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AIMS
In vitro studies have demonstrated that formation of reactive oxygen species (ROS) contributes to the effect of bactericidal
antibiotics. The formation of ROS is not restricted to bacteria, but also occurs in mammalian cells. Oxidative stress is linked to
several diseases. This study investigates whether antibiotic drugs induce oxidative stress in healthy humans as a possible
mechanism for adverse reactions to the antibiotic drugs.

METHODS
This study contains information from two randomised, controlled trials. Participants underwent 1 week treatment with
clarithromycin, trimethoprim, phenoxymethylpenicillin (penicillin V), or placebo. Oxidative modifications were measured as 24-h
urinary excretion of 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and plasma
levels of malondialdehyde before and after treatment as a measurement of DNA oxidation, RNA oxidation, and lipid peroxidation,
respectively.

RESULTS
Clarithromycin significantly increased urinary excretion of 8-oxodG by 22.0% (95% confidence interval (CI): 3.6–40.4%) and
8-oxoGuo by 14.9% (95%CI: 3.7–26.1%). Further, we demonstrated that trimethoprim significantly lowered urinary excretion of
8-oxodG by 21.7% (95% CI: 5.8–37.6%), but did not influence urinary excretion of 8-oxoGuo. Penicillin V did not influence
urinary excretion of 8-oxodG or 8-oxoGuo. None of the antibiotic drugs influenced plasma levels of malondialdehyde.

British Journal of Clinical
Pharmacology

Br J Clin Pharmacol (2017) 83 1643–1653 1643

© 2017 The British Pharmacological Society DOI:10.1111/bcp.13261



CONCLUSION
Clarithromycin significantly increases oxidative nucleic acid modifications. Increased oxidative modifications might explain some
of clarithromycin’s known adverse reactions. Trimethoprim significantly lowers DNA oxidation but not RNA oxidation. Penicillin V
had no effect on oxidative nucleic acid modifications.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Formation of reactive oxygen species contributes to the effect of bactericidal antibiotics. The formation of reactive oxygen
species is not restricted to bacteria, but also occurs in mammalian cells.

• Oxidative stress is associated with several diseases e.g. type 2 diabetes, neurodegenerative-, and cardiovascular diseases.

WHAT THIS STUDY ADDS
• Clarithromycin significantly increases oxidative nucleic acid modifications in humans. Clinical studies are needed to
establish whether clarithromycin has safety issues in specific patient populations.

• Trimethoprim significantly lowers DNA oxidation but not RNA oxidation.
• Penicillin V has no effect on oxidative nucleic acid modifications.

Introduction

Antibiotic drugs are widely used against various infections,
are classified according to their accepted mechanism of
action, and are traditionally grouped in bacteriostatic or bac-
tericidal antibiotics. Bacteriostatic antibiotics prevent growth
of bacteria while bactericidal antibiotics kill bacteria [1].

In addition to the accepted mechanisms of bactericidal
antibiotic drugs, it has been demonstrated that formation of
reactive oxygen species (ROS) contributes to the bactericidal
effect, irrespective of their targets [2–9]. The production of
ROS is thought to be from activation of the tricarboxylic acid
cycle and thereby stimulation of the electron chain [2]. How-
ever, there is still no agreement on the clinical relevance of
the ROS production [10, 11]. The formation of ROS implies
a possible target effect of antibiotic drugs, and furthermore
raises the question of a possible mechanism for adverse reac-
tions (AR). It has been demonstrated that bactericidal antibi-
otics induce ROS formation not only in bacteria but also in
mammalian cells [12, 13]. Oxidative modifications are linked
to ageing [14] and several diseases e.g. type 2 diabetes (T2D)
[15], neurodegenerative diseases [16–18], and cardiovascular
diseases [19]. The elevated levels of oxidative modifications
are considered prognostic for mortality in patients with T2D
[20, 21] and also associated with development of lung cancer
in non-smokers [22] and oestrogen receptor positive breast
cancer [23]. However, it remains a subject of great interest
whether the elevated levels of oxidative modifications are
prognostic in neurodegenerative- and cardiovascular diseases
[24]. It is possible that elevated levels of oxidative modifica-
tions may contribute to drug AR; for example, the finding
that 2 weeks’ treatment with clarithromycin significantly in-
creases cardiovascular disease three years after treatment in
patients with stable coronary heart diseases [25].

