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Abstract

Background—Structure profiling experiments provide single-nucleotide information on RNA 

structure. Recent advances in chemistry combined with application of high-throughput sequencing 

have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented 

opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-

increasing diversity and complexity have been generated, which give rise to new challenges in 

interpreting and analyzing these data.

Results—We review current practices in analysis of structure profiling data with emphasis on 

comparative and integrative analysis as well as highlight emerging questions. Comparative 

analysis has revealed structural patterns across transcriptomes and has become an integral 

component of recent profiling studies. Additionally, profiling data can be integrated into traditional 

structure prediction algorithms to improve prediction accuracy.

Conclusions—To keep pace with experimental developments, methods to facilitate, enhance and 

refine such analyses are needed. Parallel advances in analysis methodology will complement 

profiling technologies and help them reach their full potential.
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INTRODUCTION

RNAs are known to play essential roles in diverse cellular functions, extending well beyond 

the transfer of information from genes to proteins [1,2]. For example, small non-coding 

RNAs such as microRNAs and small interfering RNAs have regulatory roles in gene 

expression [3]. Long non-coding RNAs are also widely found in various regulatory roles at 
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both transcriptional and post-transcriptional levels [4]. RNA function is closely linked with 

its ability to fold into and convert between specific complex structures. In fact, determining 

structure has become a crucial step in understanding RNA function [5]. Accurate and high-

resolution structure models have been traditionally obtained using comparative sequence 

analysis or experimental techniques, such as X-ray crystallography and nuclear magnetic 

resonance (NMR) [6]. However, these methods require considerable manual labor and suffer 

technological limitations, which have precluded their use beyond a small scale [7]. 

Computational structure prediction from sequence information is a broadly applicable 

alternative that has been widely used [8,9], but reported structures often suffer from poor 

accuracy.

Structure profiling (SP), also known as structure probing or chemical probing, refers to a 

family of experiments that characterize RNA structure [10,11]. In these experiments, local 

structural characteristics are gleaned using structure-sensitive reagents that modify RNAs at 

nucleotide level. Well-studied reagents include dimethyl sulfate (DMS) [12], kethoxal [13], 

hydroxyl radicals [14], diethyl pyrocarbonate (DEPC) [15], CMCT [16], lead (II) [17,18], 

nucleases [19] and SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) 

[20]. Until very recently, limitations of probing reagents as well as sequencing and 

informatics challenges restricted SP to select few RNAs studied individually and primarily 

under in vitro conditions. The newest generation of SP experiments utilizes high-throughput 

sequencing techniques, which provide unprecedented multiplexing capacity in a cost-

effective and automated manner. These advances have been used to study RNAs of varying 

lengths in vitro and in vivo, and more recently at transcriptome scale [21–42]. Despite 

shared principles, experiments differ in the information they extract and in the statistical 

properties of their measurements. Experimental protocols for SP and their biological 

applications have been reviewed previously; see, for example [11,43– 46].

Sequencing readouts from SP experiments are analyzed to extract structural parameters of 

interest for each nucleotide, in terms of its reactivity to the probing reagent. Nucleotide-level 

reactivity estimates are subsequently used to answer biological questions of interest, which 

may entail further analysis and interpretation. In this article, we focus on approaches to 

using reactivity data for comparative and integrative analysis — a central theme in recent 

studies. Comparative analysis of SP data has revealed structural patterns across different 

levels, ranging from low-resolution transcriptome level to high-resolution nucleotide level. 

Each level may warrant specialized analysis methods. Note that even at the same level, the 

ideal approach could possibly differ depending on the context and questions asked. We 

discuss three different contexts where technical, biological and systematic replicates of SP 

data are available. In addition to comparative analysis, we also review current progress in 

data-directed structure prediction, which is the most straightforward application of SP data 

in structural RNA biology. Unlike X-ray crystallography and NMR, in which RNA structure 

is explicitly modeled, SP does not directly reveal the pairing state of a nucleotide nor its 

pairing partner. However, it can complement structure prediction algorithms to enhance their 

performance [47,48].

This review is organized as follows. We begin with a discussion of shared principles of SP 

experiments and devote the bulk of the article to their data interpretation and analysis. We 
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review current practices and principles in reactivity calculation. We then discuss recent 

approaches and emerging questions in comparative and integrative analysis, followed by 

discussion of quality control in large-scale SP datasets. Next, we review algorithms for 

secondary structure prediction and efforts to leverage SP data to improve their performance. 

Recent progress in public repositories, analysis tools and visualization platforms is also 

described.

OVERVIEW OF STRUCTURE PROFILING EXPERIMENTS

The general goal of an SP experiment is to obtain nucleotide-resolution structural 

characteristics of all RNAs in a sample [49]. Structural characteristics in the vicinity of a 

nucleotide are reflected in local stereochemical properties such as nucleotide dynamics, 

solvent accessibility and electrostatic environment [11,50]. In particular, pairing state of a 

nucleotide is known to be correlated with these stereochemical properties [51]. SP 

experiments utilize reagents that are sensitive to local stereochemistry [11]. These reagents 

react with nucleotides such that the reactivity to any particular nucleotide depends on its 

local stereochemistry, which in turn is affected by its pairing state. SP experiments aim to 

measure the sequence of reactivities corresponding to nucleotides of each transcript. High 

and low reactivities are indicative of unpaired and paired nucleotides, respectively [52]. 

Hence, it is understood that the sequence of nucleotide reactivities, henceforth called 

reactivity profile, is a representation of a transcript’s structure [53].

Most sequencing-based SP techniques share a common workflow (Figure 1) [43,44]. To start 

with, a sample of RNAs is allowed to react with a structure-sensitive reagent, resulting in 

chemical modifications of nucleotides. The degree of modification at each nucleotide is 

detected by reverse transcription (RT), which either stops or proceeds but introduces a 

mutation at modified nucleotides. The resulting cDNA library is sequenced and reads are 

mapped to target RNA sequences. Then, RT stops or mutations are counted for each 

nucleotide. To measure background noise in RT stops or mutations, parallel to the 

experiment, a control assay is similarly performed wherein the RNAs are not treated with 

reagents. This control assay also yields a stop or mutation count summary for each 

nucleotide. Counts from experiment and control assays are then combined to obtain 

reactivity profiles for all RNAs in the sample.

Despite these shared principles, measured reactivities are influenced by numerous 

intertwined factors that all impact the variability of readouts [54]. In fact, it has been found 

that single nucleotide variants can lead to substantially different reactivity profiles [55,56] 

and that identical sequences can have different reactivity profiles under different conditions 

[40,57,58]. Comparison of reactivity profiles reveals that quantitative differences persist 

even in the absence of structural differences between RNAs from one sample to another 

[54,59]. Listed below are factors that influence reactivity profiles.

Technical factors

Numerous technical factors add to variability in observed profiles. First, chemical reactions 

involved in SP occur in presence of limited quantities of reagents/transcripts. Concentrations 

of reagents are often controlled deliberately to limiting amounts to achieve desirable reaction 
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kinetics [11]. In addition, many RNAs of interest are present in limited quantities [28]. As 

such, the reactions feature inherent stochasticity [54,60]. Secondly, these reactions are 

sensitive to stereochemistry and solvent conditions [11,61]. Nevertheless, they often occur in 

complex and dynamic solution environments. For example, RNAs often feature a dynamic 

ensemble of co-existing structures in vivo interacting with proteins and other biomolecules 

[62–64]. However, SP captures only the aggregate profile for all these structures, combining 

influences from intermolecular interactions [65]. In addition, cDNA library preparation 

involves numerous steps such as adapter ligation, reverse transcription and PCR, which also 

give rise to stochasticities. Finally, readouts from sequencing machines are also affected by 

stochasticities [54,66,67]. These factors collectively contribute to variance in reactivity 

profiles. In fact, they contribute to variance in any other parameter of interest that is 

estimated from data, e.g., Gini index of counts/reactivities [26,40,68]. Variance contribution 

of technical factors to any parameter of interest can be estimated by performing multiple 

replicates, called as technical replicates of experiment-control study, starting from 

biologically indistinguishable RNA samples. We refer to variance in estimates observed 

purely due to said technical factors as technical variation [69–71].

