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ABSTRACT

Single-cell RNA-Seq (scRNA-Seq) has attracted much attention recently because it allows un-
precedented resolution into cellular activity; the technology, therefore, has been widely applied in
studying cell heterogeneity such as the heterogeneity among embryonic cells at varied develop-
mental stages or cells of different cancer types or subtypes. A pertinent question in such analyses is
to identify cell subpopulations as well as their associated genetic drivers. Consequently, a mul-
titude of approaches have been developed for clustering or biclustering analysis of scRNA-Seq
data. In this article, we present a fast and simple iterative biclustering approach called ‘‘BiSNN-
Walk’’ based on the existing SNN-Cliq algorithm. One of BiSNN-Walk’s differentiating features
is that it returns a ranked list of clusters, which may serve as an indicator of a cluster’s reliability.
Another important feature is that BiSNN-Walk ranks genes in a gene cluster according to their
level of affiliation to the associated cell cluster, making the result more biologically interpretable.
We also introduce an entropy-based measure for choosing a highly clusterable similarity matrix
as our starting point among a wide selection to facilitate the efficient operation of our algorithm.
We applied BiSNN-Walk to three large scRNA-Seq studies, where we demonstrated that BiSNN-
Walk was able to retain and sometimes improve the cell clustering ability of SNN-Cliq. We were
able to obtain biologically sensible gene clusters in terms of GO term enrichment. In addition, we
saw that there was significant overlap in top characteristic genes for clusters corresponding to
similar cell states, further demonstrating the fidelity of our gene clusters.

Keywords: BiSNN-Walk, biclustering, single cell, RNA-Seq.

1. INTRODUCTION

S ingle-cell RNA-Seq (scRNA-Seq) has received much attention for allowing a deeper resolution into

cellular biology. As an extension to the popular RNA-Seq technology, scRNA-Seq allows us to sequence

cells that are rare in occurrence (e.g., embryonic cells) or simply hard to obtain (e.g., brain cells). In light of the

rise of the technology, an increasing number of experiments have been conducted and yielded excellent results

(Ramsköld et al., 2012; Yan et al., 2013; Deng et al., 2014; Wu et al., 2014). The unprecedented resolution into

cell states provides hope for a better understanding of cell function and dysfunction (Eisenberg and Levanon,

2013), for which scRNA-Seq was bestowed the honor of ‘‘Method of the Year’’ by Nature in 2013 (Nawy, 2014).
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Being a high-throughput technique, scRNA-Seq data pose interesting statistical problems. One such

problem is to cluster cells into biological categories, for example, distinct developmental stages or cell

types, to discover cell-based biologics. Compared to other clustering tasks, algorithms developed for

scRNA-Seq data need to take into account the increased variation in data that comes with sequencing

individual heterogeneous cells (e.g., Buettner et al., 2015; Xu and Su, 2015). To improve on existing

algorithms, a natural extension is to simultaneously identify ‘‘biologically important’’ genes for each cell

category while performing clustering. Under this setting of biclustering, it is reasonable to expect that the

identified signature genes would not only aid clustering the cells by denoising the data but also help answer

questions such as ‘‘what genes are heavily recruited in the 2-cell stage of mouse embryonic development?’’

Since a gene may be involved in multiple cell conditions, the biclustering problem we consider allows for

overlapping gene (rows) clusters but nonoverlapping cell (columns) clusters. For instance, it is reasonable to

assume similar genes would drive 2-cell embryonic and 4-cell embryonic development due to their chronological

proximity. Most existing biclustering algorithms such as block partitioning (Govaert and Nadif, 2008) are not

suitable because they do not allow overlapping gene clusters. More flexible models such as the Cheng and

Church model (Cheng and Church, 2000), which considers a bicluster as a submatrix with consistent column

and/or row effects, are often too computationally expensive for the problems we consider (&100 cells, >40,000

genes). Coupled two-way clustering (Getz et al., 2000) is a popular method that sequentially divides an initial

cluster until a stable child cluster is found. However, since the method cannot self-correct, the quality of the child

clusters may be entirely dictated by the quality of the initial cluster. In this article we introduce a fast, simple,

self-correcting iterative biclustering method named ‘‘Biclustering using Shared-Nearest-Neighbor and Walk-

trap’’ (BiSNN-Walk for short, pronounced ‘‘bison walk’’), in hope to address the above issues to some extent.