Several studies have found an association between bacteri-
cidal antibiotic drugs and the production of ROS [2–9, 12, 13],
but this has not been found for bacteriostatic antibiotic
drugs [2, 3, 12, 13].

The aim of this study is to evaluate the effect of
clarithromycin, trimethoprim, and phenoxymethylpenicillin

(penicillin V) on oxidative modifications in healthy humans.
Clarithromycin and trimethoprim are both classified as
bacteriostatic antibiotic drugs, whereas penicillin V is a bacteri-
cidal antibiotic drug [1].

We measured three markers of oxidative modifications in
order to differentiate the effects in various cellular com-
partments. We used 8-oxo-7,8-dihydro-20-deoxyguanosine
(8-oxodG), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and
malondialdehyde (MDA) as measurement of intranuclear-
(DNA oxidation), cytosolic- (RNA oxidation), and plasma
oxidative modifications (lipid peroxidation), respectively
[26, 27]. The measurements were conducted before and
after exposure to the three antibiotics and placebo.

Methods
The present study provides information from two trials;
CLAROX (EudraCT: 2008-001299-61; ClinicalTrials.gov:
NCT00707330) and PENTRIOX (EudraCT: 2010-022762-27;
ClinicalTrials.gov: NCT02188472). Both trials have the same
inclusion criteria, study outcome, and sample size. The trials
are designed as randomised, controlled with cross-over or
parallel groups, respectively.

Trial design
CLAROX. CLAROX is a randomised, controlled, cross-over
study, where participants in random order received no
treatment or active treatment for 1 week separated by a 2-
week washout period.

The study has an open-label design to diminish logistic
and cost. The laboratory analyses were performed blinded to
treatment information.

Trial medicine was obtained from the Pharmacy of the
Capital Region of Denmark.

The trial design is illustrated in supplementary informa-
tion. Fasting participants underwent five visits at the trial site
after informed consent. (i) A screening visit to ensure the
participants eligibility to the trial. A blood sample and basic
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clinical tests includingmeasurement of blood pressure, pulse,
height, weight and an electrocardiogram (ECG) were
recorded. (ii) At the second visit, trial medicine was dispensed
to the participants. A 24-h urine sample and a blood sample
were collected. (iii) After the first treatment schedule, the
third visit took place. Participants delivered a 24-h urine sam-
ple, and a blood sample was collected. (iv) Before the second
treatment schedule, participants underwent a fourth visit.
Blood pressure and an ECG were recorded, and a blood sam-
ple was collected. (v) At the fifth and final visit, participants
delivered a 24-h urine sample, excess trial medicine, and a
blood sample was collected.

The trial was approved by the Regional Committee on
Biomedical Research Ethics (H-D-2008-026) and the Danish
Health and Medicines Authority. The trial was conducted in
accordance with the Declaration of Helsinki.

PENTRIOX. PENTRIOX is a double-blinded, randomised,
placebo-controlled study with three parallel groups. The
treatment arms consisted of treatment with trimethoprim,
penicillin V, and placebo, each for 1 week.

Trial medicine was randomised and labelled by the
Pharmacy of the Capital Region of Denmark.

The trial design is illustrated in supplementary informa-
tion. Non-fasting participants underwent three visits at the
trial site after informed consent. (i) A screening visit to ensure
the participants eligibility to the trial. A blood sample and ba-
sic clinical tests including measurements of blood pressure,
pulse, height, weight and an ECG were recorded. (ii) At the
start visit, trial medicine was dispensed to participants. A
24-h urine sample and a blood sample were collected. (iii)
At the third and final visit, participants delivered a 24-h urine
sample, excess trial medicine and a blood sample was
collected.