Biological factors

RNAs with significant structural diversity have been subjects of recent studies. For example, 

non-coding RNAs (ncRNA) are known to be highly structured, while mRNAs are thought to 

have a lesser degree of structure. Moreover, within an RNA, structure could significantly 

vary from one region to another. For example, mRNAs are believed to be less structured in 

protein coding regions than in untranslated regions [40]. Additionally, RNA structure is 

sensitive to factors such as solvent conditions, ligand and salt concentrations, temperature 

variations and interactions with proteins [61]. Should any of these factors differ between 

studies, detectable differences in the estimated reactivities may be observed. For example, 

reactivity profiles for the same transcript have been found to differ between in vitro and in 
vivo conditions [40,68,72]. We refer to variance of an estimate observed purely due to 

biological factors as biological variation. Additionally, it is to be noted that biological 

variation might be caused by differences in RNA-protein interactions besides structural 

differences [73]. Proteins can cover certain stretches of nucleotides, thereby influencing their 

reactivities to certain reagents. Two RNA samples known to have come from different 

biological sources are called biological replicates [69–71]. These contain information about 

biological differences between the samples.

Systematic factors

For biologically identical RNAs, reactivity measurements obtained in one experiment can 

differ from the profiles obtained through a different experimental protocol [53,74]. Technical 

replicates do not capture these variations, as they do not differ in protocol steps. Yet, such 

variations do not originate due to biological factors but rather can be attributed to 

discrepancies in key steps. For example, many current methods differ in choice of probing 

reagent. In fact, a variety of reagents are available, such as DMS, kethoxal, hydroxyl radical, 

1M7, NMIA, NAI and NAI-N3, but each has its pros and cons [11,22,40,75]. These reagents 

differ in their stereochemical characteristics and reaction mechanisms. Consequently, 

reactivity profiles may reflect these differences. In addition, many reagents do not probe all 
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nucleotides as well as feature biases that cause different reactivities, depending on 

nucleotide type, even in the absence of structural differences [11]. Besides choice of probing 

reagent, protocols often differ in priming method, modification detection approach (e.g., 

stop/mutation), ligation strategy, enrichment scheme, sequencing mode (single/paired-

ended), and reactivity estimation method among others. These are a few noteworthy steps 

having equally plausible alternatives. Many of these steps contribute to biases, which 

interplay with other steps to result in miscellaneous effects on parameter estimates [54]. 

Nevertheless, biologically identical RNAs can be studied using different protocols to obtain 

detailed and comprehensive insights [74]. We refer to experiments involving SP of 

biologically indistinguishable samples using different protocols as systematic replicates and 

variances originating due to differences in protocols as systematic variation.

ESTIMATION OF STRUCTURAL PROFILE

As mentioned earlier, sequenced reads from both experiment and control assays are 

summarized as count of stops or mutations for each nucleotide. However, pernucleotide 

counts are not directly comparable because they can differ in magnitude due to a variety of 

factors. The number of reads mapped to a transcript, also known as its coverage, varies 

between transcripts due to dramatic differences in their relative abundances, which often 

range over five orders of magnitude [28,76]. Additionally, priming or ligation biases 

contribute to sequence-specific variations in counts within the same transcript 

[22,54,59,77,78]. Counts may also differ due to background noise in RT stops and 

mutations. In fact, for the same nucleotide between experiment and control, counts may not 

be comparable due to difference in sequencing depths. For these reasons, counts are 

processed into normalized reactivities, which are assumed to be comparable across 

transcripts and replicates.

Reactivity estimation methods differ between studies but share the following conceptual 

framework (see Figure 1). First, counts are adjusted to account for variations in coverage, 

yielding two detection rates per nucleotide — one for experiment and one for control. 

Second, comparison of detection rates yields an estimate of the degree of modification, or 

raw reactivity. Third, raw reactivities are normalized to ensure that values for all transcripts 

and replicates thereof span the same interval.

Detection rates

Detection rates are calculated to account for variations in coverage. Notably, variations in 

coverage exist at all levels. For example, substantial coverage differences have been noted 

between rRNAs and many mRNAs [28]. Significant differences in coverage also exist from 

one transcript to another within the same functional class. Additionally, within a transcript, 

coverage can be considered on regional basis (e.g., coverage of the 5′ untranslated region or 

the coding region, or 3′ end, etc.), sequence basis (e.g., more coverage in GC rich regions 

due to priming bias), or per-nucleotide basis. In general, coverage differences can be noticed 

at all levels of organization. Analysis methods in various studies differ in the level of detail 

at which they account for coverage variations. Many studies consider coverage variations 

between transcripts as significant while assuming uniformity of coverage within each 
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transcript. Higher coverages for a transcript may be a result of its over-abundance in the 

sample or of priming biases among other factors. In such cases, counts corresponding to 

nucleotides of the transcript may be assumed to be proportionally higher. Hence, several 

studies adjust counts by their mean to account for coverage bias [28,30,31,35,36,55]. 

Additionally, Ding et al. [28] take the logarithm of counts to make count distribution 

symmetric. Others note that there could be local biases within the transcripts. For example, 

Rouskin et al. [26] adjust counts for each nucleotide by maximum counts in a local window. 

In fact, several studies [22,25,40,60,79,80] have accounted for nucleotide-level coverage 

variations. Through these adjustments, detection rates are estimated for both experiment and 

control.

Raw reactivities

Detections in control are attributed to noise in RT while detections in experiment arise from 

noise in RT as well as from modifications at nucleotides. Hence, it is expected that at any 

nucleotide, detection rate will be higher in experiment. One core assumption is that 

structure-sensitive modifications contribute additively to a background level of detection 

rates. Reactivities are therefore often calculated by subtracting detection rate in control from 

that in experiment [22,28,40,60,80]. Alternatively, reactivities have been estimated as odds 

ratio of experiment to control detection rates [35]. To control the range of reactivities, others 

take the logarithm of the odds ratio [30,31,36,55,81]. Occasionally, detection rates in 

experiment are found to be less than their counterparts in control. In such cases, a basal 

reactivity value of 0 (if subtracting detection rates) or 1 (if taking ratio) is assigned. This is 

done because the detection rate due to noise is often very low and if detection rates remain 

comparable or lower in the presence of modifications, it indicates negligible degree of 

modification.

Normalized reactivities

Profiles from different protocols could span disjoint intervals even for the same RNA. In 

fact, for different RNAs in the same experiment, profiles could span disjoint intervals 

because of biological variation. Raw reactivities are not considered comparable in absolute 

magnitude. Hence, all profiles are normalized such that the average reactivity of 

approximately 10% of the most reactive nucleotides is 1, excluding few unusually reactive 

nucleotides that are considered outliers [47]. Outliers can originate in datasets due to a 

variety of reasons, such as excessive degradation or over-modification at certain nucleotides, 

or over-representation of certain fragments due to various inherent biases in protocols. In 

fact, such hyper-reactive sites often appear in datasets [51,82].

