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Purpose: The growing use of magnetic resonance imaging (MRI) as a substitute for computed
tomography-based treatment planning requires the development of effective algorithms to generate
electron density maps for treatment planning and patient setup verification. The purpose of this work
was to develop a method to synthesize computerized tomography (CT) for MR-only radiotherapy of
head and neck cancer patients.

Methods: The algorithm is based on registration of multiple patient datasets containing both MRI
and CT images (a “multiatlas” algorithm). Twelve matched pairs of good quality CT and MRI scans
(those without apparent motion and blurring artifacts) were selected from a pool of head and neck
cancer patients to form the atlas. All atlas MRI scans were preprocessed to reduce scanner- and
patient-induced intensity inhomogeneities and to standardize their intensity histograms. Atlas CT and
MRIs were coregistered using a novel bone-to-air replacement technique applied to the CT scans that
improves the similarity between CTs and MRIs and facilitates the registration process. For each new
patient, all atlas MRIs are deformed initially onto the new patients’ MRI. We introduce a generalized
registration error (GRE) metric that automatically measures the goodness of local registration
between MRI pairs. The final synthetic CT value at each point is a nonlinear GRE-weighted average
of the atlas CTs. For evaluation, the leave-one-out technique was used for synthetic CT generation
and the mean absolute error (MAE) between the original and synthetic CT was computed over the
entire CT image. The impact of our proposed CT-MR registration scheme on the accuracy of the final
synthetic CT was also studied. The original treatment plans were also recomputed on the new syn-
thetic CTs and dose-volume histogram metrics were compared. In addition, the two-dimensional
(2D) gamma analysis at 1%/1 mm and 2%/2 mm dose difference/distance to agreement was also per-
formed to study the dose distribution at the isocenter.

Results: MAE error (4 standard deviation) between the original and the synthetic CTs was
64 + 10, 113 £ 12, and 130 £ 28 Hounsfield Unit (HU) for the entire image, air, and bone regions
respectively. Our results showed that our proposed bone-suppression based CT-MR fusion and GRE-
weighted strategy could lower the overall MAE error between the original and synthetic CTs by
~69% and ~34% respectively. Dose recalculation comparison showed highly consistent results
between plans based on the synthetic vs. the original CTs. The 2D gamma analysis revealed the pass
rate of 95.44 £ 2.5 and 99.36 + 0.71 for 1%/1 mm and 2%/2 mm criteria respectively. Due to local
registration weighting, the method is robust with respect to MRI imaging artifacts.

Conclusion: We developed a novel image analysis technique to synthesize CT for head and neck
anatomy. Novel methods were introduced to accurately register atlas CTs and MRIs as well as to
weight the final electron density maps using local registration goodness estimates. The resulting
accuracy is clinically acceptable, at least for these atlas patients. © 2017 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.12303]
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1. INTRODUCTION

Due to superior soft tissue contrast and because it relies on
nonionizing radiation, MRI has become a valuable imaging
tool for target delineation and response assessment in human
oncology.'* However, a lack of tissue electron density infor-
mation prevents it from acting as the sole imaging modality
in radiation oncology. Hence, computerized tomography
(CT) scans are still required for treatment planning in radia-
tion therapy. To use both MRI and CT scans for target
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delineation and treatment planning requires co-registration of
these two image sets thereby imposing a systematic error.’
Acquiring two scans also increases the time, cost, and com-
plexity of the simulation procedure. The ability to derive
electron density information directly from MRI could resolve
the above issues and has become an area of great research
interest in radiation oncology and medical physics.

So far, a variety of approaches have been proposed in the lit-
erature to estimate the electron density map for MR-only radio-
therapy.® 2 Atlas-based techniques,® ' tissue classification
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with bulk density assignment'®?° and  voxel-based

approaches'®™” are the three main strategies. Mis-classification
of air and bone along with loss of within-cluster details, due to
bulk density assignment, are the primary limitations of cluster-
ing techniques. Also, acquiring ultra short echo time MRI
sequence for bone visualization is usually needed for voxel-
based approaches. On the other hand, atlas-based approaches
rely on the accuracy of the deformable image registration to a
sample patient or atlas with a known tissue label or electron
density. Therefore, they suffer from insufficient precision due
to inherent registration errors caused by both intermodality dis-
crepancies and interpatient anatomical variations. A lack of a
robust local metric for appropriately combining the deformed
atlas is another limitation of atlas-based techniques.

In this article, we present a new multiatlas-based approach
to synthesize CT for head and neck anatomy that addresses
some of the above limitations. The novel aspects of the
method include an image processing technique that improves
the similarity between CT and MRI scans prior to intermodal-
ity (CT-MR) image registration, standardization of the MR
intensity histograms>"** prior to MR-MR registration, and a
new generalized registration error (GRE) metric that determi-
nes the goodness of local registration between MRI pairs.
Here with, we present the details of each of these algorithm
elements and their impact on the generation of the synthetic
CT.