The trial was approved by the Regional Committee on
Biomedical Research Ethics (H-1-2010-099) and the Danish
Health and Medicines Authority. The trial was conducted in
accordance with the Declaration of Helsinki.

Participants
In both CLAROX and PENTRIOX, the trial population
consisted of healthy, Caucasianmales who were non-smokers
with a body mass index >18 kg m2 and <30 kg m2. The
exclusion criteria are available in supplementary informa-
tion, and were in general selected to ensure the safety of
participants as well as avoid possible influence on the
primary outcome, oxidative nucleic acid modifications.

Participants were recruited through approved advertise-
ment in local media, online, and in public places. Potential
participants who met the inclusion criteria received written
information in the form of the approved informed consent.

To ensure adherence, participants received a text message
as a reminder of the medicine intake. The participants an-
swered the text message after medicine intake, hereby
confirming adherence. Satisfactory adherence level of 65%
was predefined in the protocol. Returned medication was
destroyed at the trial site.

Participants were informed prior to the trial about possi-
ble side effects. They were told to contact an investigator if
they experienced any side effect. Adverse events were

registered after each treatment schedule. All adverse events
were reported at the end of the trials to the Danish Health
and Medicines Authority and the Danish National Commit-
tee on Biomedical Research Ethics.

Intervention
CLAROX participants received 1 tablet clarithromycin
(Klacid Uno; BGP Products, Maidenhead, UK) 500 mg once
daily for 1 week. The trial medicine was administrated with
a meal in the morning. Participants in the control schedule
received no treatment.

PENTRIOX participants received two tablets: 330 mg pen-
icillin V (Pancillin; Sandoz, Holzkirchen, Germany), 100 mg
trimethoprim (Trimopan; Orion Pharma, Espoo, Finland),
or placebo twice daily for 1 week. The trial medicine was ad-
ministrated with a meal in the morning and in the evening.

All trial medicine was administered in clinically relevant
dosages [28–30], and complied with GMP [31] and GCP regu-
lations [32].

Study outcomes
Primary outcomes. The primary outcomes were urinary
excretion of 8-oxodG and 8-oxoGuo as a measurement of
whole body DNA- and RNA oxidation, respectively [26].

The 24-h urine collection was sampled from 24 h prior to
the second, third and fifth visit in CLAROX and prior to the
second and third visit in PENTRIOX. The volume urine
collected in each container was recorded, well mixed and an
aliquot was stored at –20°C until analysis.

If participants recorded loss of a urine void, an estimated
value was added to the recorded diuresis. Satisfactory adher-
ence level of 75% was predefined in the protocol.

The analysis was done simultaneous by tandem mass
spectrometry with isotope dilution, details and quality con-
trol are reported elsewhere [33]. As mentioned by Henriksen
et al. [33], the lower limit of quantification for both 8-oxodG
and 8-oxoGuo was 1.0 nmol l–1. The average within-day pre-
cision (percentage of relative standard deviation) was 3.7 and
4.4%, and the average between-day precision was 2.3 and
4.0% for 8-oxodG and 8-oxoGuo, respectively. The accuracy
(percentage recovery) was 106.9 and 106.2% for 8-oxodG
and 8-oxoGuo, respectively [33].

Secondary outcome. The secondary outcome was plasma
levels of MDA as a measurement of lipid peroxidation [27].