Accordingly, most current approaches to normalization begin with identification of outliers 

in reactivity estimates [83]. This is done by either box plot analysis whereby reactivities 

greater than 1.5 times the interquartile range are deemed outliers [47,82], or by assuming 

that reactivities beyond a certain percentile are outliers [47]. Outliers are either ignored [47] 

in the process of calculating normalization constant or winsorized [21,26,36]. To estimate a 

normalizing constant, one approach is to take the mean of values greater than a certain 

percentile after removing outliers. For example, 2%–8% method assumes that the top 2% of 

reactivities are outliers and normalizes with mean of the next 8% of highest reactivities [47]. 

Choudhary et al. Page 6

Quant Biol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The winsorization approach aims to scale reactivities such that they range from 0 to 1 for all 

transcripts. Hence, after winsorization, the highest reactivity is chosen as the normalizing 

constant [21,26,36].

In the majority of analysis methods, the above workflow is preceded by conventional read 

alignment and counting routines. Recently, these pre-processing steps were integrated with 

reactivity estimation, such that counting and estimation are resolved simultaneously [79]. 

This is especially attractive in situations where multimapping reads (that is, reads which 

align to multiple sites in a transcriptome) abound, e.g., in studies of splicing isoforms. While 

common remedies discard such reads or allocate them uniformly among plausible alignment 

sites, Li et al. [79] expand on prior modeling and statistical inference work in RNA-Seq 

[84,85] and in SHAPE-Seq analyses [80] to address this issue. Another extension of the said 

statistical modeling work on SHAPE-Seq has been recently published by Selega et al. [81]. 

This method scores significance of modification levels from stop counts and nucleotide-level 

coverages under an assumption that modification states do not randomly switch, i.e., 

significantly reactive/unreactive nucleotides tend to appear in continuous stretches. The 

assumption is enforced using a Hidden Markov Model with transition probabilities based on 

empirically derived expected lengths of reactive and unreactive contiguous stretches in a 

training dataset.

COMPARATIVE ANALYSIS

Before the advent of high-throughput sequencing, probing was mostly applied to select 

highly structured ncRNAs under in vitro conditions. Recent advances have dramatically 

expanded the scope of SP and diverse RNAs can now be studied in biologically relevant 

conditions. In fact, applications of SP to numerous transcripts and transcriptomes have 

revealed novel insights [2,44]. Most such applications feature comparative analysis. Several 

recent examples of such analysis can be noted: i) Spitale et al. [40] compared mRNA 

profiles and identified conserved patterns around translation start sites. ii) Protein-RNA 

interactions were studied in viral RNA and mammalian ncRNAs and mRNAs by comparing 

reactivity profiles under different conditions [40,58,86,87], finding that interactions 

modulate reactivities significantly. iii) Comparison of mRNA coding regions revealed a 

three-nucleotide periodicity pattern in reactivities [28,30,40]. iv) Significant structural 

alterations have been identified in single-nucleotide variants [55,88]. v) Comparisons of 

entire transcriptomes at different temperatures identified structure-altering responses 

[26,89,90]. vi) Prevalence of specific noncanonical structure motifs has been found to differ 

between in vitro and in vivo conditions [68]. Interestingly, these studies involve comparisons 

at different levels such as structure at the level of regions within a transcript, at the transcript 

level, within functional classes, or at transcriptome level. In this section, we review recent 

approaches and emerging questions in addressing these challenges.

Notably, SP collects data at nucleotide level, but structural dynamics most often involve at 

least a few nucleotides or even entire functional domains. For example, many of the studies 

mentioned above seek signals that span protein-binding sites, codons and well-defined local 

structure motifs. Indeed, it is rare for a biological study to home in on isolated single-

nucleotide reactivity changes. For this reason, comparative studies must also bridge between 
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the resolution of measurements and that of sought-after effects. This is typically 

accomplished by integrating nucleotide information for scoping differential structural effects 

at various levels of lower resolution and/or by inspecting data-directed secondary structure 

predictions for detectable changes at that level [40,53,56,91].

Comparing technical replicates

Agreement between technical replicates indicates high quality of data. Technical replicates 

can be compared at the level of transcripts or at the level of nucleotides.

Transcript-level comparison—In high-throughput experiments or when profiling long 

transcripts, agreement between replicates of a transcript is commonly evaluated as Pearson 

correlation coefficient (PCC) for reactivity profiles. Transcripts with low PCC are filtered 

out for biological purposes, as their replicates do not agree. For each pair of profiles, PCC 

quantifies agreement in a single number that is invariant to scaling. However, PCC has its 

limitations as a measure of agreement [92–94].

First, PCC is sensitive to outliers [92]. PCC is based on the sample means of reactivities in 

the profiles that are being compared. Sample means are known to be sensitive to outliers, 

leading to similar sensitivity of PCC. Indeed, PCC is affected by both magnitude of outliers 

and the overall proportion of reactivities that is outlier. Hence, PCC is to be used with 

caution, especially for transcriptome-wide data, as outliers have indeed been routinely noted 

in experiments [47,59]. In our experience, we have found that a common practice in 

handling missing information often leads to outliers in reactivities. Specifically, while 

estimating reactivity profiles, poorly covered sites have a bias towards an apparent zero 

reactivity. This bias considerably adds to the proportion of outliers at the lower extreme of 

zero reactivity. However, most studies do not filter outliers while calculating PCC. Hence, 

PCC may be misleading in evaluating replicate agreement. Second, PCC does not quantify 

agreement at nucleotide level but rather summarizes it across a transcript. Third, PCC only 

evaluates correlation between two profiles and is unaffected by magnitude differences of 

nucleotide-level values. Nevertheless, to gauge significance of biological variation found in a 

study, it is important to first quantify technical variation. Since biological variation of 

interest is often manifested at nucleotide resolution, it is also desirable to quantify technical 

variation at that resolution.

Nucleotide-level comparison—At nucleotide level, replicates have been traditionally 

compared by taking mean and standard deviation of reactivities. In the absence of replicates, 

theoretical formulas and computational methods have been developed to evaluate technical 

variation at each nucleotide [22,59]. However, due to challenges in visualizing technical 

variation, most such nucleotide-level evaluations have been restricted to one or few 

transcripts. Recently, Choudhary et al. [59] proposed a method to quantify and visualize 

technical variation at nucleotide resolution for large-scale data, based on the classical signal-

to-noise ratio (SNR) measure. For each nucleotide, SNR is defined as the ratio of sample 

mean to standard deviation of reactivities in all replicates. SNR is high when replicates are 

in strong quantitative agreement at a nucleotide and low otherwise. Nucleotide SNR values 

within a transcript could be visualized as box plot to glean overall agreement among 
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multiple replicates from a single plot. Additionally, mean of SNR was proposed as a single-

number or point summary for a transcript’s overall data quality. Mean SNR per transcript 

was found to correlate well with PCC and transcript coverage in diverse datasets.