2. MATERIALS AND METHODS
2.A. A overview

Figure 1 summarizes the primary steps in our approach to
synthetic CT generation. All MRI scans were preprocessed to
reduce intensity inhomogeneity due to field nonuniformity,
tissue susceptibility effects and scanner-dependent variabili-
ties. A set of CT-MR atlases was then created by co-register-
ing CT and MR scans for a set of typical head and neck
patients. For new patients, the MR images were also prepro-
cessed and then the CT-MR atlas was deformed onto them.
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Next, the generalized registration error (GRE) metric was
computed as a measure of local similarity between the new
patient’s MR and that of each MR in the atlas. Finally, the
value of the synthetic CT for each voxel was calculated as 1/
GRE-weighted average of the CT numbers from all CT-MR
atlases. The following subsections describe these steps in
detail.

2.B. Image acquisition

Twelve sets of good-quality CT and MR images (those
without apparent motion and blurring artifacts) were retrospec-
tively selected for this IRB-approved study from a pool of head
and neck (H&N) cancer patients (10 males and 2 females,
Table I) who received radiotherapy at our institution. Some of
the patients had dental filling or metal artifacts in their images.
All CT and MRI scans were acquired in the radiotherapy treat-
ment position. CT scans (GE Medical System, Milwaukie, WI,
USA) were acquired in the helical mode with a tube voltage of
140 Kv, pitch factor of 1.675, slice thickness of 2.5 (n = 11)
and 3 (n = 1) mm, matrix size of 512 x 512 and in-plane
pixel size of 098 x 098 (n=11) and 1.27 x 1.27
n=1) mm?>. MR scans were acquired on a Philips 3T (Phi-
lips Healthcare, Cleveland, OH, USA) Ingenia system with
vender-provided phased-arrayed dStream Head-Neck-Spine
coil, and included the following sequences: mDixon (in-phase,
out-phase, fat and water), pre-contrast T1-weighted dual fast
field echo (FFE) with TE1/TE2/TR = 3.3/4.6/6.07 ms, flip
angle = 10°, slice thickness of 2.4 mm and in-plane pixel size
of ~1 mm?. The vendor-provided uniformity correction tech-
nique (CLEAR) was also performed for field inhomogeneity
correction. The mDixon in-phase images were chosen as the
primary MR image set for this study because the tissue con-
trast and relative intensity of various tissue types in the in-
phase image was more similar to that of CT scan in compared
to fat, water and out-phase images. As our intermodality regis-
tration scheme (see Section 2.C) is based on making relative
intensity of the CT and MR more similar to each other, this
helps us reach out our goal more easily.
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FiG. 1. Schematic outline of synthetic-CT generation. DIR: Deformable image registration, GRE: Generalized registration error.
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TasLE I. Patients and image acquisition parameters: TC: tube current, PS: pixel size, ST: slice thickness, MS: matrix size, * represents dental filling, ¥ denotes

metal artifact.

CT scan MRI scan
Pt # Gender Age Dose (Gy) TC (mA) PS ST (mm) MS PS (mm?)
1* M 26 54.12 250 0.98 x 0.98 2.50 400 x 400 1.09 x 1.09
2% M 53 50.1 N/A 0.98 x 0.98 2.50 448 x 448 1.13 x 1.13
3* M 64 50.1 N/A 0.98 x 0.98 2.50 432 x 432 1.13 x 1.13
4% M 50 50.1 345 0.98 x 0.98 2.50 432 x 432 1.13 x 1.13
S5*F M 59 60.0 250 0.98 x 0.98 2.50 432 x 432 1.06 x 1.06
6* M 54 50.1 380 0.98 x 0.98 2.50 432 x 432 1.13 x 1.13
7* M 60 54.12 135 0.98 x 0.98 2.50 432 x 432 1.13 x 1.13
8 M 69 50.1 345 0.98 x 0.98 2.50 512 x 512 1.01 x 1.01
9% F 41 59.4 250 0.98 x 0.98 2.50 704 x 704 0.58 x 0.58
10 F 39 13.2 284 1.27 x 1.27 3.00 448 x 448 0.93 x 0.93
11* M 55 50.1 345 0.98 x 0.98 2.50 432 x 432 1.13 x 1.13
12%* M 42 54.12 250 0.98 x 0.98 2.50 432 x 432 1.13 x 1.13

2.C. MRI standardization

Magnetic resonance images, although useful in diagnosis
and soft tissue contrast, suffer from intensity inhomogeneity
due to By and B, field nonuniformity and tissue susceptibility
effects.”’*> The MR intensities of similar tissue types may
also vary between scans, mainly due to scanner-dependent
variabilities. These issues may introduce systematic errors in
image processing applications, including image registration
and segmentation, if not properly handled. To address these
concerns, we applied an intensity inhomogeneity correction
along with MR intensity standardization.