Blood samples were collected in 10-mL heparin prepared
utensils. The samples were centrifuged for 10min and plasma
was transferred to three sample vials and stored at –80°C until
analysis. Details of sample preparation, analysis and quality
control are reported elsewhere [34]. In brief, plasma samples
were treated with phosphotungstic acid to remove other
compounds that may interfere with the assay. Subse-
quently, butylated hydroxytoluene, a chain-breaking anti-
oxidant that prevent peroxidation during the assay itself,
was added, and MDA reacted with thiobarbituric acid
(TBA 2.3 μmol l–1) in the presence of acetic acid (1.75 mol l–1)
for 1 h at 95°C to form the MDA(TBA)2 fluorescent adduct.
Following extraction with butanol, the genuine MDA(TBA)2
adduct was selectively quantified by high-performance
liquid chromatography (HPLC) with fluorescence detection
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(excitation, 515 nm; emission, 553 nm). The limit of quantifi-
cation was 0.1 μmol l–1 MDA and the within- and between-
day coefficients of variation for the entire assay were 8.2%
and 14.1%, respectively [34]. The analyses were performed
at Department of Veterinary Pathobiology, University of
Copenhagen.

Pretrial power calculation
With 10% coefficient of variation a sample size of 25 partici-
pants was estimated to provide 80% power, and to detect
8% increase in oxidative nucleic acid modifications at 5%
significance.

Due to possible dropout, it was decided to include 30 par-
ticipants in each trial.

Statistics
Data management and analysis were performed using R ver-
sion 3.2.2 [35].

Data was analysed per-protocol. Clinical and demo-
graphic characteristics were analysed using a Student t test
in CLAROX and one-way ANOVA test in PENTRIOX.

Primary and secondary outcome were analysed using a
paired t test in CLAROX and Student t test in PENTRIOX. Data
were investigated for normal distribution and verified using a
non-parametric test.

A two-sided P-value < 0.05 was considered statistically
significant.

Results

Study population and flow
CLAROX. Participant flow is illustrated in Figure 1. Twenty-
eight potential participants were assessed for eligibility. Two
potential participants were excluded by investigators due to

health issue: chronic inflammatory disease (one participant)
and cardiac disease (one participant). Twenty-six
participants were randomised. One participant was
withdrawn from treatment due to penicillin treatment of a
skin infection. Twenty-five participants successfully
completed the trial and their urine- and blood samples were
analysed.

Baseline clinical and biochemistry characteristics of the
participants are presented in Table 1. The characteristics were
within normal range and did not differ between groups, ex-
cept diastolic blood pressure which was significantly lower
in the group that received clarithromycin treatment followed
by control treatment (P = 0.02).

There was no significant difference in baseline urinary ex-
cretion of 8-oxodG (P = 0.10) or 8-oxoGuo (P = 0.44) between
the groups.

According to registration by trial participants, the overall
adherence of urine samples was 93%. According to a control
system based on phone text messages from participants, ad-
herence of medicine intake was 99%.

Twelve participants reported a total of 13 adverse events
(AE). Nine were evaluated to be related to the medicine
(AR), none were serious AE. Gastrointestinal reactions and
nausea were the most frequently observed events.

PENTRIOX. Participant flow is illustrated in Figure 2. One
hundred and twelve potential participants were assessed for
eligibility. Twenty-two of the potential participants were
excluded at screening visit due to: hypercholesterolaemia
(11 participants); elevated blood pressure (two participants);
elevated ALAT (two participants); isolated
hypertriglyceridaemia (one participant); hypopotassaemia
(one participant); previous heart arrhythmia (one
participant); murmur of the heart (one participant); use of
illegal drugs (one participant); and withdrawal for no given
reason (two participants).

