipartite NLS is nucleoplasmin found in Xenopus 
laevis (KRPAATKKAGQAKKKK) (Fig. 2) [4, 31, 34, 45-49]. 
The classical NLS is thought as the typical NLS because it was 
the first NLS to be defined. 

In contrast to classical NLSs, PY-NLS has diverse sequence 
and large structure, nonetheless, importin-βs can recognize 
them by multiple attractions of weak affinities between NLS and 
importin [7, 21, 25]. PY-NLS sequences are composed of a loose 
N-terminal hydrophobic motifs and a C-terminal RX2-5PY motif 
[7, 35]. hnRNP A1, Hrp1 are the representative PY-NLSs (Fig. 2) 
[35, 50]. 

Karyopherin121 (Kap121) is one of the most essential for 
nuclear transport in Saccharomyces cerevisiae and it can medi-
ate transportation for diverse cargos [51, 52]. Recent studies 
demonstrated that the small lysine-rich NLSs (consensus 
sequences: K-V/I-X-K-X1-2-K/H/R) interact with Kap121 [51, 
52]. 

Transportin3 (Trn3) binds the cargo containing RS (Arg-
Ser) repeats domain especially phosphorylated RS repeats. In 
proteomic analysis, about 32% of Trn3 cargos have RS repeats 
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[51, 53]. Other cargos of Trn3 contain RE (Arg-Glu) or RD 
(Arg-Asp) motifs, which may imitate phosphoRS motifs [51]. 
According to identification of new cargos for importins, ad-
ditional consensus sequences for new classification will be 
required.

There are many other NLSs recognized by importin-α. 
Representative sequences from Borna Disease Virus p10 
protein and S. cerevisiae phospholipid scramblase 1 contain 
hydrophobic residues (Fig. 2) [17, 54]. Importin-β also binds 
various other NLSs included in CREB, ribosomal proteins, 
the human immunodeficiency virus Rev and Tat, the human 
T-cell leukemia virus type 1 protein Rex, PTHrP, cyclin B1, 
Smad3, SREBP-2, and TRF (Fig. 2) [3, 7-13, 35-37, 50, 55-58].

NES
The consensus sequence for NESs is Φ1-X(2-3)-Φ2-X(2-

3)-Φ3-X-Φ4 motif (Φ: represents hydrophobic residues L, I, 
F, M, or V and X: any amino acid). Different exportins have 
their specific cargo molecules. For example, CAS (exportin-2) 
transports importin-α. CRM1 (exportin-1) is a ubiquitous 
nuclear export receptor containing hydrophobic residues. 
Binding site of CRM1 consists of five pockets [1, 13, 16, 18, 
23, 24, 27, 30]. CRM1 can recognize relatively diverse mol-
ecules. Overexpression of CRM1 was noted in many types of 
cancer [2, 19, 20]. 

Structure of NLS-bound complex
Several factors such as NLSs, NESs, and 3D structures 

need to be considered to improve the efficiency of nuclear 
transport. NLSs are well-studied part in the nuclear transport, 
and commercial NLS peptides including HIV-Tat, penetratin, 
and (Arg)9, are available for the gene delivery. However, as 
the importance of conformation is being emphasized, many 
researches have focused on the 3D structures.

NLSs can be recognized as linear and/or conformational 
signals by importins. The 3D structure of NLSs would be 
changed in NLSs-bound complex, which causes changes of 
binding affinity with importin. Many groups has made many 
efforts to bridge the gap between 3D structure and binding 
capacity of complex (Fig. 3) [41-44]. Karyopherins have dif-
ferent binding sites according to their subtypes and binding 
residues of certain karyopherin can be different according to 
different kinds of cargo. One study demonstrated that the C-
terminal and N-terminal structures of NLS significantly affect 
the efficiency of the nuclear transport as well as their binding 
affinity to importin [59, 60]. Kim et al. [61], compared with 
structurally modified SV40 NLS peptides. They made modi-
fied peptides from SV40 NLS by addition of cysteine, dele-
tion of cysteine, homodimerization, or circularization. These 
modifications showed different transfection efficiency accord-
ing to structures even though the NLS has same sequences. 

Classification NLSs Sequences NucPred

Classical NLSs

(importin- )�

PY-NLSs

(importin- )�

Non-classified

NLSs

Reference (NucPred)

SV40

Nuceloplasmin

SRY

hnRNP A1

Hrp1

BDV p10

PLSCR1

Ty1 Integrase

HIV-1 Rev

HIV-1 Tat

HTLV-1 Rex

Ste12

Pho4

Yap1

126 132
PKKKRKV

155 169
KRPAATKKAGQAKKKK

59 75
KRPMNAFIVWSRDQRRK

130
RPRRK

135

270
SSNFGPMKGGNRFFRSSGPY

289

506 532
RSGGNHRRNGRGGRGGYNRRNNGYHPY

5 20
LRLTLLELVRRLNGNG

257 266
GKISKHWTGI

595 602 625 632
SKKRSLED ... PPRSKKRI

35 56
RQARRNRRRRWR

48 59
GRKKRRQRRRAP

1 18
MPKTRRRPRRSQRKRPPT

606 615 644 651
KSAKISKPLH KNKEISMP...