2.C.1. Intensity inhomogeneity correction

Inhomogeneity of the B, and B, magnetic fields may lead
to geometrical distortion and signal loss depending on the
amount of field inhomogeneity and pulse sequence character-
istics.”> 2° While geometrical distortion is often handled by
measuring and correcting the local field inhomogeneity,>*>°
image analysis techniques®’ may be used to address signal
loss. In this work, local clustering properties of the image
intensities were extracted using a model of intensity inhomo-
geneity in the neighborhood of each pixel®® to estimate
the regional signal loss due to bias fields inhomogeneity.

Original MR

The original image was then corrected accordingly. We
applied this procedure along the sagittal plane (superior-
inferior direction) to all MR images since field inhomogene-
ity is more pronounced in the longitudinal than transverse
direction.

2.C.2. Histogram standardization

One of the major limitations of magnetic resonance
imaging is the lack of precise, meaningful image intensity
for similar tissue types. Although this has little impact for
diagnostic applications, it can produce systematic errors
during image registration and automatic segmentation. His-
togram standardization is one method to remove the scan-
ner-dependent variabilities in MR image intensities. The
standardization process usually involves transformation of a
set of specific landmarks in the image intensity histogram
to a set of fixed points in a standard space.”’** It has been
shown®” that using landmarks with tissue-specific informa-
tion could have better standardization results than per-
centile-based”’ standardization. Our investigation revealed
four distinct extrema in the intensity histogram of the in-
phase MRI of typical head and neck anatomy. We used
these points as tissue-specific landmarks to standardize the
in-phase MRI intensity histograms (Fig. 2).

Standardized MR

MRI relative intensity

0 3000 ~
MRI relative intensity

FiG. 2. Results of the histogram standardization approach including the four intensity extrema (L1-L4) identified in all images and used for the standardization
process. (Left) Original image, (Right) Standardized image. [Color figure can be viewed at wileyonlinelibrary.com]
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Fi. 3. Example of bone suppression/replacement technique to improve the similarity between CT and MRI: (left) original CT image, (middle), in-phase MR
image and (right), bone-suppressed CT. All images are co-registered and from patient #1.

2.D. CT-MR atlas

Accurate CT-MR registration is a highly crucial step in any
atlas-based electron density mapping approach. We found that
registration between the atlas MRI and CT images was greatly
enhanced by first preprocessing the CT images to suppress/re-
place the bone CT number with that of air. This resulted in CT
images that appeared more similar to MR, with bone and air
both contributing low signal strength (Fig. 3).

2.D.1. Bone suppression/replacement technique

Fuzzy-c-means (FCM) clustering®® was used to initially
cluster air, bone and soft tissue components in the head and
neck CT images. The fuzzy clustering was accomplished
through an iterative optimization of the objective function
(Fobj) shown below, with the update of membership m; and
the cluster centers ¢; :

N C
Fubjzzzm?,-||xz'*6fj||2, l<u<oo (1)
=1 j=1
B 1
c [lel]T
=]

Zfil M - Xi
N
Dind m;

where x; is the ith data point, m;; is the degree of membership
of x; to the j™ cluster, ¢j is the j cluster center, C is the num-
ber of clusters (3 in our case) and ||*|| represents the norm
expressing the similarity between the measured data point
and the corresponding cluster center. The iteration stops
when max{|mj"" — m{|} <e, wherein ¢ denotes the number
of iteration steps. In this work, we set e = 0.001. Also, u in
Eq. (1) is a real number (> 1) representing the extent of
fuzziness of the clustering process. Using large u increases
the fuzziness of the clustering while setting u = 1 produces 0
and 1 as membership values. In the absence of experiment or
domain knowledge, u is usually set to 2. Hence, we also set
u =2 in our work. After the CT scan is partitioned, the

mij

Cj:
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intensity of the bone voxels is replaced with that of air voxels
resulting in the bone-suppressed CT, CTgs:

CTBS(V) = (1 - pbone(v)) ) (CT(V) - Ctli") (2)

where ppone denotes the probability of voxel v belonging to
the bone class and Cy;, is the air cluster center. Note that since
the air signal intensity in the MR images is zero or negligible,
the CTps is further normalized to have an air cluster center of
zero intensity. Lastly, the intensity histograms of both the
CTpgg and MRI scans are further normalized to have the same
peak intensity. As can be seen in Fig. 3, the bone suppression
technique results in CT and MR images with similar air and
bone intensities.

To register CT to MRI, we utilized Plastimatch® to rigidly
align CTpg to MRI using mutual information as the cost func-
tion. The subsampling rate of 1 x 1 x 1 was used in this
step to avoid smoothing/blurring effect. Using the same sub-
sampling rate and grid size of 30 x 30 x 30 (default value
in www.Plastimatch.org website), we subsequently applied
B-spline deformable image registration with mean square
error (MSE) as the cost function to fine-tune the rigidly
aligned images. Although mutual information is a useful met-
ric for rigid alignment, it may not be optimal for local adjust-
ment as the number of voxels in a local patch could be
insufficient to estimate the local histogram. Hence, we used
MSE as the cost function to fine-tune the rigidly aligned
images. Using the resultant displacement field, we finally
deformed the planning CT to the MRI to create a deformed
CT, CT,ee. As the intensity of various tissue types in CTgg
and MRI are similar, this leads to a very accurately co-regis-
tered set of CT,.,-MR atlases.