Figure 1
Participants flow for the CLAROX trial
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Table 1
Baseline clinical and biochemistry characteristics (CLAROX)

Clarithromycin–control Control–clarithromycin P a

n 11 14

Age (years) 24.2 (3.0) 24.3 (2.0) NS

Weight (kg) 78.8 (5.4) 77.6 (6.2) NS

Height (m) 1.84 (0.05) 1.84 (0.05) NS

Body mass index (kg m–2) 23.4 (1.7) 22.9 (1.6) NS

Systolic blood pressure (mmHg) 127.2 (9.2) 126.7 (11.9) NS

Diastolic blood pressure (mmHg) 73.8 (4.8) 79.3 (5.6) 0.02

Pulse (beats min–1) 61.7 (8.8) 62.0 (11.3) NS

QTc interval (ms) 384.7 (32.3) 393.0 (31.1) NS

Total cholesterol (mmol l–1) 3.8 (0.6) 4.1 (0.7) NS

HDL cholesterol (mmol l–1) 1.5 (0.3) 1.5 (0.3) NS

LDL cholesterol (mmol l–1) 2.2 (0.6) 2.4 (0.5) NS

Triglycerides (mmol l–1) 0.8 (0.4) 0.8 (0.3) NS

Serum creatinine (mmol l–1) 78.8 (8.0) 79.3 (8.4) NS

Ferritin (μmol l–1) 131.5 (53.2) 110.3 (61.6) NS

Iron (μmol l–1) 19.4 (7.6) 22.0 (11.8) NS

Transferrin saturation 0.29 (0.11) 0.31 (0.17) NS

Potassium (mmol l–1) 4.0 (0.2) 4.0 (0.2) NS

Magnesium (mmol l–1) 0.9 (0.1) 0.9 (0.1) NS

Values are presented as mean (standard deviation)
aStudent t test; NS = not statistically significant.

Figure 2
Participants flow for the PENTRIOX trial
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Ninety participants were randomised to treatment. Two
participants withdrew due to personal reasons, and one par-
ticipant was excluded due to inadequate adherence.

Baseline clinical and biochemistry characteristics of the
participants are presented in Table 2. The characteristics were
within normal range and did not differ between groups.

There was no significant difference in baseline urinary ex-
cretion of 8-oxodG (P = 0.61) or 8-oxoGuo (P = 0.93) between
the groups.

According to trial participants, the overall adherence of
urine samples was 94%. According to a control system based
on phone text message from participants, adherence of med-
icine intake was 99%.

Seventeen participants reported a total of 23 AE. Ten were
judged to be related to the medicine (AR), none were serious
AE. Gastrointestinal discomfort was the most frequently ob-
served event.

Primary endpoints
Data for primary endpoints (8-oxodG and 8-oxoGuo) are pre-
sented in Figure 3.

Clarithromycin significantly induced DNA oxidation by
increasing urinary excretion of 8-oxodG with 22.0% (95%
CI: 3.6–40.4%) compared to control (P = 0.02). Trimetho-
prim significantly lowered urinary excretion of 8-oxodG
by 21.7% (95% CI: 5.8–37.6%) compared to placebo (P < 0.01).
There was no significant difference in urinary excretion of
8-oxodG following penicillin V treatment compared to
placebo (P = 0.63).

Clarithromycin significantly induced RNA oxidation
by increasing urinary excretion of 8-oxoGuo by 14.9%

(95% CI: 3.7–26.1%) compared to control (P = 0.01).
There was no statistically significant difference in urinary
excretion of 8-oxoGuo between placebo treatment and
trimethoprim treatment (P = 0.71) or penicillin V
treatment (P = 0.90).

Secondary endpoints
Data for secondary endpoint (MDA) are presented in Figure 4.

There was no statistically significance difference in MDA,
when treatment with clarithromycin, penicillin V, and tri-
methoprim was compared to control/placebo (P > 0.05).

Discussion
This study is the first to demonstrate that 1 week treatment
with clarithromycin increases oxidative nucleic acid modifi-
cations and 1 week treatment with trimethoprim lowers
DNA oxidation in non-infected humans. The bactericidal an-
tibiotic penicillin V does not influence oxidative nucleic acid
modifications.