Open questions—Nucleotide-resolution comparison of reactivities requires normalization 

strategies to render values in different replicates comparable. Clearly, the strategies 

described in the Section of “Estimation of Structural Profile” require optimizing two criteria: 

one for identifying outliers and another for selecting reactivities that will be used to estimate 

a normalizing constant. However, the proportion of outliers in a dataset could vary 

considerably depending on the length of transcripts involved, the protocol used and the 

experiment’s quality. Indeed, different labs and even same labs have made different choices 

of normalization steps when analyzing different datasets, although the general principle has 

been to eliminate outliers and scale reactivities such that they range approximately from 0 to 

2 [39]. These strategies have been adopted based on experience with SP data before high-

throughput technologies were introduced [47] or through validations with secondary 

structure prediction [82]. Hence, the field may benefit from a universal approach to 

normalization, which is assuring enough to dispense with the need for routine optimization 

of the normalization step. It is also worth noting that before SP became high-throughput, 

most of the RNAs that were chemically probed were highly structured rRNAs or short 

functional ncRNAs. Heuristic guidelines formulated based on such a specialized subset may 

not be ideally suited to all transcripts — in particular to long and less structurally 

constrained mRNAs. Furthermore, validation based on structure prediction itself involves 

parameter optimization and modeling assumptions, as reviewed in later sections. Given the 

recent advances in SP, methods of normalization warrant a revisit and possibly even 

generalization or standardization.

Comparing biological replicates

Comparison of reactivities from different biological replicates could potentially identify 

significant biological variation. If technical variation is high, statistically significant 

biological results might not be obtained from the data. To estimate significance of biological 

variation, it has to be examined in comparison with technical variation [69–71]. Recently, 

several studies have reported biological variation at all levels. At transcriptome level, 

differences in overall structural characteristics have been reported under different conditions 

and between different strains [26,40]. At transcript-to-transcript level, rRNAs have been 

described as being more structured than mRNAs. At a finer level, while differences in 

reactivities can be observed at nucleotide level, biological variation is commonly assumed to 

span a stretch of nucleotides [86]. In particular, within transcripts, biological variation has 

been described between regions, where significant differences in structure have been noted 

between UTRs and coding regions of mRNAs. Here, we review the methods used to 

measure biological variation.

Transcriptome-level comparison—Current normalization methods, as described in the 

Section of “Estimation of Structural Profile”, generally scale the reactivities such that they 

range from 0 to approximately 2 [39]. However, this does not ensure that reactivities within 

different transcripts are directly comparable. For example, although mRNAs are widely 
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understood to be less structured than rRNAs [40], current normalization methods scale 

reactivities for both these classes of RNA such that they span a similar interval. Hence, 

comparing absolute values of reactivities on a transcriptome scale might be misleading. 

Differences in lengths of transcripts within the same functional class exacerbate the 

challenges in comparing profiles due to the need for reliable alignment. To facilitate 

nucleotide-level comparison of reactivities in case of differences in lengths, particularly for 

mRNAs, transcripts are often aligned by their start/stop codon, where arbitrary lengths 

(about 40–100 nt) are chosen upstream and downstream of the start/stop codon in all 

transcripts to be compared [28,30,36,40,89]. However, functional elements in UTRs differ in 

sequence and distance from the start/stop codon, thus presenting an additional challenge to 

direct comparisons.

Besides direct nucleotide-level comparison, another approach has been utilized, which is 

invariant to current normalization methods (due to properties as listed below) as well as 

applicable to transcripts of different lengths. At the transcriptome level, it has been found 

that RNAs are, in general, less structured in vivo than they are in vitro [40]. This conclusion 

was obtained by examining distributions of Gini indices for reactivity profiles. Gini index is 

a measure of inequality in a distribution [95]. It has two notable properties: i) It is a measure 

of inequality that is high if there is substantial gap in values across the nucleotides. Such 

high gaps (or inequalities) in distribution of counts and reactivities are expected in case of 

structured RNAs. Hence, Gini index can serve to quantitatively describe the overall degree 

of structure in a transcript. ii) It is invariant to scaling, i.e., Gini index does not change as 

long as the relative magnitudes of quantities remain the same. As current normalization 

methods essentially scale reactivity profiles linearly, scaling invariance is a significant merit 

of Gini index, as it obviates the need for optimizing normalization prior to conducting 

comparisons.

Transcript-level comparison—Structural similarities are often correlated with sequence 

and/or functional similarity [96]. Thus, in presence of known sequence and/or functional 

similarities, it may be reasonable to assume that reactivity profiles should span the same 

interval. Current normalization schemes do scale reactivity profiles such that they span the 

same interval from 0 to approximately 2 [39]. Hence, for cases with sequence and/or 

functional similarity, reactivity profiles have been compared by taking difference of 

normalized reactivities [23,40,58,86]. Additionally, based on models specific to the context, 

p-values can be calculated to characterize the significance of observed differences. Other 

approaches to establish statistical significance have also been used. For example, Smola et 
al. [86] used a modified version of a Z-factor test [97] instead of p-values to screen for sites 

with statistically significant differential reactivities. Z-factor is a screening coefficient that 

identifies nucleotides with biological variation substantially greater than technical variation. 

Recently, Choudhary et al. [59] have used a signal-to-noise ratio measure to quantify 

magnitudes of biological and technical variation. Besides these methods, comparability of 

profiles under conditions of sequence and/or functional similarity has been assumed when 

summarizing reactivity profiles for multiple RNAs via their mean. For example, mean of 

reactivities has been used to capture general characteristics of mRNA structure around the 

translation start site [26,28].
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Regional comparison—Reactivity profiles often feature significant variations across the 

length of a transcript, indicating presence of structured and unstructured regions [28,40]. 

Several methods have been utilized to scan transcript regions for structural properties, which 

differ primarily in the structural characteristic they scan for. For example, Gini index has 

been applied to regions within a transcript [26,40] to identify those with high inequalities in 

counts/reactivities across nucleotides. Whereas Spitale et al. [40] applied Gini index to 

designated regions, such as UTRs and coding regions of mRNAs, Rouskin et al. [26] used it 

to scan rolling windows containing 50 probed nucleotides. Other studies scanned transcripts 

to identify regions with higher or lower reactivities. Reactivity level in a region can provide 

an idea about the number of base pairs in that region. To this end, the median of reactivities 

in a region has been used as a robust summary of regional structural characteristics 

[39,53,98]. Standard statistical tests such as Wilcoxon rank sum test have been used to 

evaluate statistical significance of differences between centers of reactivity distributions for 

two regions [36]. Additionally, Siegfried et al. [39] utilized Shannon entropy estimates to 

quantify a region’s structural properties. Entropy estimates were derived from base-pairing 

probabilities output by a data-directed ensemble-based secondary structure prediction 

algorithm (see the Section of “Secondary Structure Prediction”). Entropies are expected to 

be low in regions that either have well-defined structures or are predominantly single-

stranded; they are expected to be high otherwise.

Open questions—Comparative analysis of SP data is in its nascent phase, and several 

issues are yet to be addressed. To date, the field has resorted to point summaries of structure 

(e.g., Gini index of counts). While statistical properties of a reactivity profile in one region/

transcript have been compared with those of another, there is no consensus on the statistical 

property of reactivities that captures a desired structural property. Consequently, multiple 

metrics for quantifying regional structure have prevailed thus far. For example, measures of 

inequality and of non-uniformity in reactivities have both been used to characterize a high 

degree of structure or folding stability. At the transcriptome level, Gini index has been 

applied as a point summary of a transcript’s structure. However, there are several drawbacks 

to this index. One major issue is that it is highly influenced by outliers [99], which again 

underscores the importance of robust outlier detection. Another issue is that two transcripts 

could have vastly different reactivity profiles but the same Gini index, thus making it 

difficult to use it as a comparative feature. For example, consider two transcripts with the 

following compositions: (a) 50% of nucleotides with zero reactivity and 50% with equal and 

high reactivity (or more generally, 50% have high reactivity and 50% have low reactivity) 

and (b) 25% of nucleotides with reactivity 0.11 and 75% with reactivity 1 (or more 

generally, 75% have high reactivity and 25% have low reactivity). Despite their differences, 

both profiles result in a Gini index of 0.5.