2.E. Synthetic CT generation for a new patient
2.E.1. Multiatlas propagation

For an incoming patient, the new MRI scan is first stan-
dardized using the method described in Section 2.B. Next, all
CT-MR pairs in the atlas are deformed onto the new patient’s
in-phase MRI using a rigid (mutual information) followed by
a B-spline deformable registration. In the deformation step,
mean square error was used as a cost function to fine-tune
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the rigidly aligned images. We used the same parameter set-
ting used for CT-MR fusion for MR-MR registration as well.
Using the resultant displacement field, the corresponding
CT,e, from each CT,,-MR pair is also deformed onto the
new patient’s MRI. This procedure continues until all CT,-
MR pairs are propagated onto the new patient’s MRI.

2.E.2. Generalized Registration Error: GRE

Our approach to assign the CT intensities for a new patient
leverages the local similarity of the new patient anatomy to
one or more of the existing atlas CT,.,-MR image pairs. Fur-
thermore, we assume that the regional error in the deformable
registration between the new patient’s MRI and each atlas
CT,ce-MR pair is a good metric of local similarity. Since all
MRIs are standardized before registration, a perfect match
would result in a difference map of zero intensity. As registra-
tion becomes less accurate in a local area, the mean, variance
and entropy of the corresponding area in the difference map
increase. Hence, we compute the generalized registration
error (GRE) metric, as a measure of local similarity, from the
difference map between a co-registered MRI pair as follows:

lefk (V) = |MRfixed(V) — MRdeformed,k (V)|, k = 1,2, .. N

1 & .
Meanppa = N Zmean (Diffy),
=1

mean(Diffy(v,r))
Mganglobul
N
Variance(Diffy),
=1

nMeany (v, r) =
1
Varglobal = N '

Variance(Diffy(v,r))
Varglabal

nVariance(v,r) =

1< ,
Entgiopar = - > Entropy(Diffi),
k=1

Entropy(Diffi(v,r)
Enlglobal

nEntropy,(v,r) =

GREMRﬁxelh MR deformed (Va r, k )
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= \/nMeany(v,r)* 4+ nVariancei(v,r)* + nEntropy(v,r)*

(©))

where in the above, Diffi denotes the difference map
between the MRI of the new patient, MRy;,.,, and the kth
deformed MR scan in the atlas, MR.pmear 7+ indicates
a small patch around a voxel, v, and has a size of
5 x5 x5 voxels and N is the number of CT..-MR
pairs in the atlas. nMean, nVariance, and nEntropy
denote the mean-normalized mean, variance and entropy
of the small patch respectively. As shown in Eq. (3), the
difference maps resulting from registering all CT,-MR
atlases to the new patient are initially generated. The
mean, variance and entropy of each difference map are
then calculated. Averaging the resultant means, variances,
and entropies gives a global mean for each variable. We
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use these three quantities as a means of capturing differ-
ent aspects of local similarity. Figure 4 shows an exam-
ple of the GRE map computed for a pair of co-registered
MRIs. As can be seen, most of the registration errors
arise near the air-tissue interfaces.

2.E.3. CT number assignment

Deforming the CT,.,-MR atlas onto a new patient provides
a one-to-one correspondence between voxels of the new scan
and those of each atlas CT,.,-MR pair. Using the GRE met-
ric, we find the atlas pairs that yield the best correspondence
(s) for each voxel in the new scan and use this information to
assign a CT number. When the number of CT,.,-MR pairs in
the atlas is large, the uncertainty of the CT number estimation
will be reasonably low. However, when there are only a few
atlas samples, the accuracy of the CT number estimation may
be compromised due to anatomical variation among patients
and interpatient registration errors. To address this, we extend
the search for the best GRE correspondence, for a given
voxel, to the corresponding voxel in each atlas plus its sur-
rounding neighborhood (up to 2 mm away from the voxel of
interest). Since the pixel size and slice thickness in our MR
scans are ~1 mm? and 2.4 mm, respectively, this extended
neighborhood search is performed in-plane only (2-D search)
and includes the neighborhood within 2 voxels of the point of
interest. Therefore, instead of having only one correspon-
dence for each voxel in an atlas, 25 candidates for a given
voxel were generated in each CT,.,-MR pair. Hence, assum-
ing MR,,e,,, MR g and CT e, 4071 Tepresent the new MR scan
and K" deformed MR and CT,, in the atlas, 2-D searching
provides a GRE set for each voxel in the k™ CTeg de-MRer
pair as follows:

{GRE(X, Y2 1, k’ l’j) }new,def -
{vi,je Z,]i| <2,|j <2: )
GREMRuew(x-,,VaZ)-Mquf.k(x*i,yfj,z) (x, V525 r)}

where x, y, and z are the coordinates of the voxel of interest,
v, in the new scan and i and j represent the translation in x
and y direction respectively. Taking i,,;,, and j,,;, as the Arg-
IIllIl{GRE(X, Yo 2 1 k’ I j)}new,deﬁ GRE(V: k) imin) jmin) and
the corresponding CT number, CT g 4oV, &, mins Jimin) TEPTE-
sent the best GRE and CT number for voxel v in the k™ CTieg,
de-MR gef pair. Similarly, using all of the deformed CT,.,-MR
atlas pairs, the synthetic CT number (sC7T) corresponding to
each voxel, v, is then calculated as:

N
* Z CTreg,def (V,k, Imin ;jmin) * Wy (V)
k=1

sCT(v)= Z;:;l W

Wk—< 1' - *u( 1, - —thr))
GRE (v, k,iminsjmin) GRE (v, k,iminsjmin)

®)

where u is the unit step function, thr is a threshold below

which the registration error is not accepted and 7 is a factor
enhancing the contribution from highly similar atlas pairs. In

7
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(a)

()

FiG. 4. Example of a generalized registration error (GRE) map that is used as a measure of local similarity between the two registered MRIs. (a) A new patient’s
MRI, (b) an MRI in the atlas co-registered with (a), and (c) the GRE map between (a) and (b). As seen in (c), most of the registration errors arise near the air-

tissue interfaces.

this paper, we set thr as the mean of {m} across
the entire atlas and y is empirically set to 5.

Figure 5 shows the effect of using GRE, 7y and 2-D search-
ing in our synthetic CT approach for a typical H&N cancer
patient (Patient #5, see Table I). The mean absolute error

(MAE) between the synthetic and original CT was 55, 103,

sCT, w/o GRE

in-phase MRI

MAE= 75 HU

sCT, with GRE
(vy=1)

MAE= 62 HU

and 108 Hounsfield Unit (HU) for the entire image, air, and
bone regions respectively. Without GRE, MAE increased to
75, 173, and 159 HU for the corresponding regions respec-
tively. Using GRE alone (y = 1), without 2-D searching,
MAE improved to 62, 146, and 137 HU respectively. Setting
y to 5 further improved the MAE to 58, 108, and 123 HU

sCT, with GRE
(vy=5)

sCT, with GRE & 2D
searching

1800

MAE= 58 HU MAE= 55 HU

FiG. 5. An example showing the impact of GRE, the power transform (y) and 2-D neighborhood searching on the synthetic CT generation. The left panel shows
the original CT and corresponding co-registered in-phase MRI. The second through fifth panels (left to right) are synthetic CTs (top) and color coded absolute
difference maps (bottom) between the synthetic CT and the original CT without GRE, with GRE but without 2-D searching and y = 1 and y = 5, respectively, and
with GRE (y =5) and 2-D searching. The mean absolute error of each difference map is also noted. [Color figure can be viewed at wileyonlinelibrary.com]
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respectively. This example shows that GRE is highly effective
in choosing appropriate candidates in the atlas. Furthermore,
the power transform and 2-D searching play complementary
roles to optimize the GRE performance.

2.F. Evaluation

To quantify the impact of our proposed bone-suppression
based CT-MR fusion, generalized registration error (GRE)
metric and 2-D searching on the accuracy of the final syn-
thetic CT, we generated synthetic CTs for all patients in our
atlas in a leave-one-out scheme. That is, each patient was
sequentially considered as a “new” patient without a CT and
a CT,e-MR atlas was formed from the remaining patients.
The synthetic CT was generated for the new patient and com-
pared to the patient’s deformed CT (CT.,,). To quantify the
impact of generalized registration error and 2-D searching on
our approach, two other forms of synthetic CTs were also
generated for each patient: one without using GRE and the
other with GRE (y = 5), but without 2-D searching.

To measure the accuracy of the synthetic CTs, the mean
absolute error (MAE) between each patient’s synthetic and
deformed planning CTs, CT,,, was computed over the entire
CT, air, and bone regions respectively. The entire volume was
initially masked out to exclude the background from analysis.
Next, air and bone were segmented using CT thresholding
with Hounsfield Unit (HU) < —250 for air and HU > 150
for bone. The segmented regions were further refined manu-
ally by one of the authors (R. Farjam.).

To investigate the effect of our proposed bone-suppres-
sion-based CT-MR registration in the accuracy of the final
synthetic CT, we evaluated and analyzed synthetic CT images
for all patients created using two DIR methods for CT-MR
atlas creation; one with and the other without bone-suppres-
sion based image fusion. As the intensity of various tissue
types in the original CT is different with that of MRI, we
used mutual information as a cost function to do the deforma-
tion between the original CT and MRI. The other parameters
were set as explained in Section 2.C.1.