Our study supports the finding that ROS production from
antibiotic drugs is not restricted to bacteria but also takes
place in mammalian cells [12, 13]. This is not an intended ef-
fect when administering the drugs. Increased levels of oxida-
tive modifications is linked to a number of different diseases
[16–19], and therefore increased oxidative modifications in
relation to antibiotic treatment need confirmation and fur-
ther exploration.

The biomarkers used to evaluate oxidative nucleic acid
modifications are 8-oxodG and 8-oxoGuo. The biomarkers

Table 2
Baseline clinical and biochemistry characteristics (PENTRIOX)

Placebo Penicillin V Trimethoprim P a

n 28 29 30

Age (years) 24.4 (2.9) 23.8 (3.0) 25.2 (2.9) NS

Weight (kg) 78.5 (8.9) 79.7 (8.0) 81.3 (9.2) NS

Height (m) 1.84 (0.05) 1.84 (0.05) 1.87 (0.07) NS

Body mass index (kg m2) 23.2 (2.1) 23.6 (1.9) 23.4 (2.3) NS

Systolic blood pressure (mmHg) 128.8 (7.0) 129.7 (6.7) 130.1 (8.2) NS

Diastolic blood pressure (mmHg) 77.0 (7.5) 77.5 (7.5) 77.0 (7.1) NS

Pulse (beats min–1) 66.2 (9.1) 67.2 (12.8) 68.2 (12.7) NS

Total cholesterol (mmol l–1) 4.4 (0.7) 4.2 (0.6) 4.2 (0.6) NS

Serum creatinine (mmol l–1) 78.7 (11.8) 78.1 (12.3) 79.3 (8.7) NS

Ferritin (μmol l–1) 126.1 (80.9) 110.3 (74.9) 120.9 (71.6) NS

Iron (μmol l–1) 18.8 (6.9) 21.4 (8.8) 21.7 (5.4) NS

Transferrin saturation 0.28 (0.12) 0.32 (0.13) 0.34 (0.09) NS

Haemoglobin (mmol l–1) 9.5 (0.5) 9.4 (0.6) 9.4 (0.5) NS

Folate (mmol l–1) 14.7 (7.4) 13.9 (6.4) 14.4 (5.8) NS

Values are presented as mean (standard deviation)
aOne-way ANOVA; NS = not statistically significant
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are both clinically relevant: 8-oxodG has been identified as a
biomarker associated with development of lung cancer in
non-smokers [22] and development of oestrogen receptor
positive breast cancer [23]; and 8-oxoGuo is associated with
overall mortality in patients with type 2 diabetes [20, 21].

The clinical importance of RNA oxidationmight be explained
by the observation that RNA oxidation is able to induce cellu-
lar apoptosis in human cell lines [36] and translational errors
in animal models [37], even though the qualitative effect
remains unknown.

Figure 3
Values of urinary excretion of 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG; solid) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo; open) for
each participant after treatment. The data are further denoted asmean (blue circle) and standard deviation (blue line). Clarithromycin significantly
increased urinary excretion of 8-oxodG and 8-oxoGuo compared to control. Trimethoprim significantly lowered urinary excretion of 8-oxodG but
not 8-oxoGuo compared to placebo. Penicillin V had no significant effect on urinary excretion of 8-oxodG or 8-oxoGuo compared to placebo

Figure 4
Values of plasma malondialdehyde (MDA; solid) for each participant after treatment. The data are further denoted as mean (blue circle) and stan-
dard deviation (blue line). There was no significant difference in MDA, when treatment with clarithromycin, penicillin V, and trimethoprim was
compared to control/placebo

Antibiotics and oxidative stress
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Neurodegenerative and cardiovascular diseases are also
associated with elevated levels of oxidative modifications;
however, the prognostic value of elevated oxidative modifica-
tions remain unknown in these diseases [24].

We did not investigate the effect of clarithromycin on glu-
tathione – an important nonenzymatic antioxidant [14]. The
effect of clarithromycin on glutathione is an important
subject for further research, since paracetamol depletes liver
glutathione [38] and some patients have an inherited
glucose-6-phosphate dehydrogenase deficiency that reduces
the level of glutathione [39].