Comparing systematic replicates

Reactivity profiles estimated from systematic replicates may provide more comprehensive 

insights into structure. For example, collecting and comparing information from multiple 

probing reagents has traditionally served as means of increasing confidence in structural 

inference from data [100]. Whereas such approach had been limited in applicability due to 

cost and labor constraints, as experiments have now become more accessible to the 
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community, it appears to be gaining popularity [74,81,100–103]. To date, comparisons of 

systematic replicates have been mostly performed semi-quantitatively or via PCC [33,53]. 

While PCC only informs us of agreement of data, it is often desirable to merge data from 

systematic replicates. For example, data from systematic replicates could improve the 

accuracy of data-directed structure prediction if fused appropriately [103], such that 

correlations and systematic deviations are well characterized and accounted for. However, 

systematic replicates often derive from differing statistical distributions [53]. Therefore, 

besides scaling, systematic replicates might need more intricate normalization routines to 

ensure their comparable statistical properties. For this purpose, Wu et al. [104] used quantile 

normalization to transform reactivities in different datasets such that they follow the same 

distribution. Because the data throughput bottleneck has only recently been eliminated, 

much is yet to be done to address these emerging needs. Ensuring quantitative comparability 

and optimal integration of profiles from systematic replicates remains an open challenge.

SCREENING DATA FOR QUALITY

Since its days of inception, SP has moved towards large-scale transcriptome-wide and in 
vivo experiments. Despite significant advances, data quality remains non-uniform across the 

transcriptome. Data quality is primarily governed by coverage and by signal-over-

background level [22,54,59]. Most studies filter out poor-quality data and draw biological 

insights from high-quality data subsets. Simple criteria based on a transcript’s coverage per 

unit length have been utilized to screen for high-quality components of a dataset. Several 

groups have considered coverage per unit length ⩾1 as acceptable criterion for quality 

[26,28,34,36], whereas others have opted for nucleotide-level coverage [22,39,40]. Several 

conditions have been used to optimize these criteria. For example, Smola et al. recommend 

nucleotide-level coverage above approximately 2,000 for high confidence in reactivity 

estimates [22]. This choice was guided by a desire to ensure high accuracy of data-directed 

structure prediction [39]. Spitale et al., on the other hand, optimized their criterion for high 

coverage such that transcripts meeting this criterion achieve high PCC between replicates 

[40]. Choudhary et al. [59] approached this from an experimental design perspective [54]. 

Building upon prior work on modeling SP experiments [60], they introduced a Coverage 

Quality Index (CQI), which quantifies the “goodness” of each nucleotide’s coverage. Given 

an acceptable level of variation in reactivities, a coverage level is computed for each 

nucleotide, which ensures (at a desired level of confidence, such as 95%) that variation is 

within admissible range. CQI is the ratio of the desired coverage of a nucleotide to its 

observed coverage. CQI < 1 is indicative of good quality while CQI > 1 is indicative of 

unacceptable quality. CQI calculations and other nucleotide-resolution quality measures, 

such as SNR, along with their visualizations from nucleotide to transcriptome level, are 

implemented in SEQualyzer — a quality assessment tool specialized to SP data (see Figure 

2 for an example) [105]. Standardized methods for evaluating data quality as well as 

screening for high-quality components are essential to the maturation of this field.

SECONDARY STRUCTURE PREDICTION

Computational RNA structure prediction has been studied for several decades. Here, we 

focus on secondary structure prediction; readers are referred to [106] for a recent review on 
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three-dimensional structure modeling. Typically, computational secondary structure 

prediction methods fall into three major categories: free energy minimization, ensemble-

based prediction and comparative sequence analysis. It is worth noting that most existing 

methods do not allow pseudo-knots in predicted structures, as it will render the problem 

computationally intractable. Several solutions were developed, albeit with additional 

constraints on the type of considered pseudoknots [107–115].

Free energy minimization

The most widely used method for structure prediction from a single sequence aims to find 

the structure with minimum free energy (MFE). This method relies on the second law of 

thermodynamics, which states that the MFE structure is the most thermodynamically stable 

and the most prevalent in living cells. Free energy of a structure can be calculated based on a 

set of nearest-neighbor thermodynamic model (NNTM) parameters, which are obtained 

using optical melting experiments [116–118].

At the core of MFE prediction is a dynamic programming algorithm put forth in [119,120] 

and first proposed in [119,121] in the context of maximizing the number of predicted base 

pairs. It was subsequently extended by incorporating free energies of different structure 

motifs [122,123]. This algorithm has been implemented in popular software packages such 

as UNAFold [124], RNAstructure [125] and ViennaRNA [126]. For algorithmic details on 

various MFE prediction algorithms, readers are referred to the comprehensive reviews in 

[9,127–131].

While MFE predictions have been well studied and widely used, they often suffer from low 

prediction accuracies when utilizing sequence information alone, especially for long RNAs 

[132]. One possible reason is that the assumption that RNA folds into the MFE structure 

may not always hold [47]. On the other hand, RNA can interact with other biomolecules in 

the cell, stabilizing specific non-MFE conformations. In addition, the existing sets of NNTM 

parameters are neither perfect nor complete, although they have been improved over the 

years. The free energy of some structure motifs, such as multi-branch loops, are still not well 

understood and are thus obtained using simplified models [118].

In addition to the MFE structure, many programs have the option to also report a set of 

suboptimal structures. This is also a computational solution to the imperfect situation 

mentioned above. Such information is valuable for many downstream analysis applications. 

For example, one could generate energy dot plots from optimal and suboptimal structures, 

which could then be used to find frequent structure motifs [133].

Ensemble-based predictions

Prediction of suboptimal structures is complementary to the MFE structure. However, it is 

worth pointing out that suboptimal structures could be quite different than the MFE 

structure, even when the differences between their free energies are very small. Take the 

aspartic acid tRNA in yeast as an example (Figure 3). The energies of the predicted MFE 

structure and its closest suboptimal structure differ by 0.1 (−28 vs. −27.9), but their 

sensitivities differ quite a lot (76.2% vs. 33.3%); see the Subsection of “Performance 

Measures” for a formal definition of sensitivity. Furthermore, MFE predictions are highly 
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sensitive in the sense that a minor change in NNTM parameters or experimental conditions 

might lead to a switch between the MFE and suboptimal structures; see, for example [135], 

for a discussion on ribosomal 30S subunit structure revealed in [136].

A natural extension of suboptimal structures is to consider all possible structures. This can 

be accomplished by computing a partition function, which models the contribution of all 

structures weighted by their Boltzmann probabilities [62,137,138]. For a given sequence, the 

partition function, Q, can be calculated as

where ΔGk is the free energy of the k-th possible secondary structure, R is the gas constant 

and T is temperature. Furthermore, the probability of a base pair formed by nucleotides i and 

j can be calculated as

where the sum considers all structures that include base pair i-j.

Several algorithms that utilize the statistical nature of partition function calculations have 

been proposed for structure predictions. The Sfold program samples a user-specified number 

of structures from the Boltzmann ensemble. It then computes a centroid structure based on 

base-pair distances between structures [139]. Another type of approach predicts a secondary 

structure by maximizing the expected base-pair accuracy (MEA). Briefly, MEA seeks a 

structure that maximizes the sum (or weighted sum) of base-paired and single-stranded 

nucleotide probabilities. This objective function is inspired by an observation that base pairs 

with high pairing probabilities are more likely to be present in the known reference structure 

[137]. MEA was first proposed in CONTRA-fold, which learns a probabilistic model’s 

parameters from a set of known structures, based on conditional log-linear models [140]. 