To compare the impact of our synthetic CTs on radiother-
apy dose, we transferred each patient’s original treatment
plan, generated on the original CT, to both the deformed CT
and the synthetic CT and did a forward dose calculation in
our Eclipse (Varian Medical Systems, Palo Alto, CA, USA)
treatment planning system. All patients’ original plans were
either 6X multifield intensity-modulated radiotherapy
(IMRT) or volume-modulated arc therapy (VMAT) and
included several Planning Target Volumes (PTVs) being trea-
ted simultaneously to doses ranging from 50 to 70 Gy. The
dose-volume histograms (DVH) and dose statistics, e.g.,
mean, maximum of the various PTVs (e.g., PTVsg, PTVsy,
and PTVy) and selected organs at risks (OARs), including
the parotid glands, submandibular glands, brain stem, and
spinal cord were compared between plans. In addition, the
two-dimensional (2D) gamma analysis® at 1%/1 mm and
2%/2 mm dose difference/distance to agreement was also
performed to study the dose distribution at the isocenter. We
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also visually examined the quality of the digitally recon-
structed radiographs (DRR) generated from the synthetic CTs
in comparison to those generated from the original planning
CT.

3. RESULTS

Figure 6 shows an axial, coronal, and sagittal snapshots of
the In-phase MRI, deformed planning CT (CT,,) and syn-
thetic CT generated using our proposed approach for patient
#10 (a female subject without dental filling and metal artifact)
along with absolute difference map between the synthetic and
deformed planning CT. The MAE between the synthetic and
deformed planning CT was 81, 121, and 130 HU for the entire
CT, air and bone regions, respectively. The biggest error
between the synthetic and deformed CT is seen in the vicinity
of the air-bone and air-soft tissue interfaces. Figure 7 also
shows that although our atlas contains patients with dental
filling and metal artifacts, the GRE metric is capable of dis-
carding inappropriate samples during the creation of the syn-
thetic CT.

Table II shows the impact of the bone-suppression-based
CT-MR fusion, GRE and 2-D searching on the accuracy of
the final synthetic CTs generated by our proposed algorithm,
quantitatively. The mean and standard deviation of the mean
absolute error (MAE) between the corresponding synthetic
CTs and deformed planning CTs over the entire CT, air, and
bone regions are presented. As seen, the largest MAE errors
are seen in air and bone regions.

Figure 7 presents the dose-volume histograms (DVH) for
the planning target volumes (PTVs) and selected organs at
risk (OAR) for the synthetic and deformed planning CTs for
Patient #5. As seen, a highly consistent dose distribution
between the synthetic CT and deformed planning CT was
observed for this patient. Figure 8 also shows the digitally
reconstructed radiograph (DRR) for both synthetic and
deformed planning CTs.

The mean and standard deviation of the percentage differ-
ences between various dose statistics for the PTVs and
selected OARS for all patients are presented in Table III. The
largest differences observed were less than 2% and were seen
for left parotid gland. All other differences were approxi-
mately 1% or less. Finally, our 2D gamma analysis of the
isocenter dose distribution revealed the pass rate of
99.36 £ 0.7 for 2%/2 mm dose difference/distance to agree-
ment criterion. The pass rate decreased to 95.44 + 2.5 for
1%/1 mm dose difference/distance to agreement criterion.

4. DISCUSSION

We have developed an atlas-based algorithm with registra-
tion goodness weighting for MRI-driven electron density map-
ping of head and neck anatomy. After identifying a set of
twelve patients with CT and MR scans, we pre-processed all
MRI series to reduce the patient- and scanner-induced inten-
sity inhomogeneity. Then, we deformably registered CT to
MRI for each patient to construct a set of co-registered
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FiG. 6. An axial, coronal, and sagittal snapshot of the In-phase MRI, deformed planning CT and synthetic CT generated using our proposed approach for patient
#10. The color-coded images are the absolute difference maps between the synthetic CT and deformed planning CT. Most differences are seen in the vicinity of
the air-bone and air-soft tissue interfaces. [Color figure can be viewed at wileyonlinelibrary.com]
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FiG. 7. Dose-volume histograms (DVHs) for the planning target volumes (PTV) and selected organs at risk for the synthetic CT and deformed planning CT of
patient #5. Dashed lines correspond to synthetic CT. [Color figure can be viewed at wileyonlinelibrary.com]

CT-MR atlases. For a new patient, we deformed all CT-MR
atlases onto the new MRI and then measured the local registra-
tion error between the new patient and each sample in the atlas
through which the deformed atlas CTs are weighted to create
the synthetic CT. We measured the mean absolute error
(MAE) between the original CT and synthetic CT to evaluate
the performance of our proposed algorithm. We found that our
newly proposed strategies are very effective to reduce MAE
compared to other available methodologies. For example, Uh

Medical Physics, 44 (7), July 2017

et al.® reported a root mean square error of 208-539 HU (ours
is: 124 4+ 21 HU) in their approach where they used rigid reg-
istration and simple averaging. Sjélund et al.’ reported a MAE
of 113 £ 18 HU by iteratively refining the deformable regis-
tration of an atlas onto the new patient. In another work, Gudur
et al.'"” reported a MAE of 126 + 25 HU using a unifying
probabilistic Bayesian approach.