The observed effect of clarithromycin on urinary excre-
tion of 8-oxodG and 8-oxoGuo compared to other lifestyle
habits and diseases might seem small. Smoking increases uri-
nary excretion of 8-oxodG by 50% [40], untreated patients
with hemochromatosis have a 2.5-fold increased urinary
excretion of 8-oxoGuo [41], and patients with type 2 diabetes
have a 2-fold increased urinary excretion of 8-oxoGuo in
highest quartile compared to the lowest quartile associated
with increased mortality [21]. However, taking into account
the short-term exposure compared to long-term lifestyle
habits and chronic diseases the effect of clarithromycin treat-
ment may still be relevant, particularly if certain organs are
more affected than others.

There are several adverse reactions related to clarithromycin,
where the mechanism is unknown. The CLARICOR trial
demonstrated that 2 weeks’ treatment with clarithromycin
500 mg/day showed a significant increase in cardiovascular
disease (i.e. cardiovascular mortality, myocardial infarction,
unstable angina, cerebrovascular attack, or peripheral vascular
disease) 3 years after treatment in patients with stable coronary
heart diseases [25]. However, the effect of clarithromycin on
cardiovascular disease is not present, when participants were
treated with statins at entry [42]. The fact that our results
illustrate how 1 week of clarithromycin treatment increases
oxidative nucleic acid modifications, and that oxidative modi-
fications are linked to cardiovascular diseases [19] make us
hypothesize that the CLARICOR results [25] relate to
increased oxidative nucleic acid modifications.

Even though statins lower calcium-induced oxidative
modifications [43], simvastatin did not reduce oxidative
modifications in healthy humans [44]. The limited and
inconsistent literature exploring a possible antioxidant effect
of statins are not sufficient to rule out whether the reversed
effect of statins in the CLARICOR results could be explained
by an antioxidant effect by the statins.

In addition, the present study demonstrates that trimeth-
oprim lowers DNA oxidation but not RNA oxidation. To our
knowledge, this is the first time a drug treatment has been
found to lower the urinary excretion of 8-oxodG. The result
was unexpected, because methotrexate with same effect on
folate as trimethoprim, although more pronounced,
increases oxidative modifications [45]. Further, the result is
at variance with a previous in vitro study, where trimethoprim
increased DNA damage measured by tail percentage in comet
assay at dosage of 100 μg/mL in rainbow trout gonad-2 cells,
and had no effect on DNA damage in Chinese hamster
ovary-K1 cells [46]. Our finding is worth noting, since
increased levels of urinary excretion of 8-oxodG have been
proposed to be associated with the development of certain
lung and breast cancer [22, 23].

Antibiotic drugs cause bacterial death. Therefore, it
could be questioned if bacterial death increases the urinary
excretion of 8-oxodG and 8-oxoGuo, thus acting as a
possible confounder of the results in this study. However,
previous studies have demonstrated that increased cell
turnover does not increase urinary excretion of 8-oxodG
[47–49]. This finding supports the accepted hypotheses that
urinary excretion of 8-oxodG is derived from repair of DNA
oxidation [50], and we do not expect bacterial death to
influence the result. To our knowledge, no studies have
explored cell turnover as a possible confounder to urinary
excretion of 8-oxoGuo.

MDA is a biomarker of lipid peroxidation. ROS react with
polyunsaturated acids and formsMDA as an end product [51].
Surprisingly, none of the investigated antibiotics had any sig-
nificant effect on the level of MDA. From this we conclude
that: either the antibiotics do not induce lipid peroxidation
measurable as MDA at the concentrations achieved in this
study or oxidative modifications may be compartmentalized
in the organism and within the cell. Although unbound
MDA has been shown to be distributed relatively freely by
passive diffusion despite its reactivity, most tissue and plasma
MDA is considered to be protein bound [52, 53]. However, in
the present study, we measured total MDA.