144 150 157 164
KVTKNKS KRRGKPGP...

10 14 49 56
TAKRS KKKGSKTS...

Negative (non-nuclear) Positive (nuclear)

Fig. 2. Examples of NLSs and predictive location of NLSs. PY, proline-tyrosine; NLS, nuclear localization signal.
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Furthermore, although many researchers have tried dif-
ferent amount of NLS peptides which were fused with cargos 
and different locations for the nuclear delivery, the effects of 
them still require further study [59-61]. Overall, alteration of 
3D structure can change the binding affinity to importin and 
the conformation is a more important factor to be considered 
when we use NLS peptides for the nuclear delivery.

Clinical Significance of Nuclear Transport

In multiple cancers, changes in the expression of karyo-
pherins including importin-α2, CAS, importin-β1, expor-
tin-1, have been reported [2, 4, 6, 62]. Overexpression of 
exportin-1 has been associated with various cancers includ-
ing acute and chronic leukemia, multiple myeloma, ovarian 
cancer, pancreatic cancer, gastric cancer, sarcoma, melanoma, 
glioma, and cervical cancer [62]. A small molecule inhibitor 

for exportin-1 showed some beneficial effects in the clinical 
trial [62]. In cancer cells, exportin-1 played critical roles in 
exporting various tumor suppressor proteins including reti-
noblastoma protein, adenomatous polyposis coli, p53, p21, 
p27, FOXO, IκB, topoisomerase II, and PAR-4 [2, 6]. 

Furthermore, abnormal localization of proteins due to ab-
normalities in the nuclear transport, can cause various disor-
ders that involve protein aggregation, biosynthesis, or cell me-
tabolism [4, 6, 63-69]. For example, sex-determining region Y 
(SRY) is transported by a specific importin to the nucleus to 
activate testis-related genes. There are two NLS motifs in the 
DNA-binding domain of SRY that are called high-mobility 
group box. Mutations of NLS of SRY have been observed to 
be associated with Swyer syndrome. Swyer syndrome is a sex 
reversal disease of male caused by XY gonadal dysgenesis [4, 6, 
45, 48]. A similar alteration was reported in NLS of trichorhi-
nophalangeal syndrome type 1 gene in patients with tricho-
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rhinophalangeal syndrome type I [6, 69]. Additionally, altera-
tions in several NLSs of disease-related proteins have been 
identified; short stature homeobox in patients with Léri-Weill 
dyschondrosteosis, aristaless related homeobox in patients 
with X-linked lissencephaly, forkhead box P2 in patients with 
speech-language disorder [6, 65-67]. 

Therapeutic Applications of NLS

The necessity to deliver therapeutic DNAs or proteins into 
the nucleus has been increased to correct genetic or nuclear 
abnormalities. Although its efficiency is high, viral transduc-
tion showed several critical problems such as immunogenic 
response and safety risk. Non-viral methods are safe but their 
delivery efficiency are low [70].

To increase the efficiency of the nuclear delivery, NLSs 
have been used. Instead of long sequences of NLSs, research-
ers inserted short NLSs like SV40, (Arg)x or HIV-tat. Some 
studies developed a plasmid DNA containing the NLS of 
SV40, and thereby the transfection efficiency of the target 
DNA was increased [68, 70]. The insertion of NLS showed 
great results for the delivery of CRISPR/CAS system. For ex-
ample, Ramakrishna et al. [71], developed (Arg)9-mediated 
RNA-guided endonucleases (RGEN) delivery process [71-
74]. Furthermore, TAT-based gene delivery systems was also 
developed to enhance the efficiency of nuclear import [75]. 
Simple insertion of NLSs in the target molecules cannot be 
the solution for delivery to the nucleus, because NLSs can be 
hindered in inserted status. So, 3D structure of drugs should 
be considered for the nuclear targeting. 

Many researchers have tried to develop ideal drug deliv-
ery systems by using modification of NLSs [72, 73, 76, 77]. 
Based on previous results, several bioinformatic tools, such 
as NucPred, NLS Mapper, NESbase and NLSdb, have been 
developed about subcellular localization of proteins [78-83]. 
Using these tools, we can search the subcellular locations of 
targeting molecules. More importantly, users can predict sub-
cellular location of their own drugs containing NLSs by using 
NucPred website (http://www.sbc.su.se/~maccallr/nucpred/) 
[78]. Fig. 2 shows the predictive subcellular location of popu-
lar NLS sequences based on NucPred. 

Based on its clinical significance, further studies about 
roles and molecular mechanisms about the nuclear transport 
need to be done in the future study. How to improve the ef-
ficiency of NLSs for the nuclear delivery has been discussed. 
To enhance the delivery efficiency by using NLSs, several fac-

tors such as its types and 3D structures should be considered. 
If we can predict nuclear transport efficiency based on 3D 
structures of cargos-karyopherin complex, it might be very 
helpful to develop treatment methods. 
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