In our method, we introduced a new image processing
method called bone suppression that facilitates intermodality
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TasLe II. The impact of the bone-suppression-based CT-MR fusion, GRE and 2-D searching on the accuracy of the final synthetic CTs generated by our pro-
posed algorithm. Numbers show the mean and standard deviation of the mean absolute error (MAE) between the synthetic CTs (generated using different meth-
ods of averaging (Equally weighted (without 2D searching) vs. GRE (y = 5)-weighted) and with/without 2D searching) and deformed planning CTs.

Registration scheme W/O bone suppression W/Bone suppression
GRE-weighted
Equally Equally W/0O 2-D GRE-weighted
weighted weighted searching W/2-D searching
Entire CT Mean 145 86 68 64
STD 18 10 10 10
Air Mean 235 159 121 113
STD 18 24 13 12
Bone Mean 262 183 145 130
STD 14 38 30 28

Synthetic CT

Deformed planning CT

Fic. 8. DRR images for both synthetic and deformed planning CTs of
Patient #5 in our atlas.

(CT-MR) deformable image registration. This technique iden-
tifies the bone voxels in CT scans and then replaces their
intensity with that of air. Since both air and bone have negli-
gible signal intensity in MRI, this makes the relative intensity
of air and bone regions in the CT similar to that of MRI,
thereby facilitating the registration process. We found that
using bone-suppression technique in CT-MR fusion may
lower the mean absolute error (MAE) between the synthetic
CT and deformed planning CT by ~69%.

TasLe III. Mean and standard deviation of the dose difference between CT,, and CT;

We also developed a new metric called generalized regis-
tration error (GRE) to evaluate the local failure in deformable
MR-MR registration. The basis of the GRE is the measure-
ment of the intensity mismatch between the two standardized
MRIs. GRE calculates mean, variance, and entropy of the dif-
ference map between the two registered MRIs over a local
patch surrounding the voxel of interest. The intensity/tissue
mismatch increases as the local registration around a voxel
becomes less accurate. In other words, having a small mean
over the local patch in the difference map indicates that the
corresponding tissues in the two registered MRIs are similar
to each other. Likewise, having a small variance and entropy
indicates that the intratissue variation is also minimal. It is
worthwhile to note that variance and entropy are two different
indicators of uncertainties. While variance captures the
spread of variation over the entire patch, entropy measures
the multimodal distribution where the variation clusters
around two or more peaks. Our finding (Table II) showed
that GRE combined with a 2-D voxel searching was highly
effective in selecting the most appropriate corresponding
voxel from each CT-MR pair in the atlas and then guiding the
assignment of the CT number for synthetic CT generation.
We selected a 2 mm search area for the 2-D searching in this
study. We investigated other sizes for the search area and
found that increasing the boundary of the search region did
not substantially improve the accuracy of the synthetic CT
substantially but did add noticeable computation time. For
example, we used MATLAB 8.3.0.532 (R2014a) with MEX
function programming to implement our algorithm. Running
the 2-D search 2 mm (a patch of 5 x 5) away from each

yn for all patients in the atlas: PTVsq, 54, ana 60: planning target volume

receiving 50, 54, or 60 Gy. R: right, L: left, SMG: submandibular gland, BS: brainstem. numbers denote the percentage (%) dose difference between the corre-

sponding PTV/OAR in CT,, and CT;y (£ standard deviation).

Parotid

PTV60 PTV54

PTV50 L R

SMG

L R Mandible BS Cord

Max  0.34 £ 0.38 0.14 £ 0.51
Mean 0.1 £0.16 033 £0.14 038 £04
Dos 0.02 £027 011 £060 112 £2.1

0.11 £0.63 054 £033 027 £048 029 +£0.22 0.22 = 0.19
1.58 £2.09 042 £ 090 0.21 £ 0.13

0.10 £ 0.30 0.02 £ 0.72 0.06 £ 1.01
0.15 £ 0.38 048 £ 044 0.03 £0.74 0.17 £ 041

Medical Physics, 44 (7), July 2017
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voxel (voxel size of ~1 mmz) for a patient with matrix size of
400 x 400 x 250 took about 20 min. However, increasing
the 2-D search boundary by one voxel (i.e., to a patch of
7 x 7) approximately doubled the computation time for each
patient. We also compared the performance of the GRE with
that of local mutual information (LMI) and local normalized
cross-correlation (LNCC) for similarity measurement. Our
preliminary results (not shown in this paper) revealed the
superiority of GRE compared to the other metrics. The major
issue of the local mutual information as a similarity measure-
ment index is the lack of information in a local patch to accu-
rately estimate the individual and joint histograms. On the
other hands, LNCC showed little effect over air and soft-tis-
sue region and showed to be more useful over tissue bound-
aries and bony structures while GRE had better performance
in all areas. For example, replacing GRE with LNCC to syn-
thesize CT in Table II, resulted in an average MAE of
74 + 11, 143 £ 23, and 149 £ 38 HU for the entire image,
air and bone regions respectively. The results included the
use of 2D searchig as well. However, we believe that we need
a more comprehensive study using a larger dataset to evaluate
the performance of GRE compared with other similarity mea-
surement indices. This will be studied in our future works.