Previous studies have shown that MDA is a valuable
marker on a group base, in particular when measured by spe-
cific assays [27]. Thus, the finding underlines that the term
oxidative stress is relatively unspecific [54] and the notion
that a number of biomarkers are necessary to understand
the pathogenesis of different diseases that relates to oxidative
modifications [51].

In order to achieve valid results, when measuring urinary
excretion of 8-oxodG and 8-oxoGuo, the methodology is
essential. Enzyme-linked immunosorbent assay (ELISA)
measurements are frequently used, because the method is
inexpensive and easy to use. However, the method is limited
by the lack of specificity (probably due to unspecific antibodies
[55]) compared to chromatography-based techniques such
liquid chromatography coupled with electrochemical detec-
tion (LC-EC) or coupled with tandem mass-spectrometry
(LC-MS/MS) [56]. Thus, the mean values of the ELISAmethods
have turned out to be higher than the values produced by the
chromatographic methods [57, 58] and the association
between the methods are weak [59]. The specificity of the
ELISAmethod can be improved by a longer incubation at lower
temperature i.e. 4°C, but there is still discrepancy between the
methods [55]. Liquid chromatography coupled with tandem
mass-spectrometry gives very high specificity and requires
little sample preparation and is thus preferred to determine
urinary excretion of 8-oxodG and 8-oxoGuo. The specificity
of the method may be further improved by using ultra-HLPC
and a qualifier ion [56].

The same pattern is found in regards of methods to deter-
mine MDA. Colorimetric assays based on the TBA reaction or
other conjugation reactions are frequently used because of
their simplicity and low cost. However, the TBA and other
colorimetric MDA assays lack specificity and has been shown
to detect multiple specimens unrelated to MDA. In the litera-
ture, this has given rice to reference values that differ up to
two orders of magnitude from the more reliable methods
based on HPLC [27].
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It has been widely accepted, that only bactericidal antibi-
otic induces ROS formation, hence contributing to the antibi-
otic effect in bacteria [2–9], and this is also demonstrated in
mammalian cells [12, 13]. Our study does not investigate
in vitro mechanisms, but the effect on whole body level.
Therefore, the study might not detect changes in particular
cells or a particular organ. However, it is surprisingly that
clarithromycin, a bacteriostatic antibiotic, increases oxida-
tive nucleic acid modifications which is not seen, when
participants are treated with penicillin V, a bactericidal
antibiotic. This finding is at variance with the well-
established hypothesis that only bactericidal antibiotic in-
duces ROS formation – at least when the effect is measured
on a whole-body level in humans. Our study design does
not allow an explanation of the underlying cellular mecha-
nisms. However, we hypothesize that compartmentalization
within the cell and organism of oxidative modifications
could explain the inconsistence between the markers of lipid
peroxidation and oxidative nucleic acid modifications. If this
is the case, our results suggest that clarithromycin only
increases intracellular oxidative modifications in a compart-
mentalized fashion.

Strengths and limitations
The strengths of the trials are the controlled and randomised
trial designs, and the high level of adherence. There are
limitations to our study. The trials have rather small sample
sizes, and the open-label design in the CLAROX trial could
result in possible placebo effect and observer bias. However,
the urine adherence collection is recorded with no difference
between the groups, and the outcome of the trial is analysed
without knowledge of the treatment.

Conclusion
In conclusion, we found that penicillin V has no effect, but
clarithromycin increases whole body RNA and DNA oxida-
tion in healthy humans. This finding raises the question
whether increased oxidative modifications could explain
some of the adverse reactions seen in relation to
clarithromycin treatment.

To our surprise trimethoprim lowers DNA oxidation in
healthy participants. To our knowledge, this is the first treat-
ment found to lower the urinary excretion of 8-oxodG, and
merits verification and further investigation in future studies.
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