Later, Lu et al. implemented another MEA approach that directly depends on base pairing 

probabilities derived from a partition function of the given sequence [141]. Related work 

that considers pseudo-expected accuracy is reported in [142].

It is most common for prediction algorithms to report a single optimal structure. However, 

some RNAs are known to have multiple functional structures in living cells. The function of 

these RNAs not only depends on these conformations but also on their ability to interconvert 

[143]. For example, riboswitches can adopt different structures upon binding a small 

molecule as a means of controlling gene expression [5,144]. In riboSNitches, single 

nucleotide polymorphisms (as analogous to binding of a small molecule in riboswitches) 

alter the structure of an RNA, which in turn regulates gene expression [88]. In such systems, 

analysis of structural ensembles would be a natural choice compared to MFE prediction.
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Comparative sequence analysis

The structures of many RNAs, such as tRNAs and rRNAs, are usually highly conserved, 

despite possible discrepancies in their primary sequences [145]. Comparative sequence 

analysis aims to find a consensus structure from a set of homologous sequences [7,9,146]. 

This approach is highly accurate and has been widely used to study the structures of several 

RNAs, e.g., rRNAs [147]. Overall, three approaches currently exist to implement 

comparative analysis.

Align then fold aligns sequences first and then predicts the consensus structure 

[110,148,149]. Two of the widely used programs in this category are RNAalifold [150] and 

Pfold [151]. RNAalifold aims to find the minimum energy structure that is formed by a set 

of aligned sequences. It also supports the computation of partition function and the centroid 

structure, which is the structure with minimum base pair distance to other structures in the 

ensemble. Here, distance is defined based on base-pairing probabilities. Pfold uses a 

stochastic context-free grammar (SCFG) [152,153] to combine an evolutionary model of 

sequences with a probabilistic model for secondary structures.

Fold and align simultaneously aligns and folds input sequences [154–157]. This idea was 

first proposed by Sankoff [154] and utilizes a dynamic programming approach. The Sankoff 

algorithm has time complexity of O(n3m) for m sequences with maximum length n, and thus 

it is computationally expensive to apply to large inputs. By posing extra restrictions on the 

problem, several variations of the Sankoff algorithm with feasible complexity have been 

developed [156,158–160].

Fold then align predicts a structure from each input sequence, followed by alignment of 

structures. This method is particularly useful in scenarios where input sequences are not 

sufficiently conserved for direct alignment. Representatives of this method are reported in 

[161,162].

Although comparative sequence analysis is highly accurate, it has been successfully applied 

only to a limited number of RNAs with rich phylogenetic information available. This is 

because, analogous to many phylogenetic studies, high accuracy can only be achieved when 

input sequences are sufficiently divergent to contain enough co-variation information. At the 

same time, sequences need to be sufficiently similar in order to be aligned properly; 

otherwise it becomes infeasible to find a good consensus [47].

Performance measures

The accuracy of a predicted structure can be measured by comparing it to the known 

reference structure, where the latter is typically obtained through crystallography 

experiments or comparative sequence analysis [146]. Sensitivity and positive predictive 

value (PPV) are the two most commonly used metrics for this purpose. Sensitivity is the 

fraction of base pairs in the reference structure that are correctly predicted, while PPV is the 

fraction of correctly predicted base pairs in the predicted structure. Matthews correlation 

coefficient (MCC) is another widely used metric that combines sensitivity and PPV. Some 

studies approximate it by the geometric mean of sensitivity and PPV [146]. For partition-
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function-based predictions, one can measure the reliability of a prediction by calculating 

ensemble diversity and positional entropy, as proposed in [48].

When comparing different prediction algorithms, studies often use a benchmark dataset with 

multiple RNAs and compare their average performances. It is pointed out in [135] that this 

simple metric is not informative enough, as it is heavily biased by performances of short 

RNAs. To resolve this issue, this study proposed to use a “sequence-length-weighted 

average” (SLW-average) to replace the plain average. Intuitively, the SLW-average takes 

sequence length into consideration when averaging the performances of multiple RNAs.

DATA-DIRECTED SECONDARY STRUCTURE PREDICTION

In this section, we review data-directed prediction methods. While most methods seek a 

single optimal structure, they differ in their interpretation of SP data and/or in how they 

integrate it with computation.

Pseudoenergy-based approaches

The idea of converting SHAPE data into a pseudoenergy term was first proposed by Deigan 

et al. [82]. Serving as ad hoc energy modifications, pseudoenergies are incorporated into 

MFE predictions to find the structure that minimizes the sum of NNTM free energy and 

pseudoenergy. For a given reactivity α, its pseudoenergy is calculated using a linear-log 

formula, m log(1 + α) + b, where m and b are parameters determined from a training set of 

RNAs with known reference structures using grid search. Note that optimal values of m and 

b may differ quite noticeably between different data sets [33,163], as they depend on the 

statistical properties of the data as well as on its dynamic range. This method was first 

implemented in the RNAstructure package [125] and was recently included in the 

ViennaRNA package [48]. It is also integrated into a recent data analysis pipeline for 

transcriptome-wide SP experiments [164].

Deigan et al. ‘s approach has been widely used by the community and proved to 

significantly improve predictions for many RNAs [28,48,165,166]. For example, it has been 

included in RNAalifold program within the new version of the ViennaRNA package 

[48,167], which predicts the MFE structure and centroid structure given a set of aligned 

sequences. As another example, this approach is at the core of the experimental 3S technique 

for secondary structure determination of long non-coding RNAs [168]. 3S, also called 

shotgun SHAPE, is motivated by the observation that traditional thermodynamic-based 

prediction algorithms often have limited accuracy. It probes an entire RNA along with its 

shorter overlapping segments. By comparing reactivity profiles of short segments with that 

of the entire RNA, modular sub-domains are identified, whose structures are then predicted 

using Deigan et al. ‘s approach. However, it is worth mentioning that this linear-log model 

was not designed with biological assumptions in mind but rather in a data-driven manner 

[131,169]. Initially developed and optimized for SHAPE chemistry data, it is unknown how 

well this model fits other and newer types of SP data. In fact, Deng et al. showed, using 

mock-probe simulations, that Deigan et al. ‘s approach can give relatively poor performance 

when input data deviate from its assumed model [135]. To alleviate this problem and thereby 

provide broader applicability, several other methods have been developed. Most methods 
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follow the “training and prediction” paradigm, where a model is first trained on SP data with 

known reference structures. The trained model is then used to direct structure prediction on 

new data. In an earlier work, pseudoenergies are derived from the log-likelihood ratio of a 

nucleotide being paired versus unpaired, given its reactivity [74]. Benchmarked on DMS 

data, this work uses two gamma distributions to model paired and unpaired likelihoods 

separately.

Motivated by the log-likelihood ratio approach in [74], the RME program converts 

reactivities into posterior probabilities before deriving pseudoenergies from them [104]. 

Pseudoenergies are then used to direct partition function calculation and to further obtain an 

MEA structure, in contrast to the MFE structure in [74,82]. Note that in RME, SP data are 

not only involved in the initial calculation of partition function but also in the post-

calibration of base pairing probabilities, both in the form of posterior probabilities.