It is also worthwhile to note that we used a patch size of
5 x 5 x 5 to include sufficiently large symmetrical neigh-
borhood around a voxel for our calculation. However, the
optimal patch size, gamma constant in GRE calculation and
extent by which we perform 2D searching could be optimized
depending on the application and will be carried out in the
last step of preparing this work for clinical usage.

One of the key steps in our algorithm is the standardiza-
tion of the MR intensity histograms prior to atlas formation
and propagation. Robitaille et al.* showed that using land-
marks with tissue-specific information have better standard-
ization results than using percentile-based”' landmarks. They
identified background (BKG), gray matter (GM) and white
matter (WM) as tissue-specific points in their method. How-
ever, using GM and WM as landmarks may not be optimal
for synthetic CT generation since there is negligible differ-
ence between the CT number of the gray matter and white
matter tissues. In other words, it is desirable to have more
landmarks in the regions of low signal intensity as this

Deformed Planning CT

In-phase MRI

Synthetic CT
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enables us to differentiate between air and bony tissues more
efficiently. As shown in this article, we used four distinct
extrema, three of which are in low-signal-intensity regions, in
the in-phase MR intensity histogram of head and neck cancer
patients as landmarks for the standardization process. It is
also worthwhile to note that we assumed that these points cor-
respond to similar tissue types in the in-phase head and neck
MRI. In addition, although, this set of points provided satis-
factory results for our purpose, we may incorporate other
MRI image series, e.g., fat-only, water-only images, etc. to
add more landmarks corresponding to fat and muscle tissues
thereby enhancing the efficiency of the standardization pro-
cess. In general, the more tissue-specific landmarks utilized
in the standardization process, the more accurate the intensity
match for various tissue types in the MRI series. We initially
planned to employ water and fat images as well; however, we
found that good results were obtained using the in-phase
images. We have continued to use the mDixon in-phase to
maintain continuity for the atlas.

Including patients with dental fillings or other metal
implants can result in systematic errors in synthetic CT gener-
ation. It is therefore common to remove such patients during
the creation of an aﬂas;8 however, this would have noticeably
restricted the number of patients available to our atlas. There-
fore, we did not make any attempt to remove such patients
and only excluded patients with imaging artifacts such as
motion artifact or blurring issues from our analysis. Figure 7
shows slices from the synthetic CT generated for a female
patient without dental and metal artifacts. It is clear in this
figure that our GRE similarity metric is capable of discarding
inappropriate atlas voxels in the process of synthetic CT gen-
eration. In other words, GRE appropriately removes distorted
regions in each patient, which allowed us to use a wide range
of patients with dental filling and metal artifact in the atlas
formation. Nonetheless, it should be noted that the presence
of dental filling or metal artifact in new patients imposes a
major source of error in our algorithm (Fig. 9). Therefore,
using metal artifact reduction pulse sequences’> >° may be
helpful to reduce the effect of metal-induced susceptibility in
the case of MRI-driven electron density mapping. Another
approach to this problem might be the creation of an atlas that
includes patients with dental fillings spanning all possible

Absolute Error Map

Fi1G. 9. Synthetic CT generation for patient #2 with dental filling and susceptibility artifact. The in-phase MRI, deformed planning CT, synthetic CT, and absolute
difference map between the synthetic and deformed planning CT are shown. The presence of dental filling and susceptibility artifact imposed a substantial error
in the resultant synthetic CT. [Color figure can be viewed at wileyonlinelibrary.com]
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locations. Such approaches will be evaluated in our future
work. Also, it is nontrivial to mention that one of most impor-
tant challenges in using atlas-based synthetic CT generation
approaches is to deform the atlas to patients with large
anatomical abnormalities such as surgical resection and large
tumors. Hence, it will be our next step to evaluate the perfor-
mance of our proposed approach using a large dataset includ-
ing patients with various image quality and anatomical
abnormalities.

CONCLUSIONS

We have developed and evaluated a multiatlas-based
approach for MR-driven electron density mapping of head
and neck anatomy. We demonstrated that our proposed image
registration strategy and GRE metric is capable of creating
accurate synthetic CTs. Novel elements of the algorithm
include CT-MRI registration using bone-suppression, the use
of a generalized registration error metric to weight local CT
contributions, and fine-tuning of local registrations indepen-
dent of global registrations. As noted, dental fillings and
metal artifacts in new patients represent a major source of
error in our proposed approach. The resulting dosimetric
accuracy using the pseudo-CT scan is excellent. A more com-
prehensive clinical evaluation is ongoing including more
patients as well as other anatomical sites.
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