Interestingly, in [52], Eddy pointed out that Deigan et al. ‘s model actually signifies a base-

pairing likelihood ratio. Furthermore, he proposed a principled and broadly applicable 

framework that directly derives from statistical modeling of SP data. Under the assumption 

that reactivities are only dependent on structural contexts (e.g., paired, unpaired, stacked, 

helix-end), the pseudoenergy of a reactivity for a given structural context can be derived 

from its likelihood. This framework has been implemented and extended in the RNAprob 

package for MFE prediction [135]. RNAprob investigates two different resolutions of 

structure context: a low resolution distinguishes between paired and unpaired nucleotides 

while a higher resolution further divides paired nucleotides into stacked and helix-end, 

resulting in three structure contexts. In RNAprob, pseudoenergies are applied once to each 

nucleotide, regardless of its structural context. In contrast, they are applied to every nearest-

neighbor stack in [74,82,104]. Consequently, pseudoenergies are applied 0, 1 and 2 times for 

each unpaired, helix-end and stacked nucleotide, respectively. Note that RNAprob is 

implemented within the programming infrastructure of RNAstructure package [125], while 

providing enhanced applicability.

Similar to RNAprob, RNAsc includes pseudoenergies for all nucleotides, featuring two 

structure contexts (paired and unpaired) [170]. Unlike the aforementioned likelihood- and 

posterior-based pseudoenergy derivation, RNAsc first converts each reactivity i into pi, the 

probability of being unpaired. A pseudoenergy is then computed for each of the two 

structural contexts as β|xi – pi|, where β is a user-specified scaling factor and xi = 0 and 1 for 

unpaired and paired nucleotides, respectively.

RNApbfold extends the idea of pseudoenergy into perturbations in the context of the 

partition function, without explicitly converting SP data into ad hoc pseudoenergies [171]. 

Specifically, it aims to find a perturbation vector that minimizes the discrepancy between 

predictions and SP data. This perturbation vector applies only when SP data disagree with 

the thermodynamic model predictions.

Non-pseudoenergy-based approaches

While pseudoenergy-based approaches have attracted much attention in recent years, 

alternative data-directed prediction approaches have gained much progress. SeqFold adopts 
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the “sample and select” strategy [172]. It first samples a set of structures from the entire 

structure ensemble of a given sequence, which are then clustered using Sfold [63]. 

Subsequently, one of the clusters is selected based on the distance of each sampled structure 

to the input structure profile, from which a consensus structure is further computed. The 

accuracy of this approach is largely determined by its ability to sample the “correct” 

structure. Since the number of possible structures is huge, there is no guarantee that the 

correct structure will be sampled. Ideas of sample and select were previously introduced in 

[65].

PPfold 3.0 extends the Pfold package [151] by combining phylogeny with SP data [173]. It 

uses i) a stochastic context-free grammars (SCFGs) to model structures; ii) a phylogeny 

model to compute the likelihood of input alignments; and iii) a probabilistic model to 

include SP data. In a more recent work, ProbFold combines SCFGs with probabilistic 

graphical models [174]. While SCFGs give prior knowledge over structures as in PPfold 3.0, 

the probabilistic graphical models account for sequence and SP data.

The above data-directed structure prediction methods all utilize SP data from a single 

experiment. The mutate-and-map (M2) strategy developed by the Das lab provides two-

dimensional SP data [175]. For a sequence of length N, M2 performs N + 1 SP experiments: 

one for the wild type and others for each of the N point-mutated sequences. M2 is based on 

the assumption that mutation of a single nucleotide may result in local or global structural 

changes, which in turn result in reactivity changes. M2 data can be converted into Z-scores 

and then plugged into RNAstructure package as extra energy bonus for MFE structure 

prediction. Recently, M2 data have been used to predict multiple functional structures as 

well as their relative abundances in the REEFFIT algorithm [143].

Information content of SP data

The addition of SP data to better predict RNA structure proved to be successful on a variety 

of RNAs. A natural question that arises is: do all reactivities contribute equally to drive 

structure prediction? This question was recently addressed in the context of SHAPE data 

[135]. Instead of evaluating the relative contribution (information content) of each single 

reactivity in a SHAPE profile, reactivities are divided into five equally populated subsets 

(a.k.a quintiles). The information content of each quintile is then quantified using a 

combination of leave-one-in and leave-one-out analyses. In the leave-one-in analysis, only a 

selected quintile is used to direct structure prediction, whereas in the leave-one-out analysis, 

all quintiles except for a selected one are used. Benchmarked on a set of 23 RNAs with 

known reference structures, this study showed that the top 20% reactivities are the major 

driving force in structure prediction, followed by the lowest 20%. In contrast, middle-range 

reactivities are less informative and have marginal contribution to improving prediction. 

Furthermore, the study showed, by a thought experiment, that middle-range reactivities are 

key to further improving predictions (Figure 4). Briefly, this experiment is done by inputting 

perfect information (0 and 1.6 for paired and unpaired nucleotides, respectively in [135]) to 

a selected quintile, while leaving reactivities in all other quintiles unchanged. Note that 

while it remains unknown if the conclusions reported above hold for other types of SP data, 

these analytical methods are readily applicable to any type of data.
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Understanding information content of SP data provides us with practical guidelines to data-

directed predictions. For example, one may choose to be selective and use reactivities that 

are most informative while ignoring reactivities that are ambiguous. In addition, such 

insights facilitate new models with better discriminative power, which can potentially reduce 

the number of less informative reactivities and in turn improve structure prediction.

Open questions

Structure prediction has been greatly advanced by the rapid development of SP technologies. 

Studies have shown that data-directed predictions often lead to better performance. However, 

it is worth noting that the extent of improvement in prediction accuracy varies substantially 

among RNAs and appears to be sequence dependent. It sometimes can have minor or even 

negative effects on resulting predictions [135,176]. On the other hand, regardless of the 

availability of various strategies to incorporate SP data, to date, no method universally 

outperforms all others [135]. As such, further improvement is desired and can be possibly 

approached from the following angles: i) Pseudoenergy-based methods have solid 

performance in practice. We anticipate that performances may be improved with 

pseudoenergy derivation models that are more biologically and statistically meaningful. ii) 

As in [172–174], pseudoenergies are not the only way to integrate data and computation. 

Hence, it will be interesting to explore alternative strategies for modeling SP data. iii) The 

recent development of novel transcriptome-wide methods to probe RNA structures 

experimentally presents us with massive data of unprecedented complexity and diversity. 

These data, when judiciously combined, have the potential to lead to better performances. 

However, integrating information from multiple data sources within current algorithms is 

challenging due to their complex statistical dependencies. A first attempt in this direction is 

reported in [103]. Availability of new probabilistic methods, such as RNAprob and 

ProbFold, will certainly propel efforts in this direction.

SOFTWARE INFRASTRUCTURE

The rapid development of SP has generated massive amounts of diverse data. As for many 

other sequencing-based studies, tools for data sharing and analysis are two major needs. 

Here, we review recent progress towards addressing these needs.

Databases and visualization tools

Structure Surfer [177], RNAex [178] and FoldAtlas [179] are three recent tools for data 

sharing, which support experiments such as DMS-Seq [26], structure-Seq [28], icSHAPE 

[40], PARS [55] and ds/ssRNA-Seq [180]. In addition, they provide a set of useful 

inspection and visualization tools. Specifically, Structure Surfer allows to visually compare 

different data sets, while RNAex and FoldAtlas support visualization of predicted secondary 

structures. RNAex also supports annotated RNA editing, RNA modifications and SNP sites 

in predicted structures. A recent tool, SEQualyzer, specialized to SP data quality screening, 

is reported in [105].
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Data preprocessing

Data analysis usually entails five major steps: i) Data cleaning removes adapters, PCR 

duplicates or other undesired sequences. ii) Read alignment maps reads to a reference set of 

transcripts. iii) Count summarization at nucleotide level. iv) Reactivity calculation. v) Data-

directed secondary structure prediction. Steps ii), iii) and vi) are routinely featured in all 

platforms, while steps i) and v) are supported by a subset of tools.

Specialized analysis pipelines adjoin most recent SP protocols. Spats processes reads from 

SHAPE-Seq experiments [33], implementing a model-based maximum-likelihood 

estimation approach to calculate reactivities [60,80,181]. ShapeMapper and SuperFold are 

two distinct analysis pipelines for SHAPE-MaP experiments [39]. ShapeMapper converts 

raw sequencing reads into mutational profiles, which are then used as input to SuperFold for 

secondary structure prediction. They also facilitate de novo identification of well-defined 

and stable structure regions. Other specialized pipelines include Mod-Seeker [35], 

MAPseeker [38] and icSHAPE [40].

Tools designed with broader applicability in mind include StructureFold [164], RSF [182] 

and PROBer [79]. Deployed as part of the Galaxy platform [183], StructureFold supports 

conversion of reads into reactivities and structure prediction, each of which is available as a 

separate module. It implements a reactivity calculation method proposed in [28]. Another 

modular pipeline, RNA Structure Framework (RSF), supports similar functionality as well 

as data cleaning. Additionally, it offers flexibility in choosing from a number of reactivity 

calculation methods [26,28] and normalization strategies (2%–8%, 90% winsorizing and 

box plot). In contrast to the former two, PROBer is a closed-box solution that implements 

the statistical model-based approach of Li et al. (see the Section of “Estimation of Structural 

Profile”). PROBer is also unique in that it is applicable to a wider range of diverse 

experiments. In particular, it encompasses a number of recent non-SP techniques that share 

the following common workflow with SP: i) Chemical modification of nucleotides encodes a 

signal of interest. ii) The signal is detected via RT termination. iii) The cDNA products of 

RT are sequenced and mapped to estimate modification intensities per nucleotide. Examples 

of biological signals that can be studied under this framework include protein-RNA 

interactions [184,185], post-transcriptional RNA modifications [186–192] and sites of 

noncanonical RNA structure motifs such as G-quadruplexes [42]. Such unified view not only 

lends itself to shared analysis pipelines but also alludes to plausible commonalities in 

downstream comparative and integrative analysis challenges. Methods that approach these 

emerging challenges from a broader perspective may reach and serve a wider research 

community.

CONCLUSION

We reviewed current practices and emerging questions in comparative and integrative 

analysis of SP data. However, there are other emerging applications that we have not 

touched upon, which are timely as they directly leverage the new wealth of information. For 

example, SHAPE-based alignment has been recently shown to have comparable accuracy to 

traditional sequence-based alignment [167]. Alignment can be further improved when 

combining sequence information with SHAPE data. In addition, SP data-directed partition 
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function can be used to calculate Shannon entropy, which in turn is useful in discovering 

well-defined RNA structures [39]. These and additional timely applications are described in 

a recent review [53]. Another exciting direction is the emergence of a new class of RNA 

structure experiments, which identify long-range and inter-molecular base-pairing 

interactions [193–198]. Integrating this type of information with SP data and with structure 

prediction algorithms is likely to pose newer challenges and spur dedicated methods 

development.

The advent of SP techniques has greatly expanded our capacity to understand structures of 

various RNAs and to deduce their functional roles. Propelled by these advances, we are 

standing in an era of large-scale data with increasing diversity and complexity, which in turn 

poses significant challenges in data interpretation and analysis. To maximize the potential of 

these datasets, there is a need to develop methods for accurate data interpretation, leveraging 

intrinsic statistical properties of an SP protocol. Additionally, there is a need to better suit 

methodology for comparative analysis to discover biological patterns of interest as well as 

methodology for characterizing SP information content to better utilize data within structure 

prediction algorithms.
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Figure 1. Overview of structure-profiling experiments
RNA sample of interest (at the top) is probed with a structure-sensitive reagent, which 

introduces a modification (red pins) preferentially at unpaired nucleotides. Degree of 

modification is read via reverse transcription and sequencing. Next, the readouts are mapped 

to reference sequences and normalized reactivities are calculated from counts summary of 

mapped reads. Reactivity profiles of probed RNAs are used in diverse downstream 

applications, some of which are listed.
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Figure 2. Quality screening with SEQualyzer
Bars represent per-nucleotide SNR and black lines represent rolling mean of per-nucleotide 

SNR for windows of 20 nt. SEQualyzer estimates SNR via bootstrap as described by 

Choudhary et al. [59]. Examination of quality profiles reveals that signal quality is good for 

entire RNA except a short region from nucleotides 35–53 where it is poor in all replicates. 

For illustration purpose, we used data for P4 – P6 domain of Tetrahymena group I intron 

ribozyme from Loughrey et al. [33].
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Figure 3. Comparison between MFE secondary structure and one of the suboptimal secondary 
structures for tRNA (asp), yeast
(A) Reference (accepted) structure. (B) MFE structure. (C) Suboptimal structure. (D) 

Circular plot comparing the MFE structure in B to the reference structure in A. (E) Circular 

plot comparing the suboptimal structure in (C) to the reference structure in (A). Structures 

are predicted using the Fold program in RNAstructure package [125] with default 

parameters. Plots (A), (B) and (C) are prepared with VARNA [134]. Circular plots (D) and 

(E) are prepared with the CircleCompare program in RNAstructure. In (D) and (E), base 

pairs are indicated by lines. Pairs present in both the predicted and reference structures are in 
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green; pairs which are present only in the predicted structure are in red; and pairs which are 

present only in the reference structure are in black.
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Figure 4. Information content of SHAPE data
Two data-directed structure prediction methods, Deigan et al.’s approach [82] and RNAprob 

[135], are tested on a set of 23 RNAs, as used in [135]. For RNAprob, the variant with two 

structure contexts and empirical decoder is used. Bars represent SLW-average MCC values 

of quintiles with perfect information. Upper dashed lines represent the performance with the 

entire struture profile set to perfect information. Solid lines indicate the performance with 

the original struture profile data and the bottom dashed line corresponds to the no-SHAPE 

control.

Choudhary et al. Page 35

Quant Biol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	OVERVIEW OF STRUCTURE PROFILING EXPERIMENTS
	Technical factors
	Biological factors
	Systematic factors

	ESTIMATION OF STRUCTURAL PROFILE
	Detection rates
	Raw reactivities
	Normalized reactivities

	COMPARATIVE ANALYSIS
	Comparing technical replicates
	Transcript-level comparison
	Nucleotide-level comparison
	Open questions

	Comparing biological replicates
	Transcriptome-level comparison
	Transcript-level comparison
	Regional comparison
	Open questions

	Comparing systematic replicates

	SCREENING DATA FOR QUALITY
	SECONDARY STRUCTURE PREDICTION
	Free energy minimization
	Ensemble-based predictions
	Comparative sequence analysis
	Performance measures

	DATA-DIRECTED SECONDARY STRUCTURE PREDICTION
	Pseudoenergy-based approaches
	Non-pseudoenergy-based approaches
	Information content of SP data
	Open questions

	SOFTWARE INFRASTRUCTURE
	Databases and visualization tools
	Data preprocessing

	CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