BiSNN-Walk expands on the idea of clustering on Shared Nearest Neighbor network constructed from gene

expression matrix proposed in Xu et al.’s SNN-Cliq algorithm (Xu and Su, 2015) by adding a gene clustering

component to SNN-Cliq’s cell clustering framework. We also introduce a simple entropy-based measure to

guide our initial similarity matrix selection, which serves as a starting point for BiSNN-Walk. In our exploratory

analyses, the entropy measure shows promise for gauging the ‘‘clusterability’’ of similarity matrices.

We applied BiSNN-Walk to three public single-cell RNA-Seq data sets and found that the algorithm not

only maintained SNN-Cliq’s clustering capability but also produced biologically interpretable results by

establishing genes that are characteristic to those clusters.

The article is organized as follows: the Methods section will outline the algorithm and detail the key

steps; the Results section will describe the three scRNA-Seq data sets used for validation, compare our cell

clusters against SNN-Cliq, offer visual comparisons against selected biclustering algorithms, and finally

evaluate the gene clusters via gene overlap and ontological term-enrichment analysis.

2. METHODS

Figure 1 details the flow of BiSNN-Walk. In essence, the algorithm iterates between an inner loop and an

outer loop.

The inner loop cycles through three main steps: cell clustering ‘‘SNN-Walktrap,’’ gene finding, and

expression matrix updating (Fig. 1, steps r, s, t, respectively). We pass an initial similarity matrix into

SNN-Walktrap to obtain a candidate cell cluster, which is used to find characteristic genes. Step t then

produces a gene expression matrix containing only those characteristic genes. The reduced expression matrix is

in turn used by SNN-Walktrap to obtain a new cell cluster. The process then iterates until either the cell cluster

stabilizes or a preset iteration limit is reached. The inner loop will have produced one bicluster on termination.

The process then goes to the outer loop, where the cell cluster found by the inner loop is removed from

the input matrices. The updated matrices are subsequently fed into the inner loop to obtain the next stable

cluster. The process continues until stopping criteria (described in the Stopping Criteria section) are met.

The following sections will detail several major steps.

2.1. Initial input: selecting a similarity matrix

The first step is to choose a similarity matrix to be used to obtain the initial cell cluster (Fig. 1, step {).

We consider an initial similarity matrix with high contrast to be ideal, that is, if correlation is used, the

correlation between cells of the same type should concentrate tightly near 1, while that between different
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types should concentrate around near 0. In this study, we will examine four common types of similarity

matrices: Euclidean distance, Spearman correlation, Pearson correlation, and the irreproducible discovery

rate (IDR) matrix (Li et al., 2011). IDR measures the level of inconsistency between two cells’ active

genes; for example, two cells that have a similar set of active genes will generate a small IDR value and

vice versa. The IDR stands apart from existing cell similarity measures, in that it does not resort to using all

of the genes or a preselected set of ‘‘relevant genes.’’ The former is not desirable since a large portion of a

cell’s genetic profile consists of housekeeping and nonactive genes, which may lower a method’s power to

identify the relationship between two cells. The latter is not ideal either since the threshold for ‘‘active’’

genes will vary across cells. The use of IDR bypasses these difficulties. Our results (Supplementary

Appendix G, Table 2) demonstrate that the IDR matrix consistently provides high-quality final clustering.

An overview of IDR is provided in Supplementary Appendix F.

To choose which similarity matrix to use, we propose a simple entropy-based measure.

Definition (entropy of a similarity matrix). Let x be the vector obtained from the upper triangle of the

similarity matrix, we put the values of x into m equal sized bins, akin to what is done for histograms. Let

p = p1‚ . . . ‚ pm½ � denote the proportion of values that fall into each bin.* The entropy for an m-bin con-

figuration is calculated as

Entropy p‚ mð Þ =
Xm

i = 1

pi log pi

FIG. 1. BiSNN-Walk Algorithm Flowchart. Inputs and outputs are in rounded boxes, functions are in blue texts. The

function SNN-Walktrap is a bit complicated, and its details are laid out in the red box. Steps with circled numbers are

crucial steps that will be repeatedly referenced.

*Ignore bins with 0 counts.
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This entropy can be interpreted as the amount of noise in a similarity matrix, and thus, a similarity matrix with

a large amount of clustering information should have low entropy. Because entropy calculation depends on m, it

is illustrative to compare entropy at several m’s varying in an appropriate range. We found that the entropy

measure performs as expected in simulation and provides good initial similarity matrix for real data. Please refer

to Supplementary Appendix G for an in-depth exploration of the performance of the entropy measure.

2.2. Inner loop

SNN-Walktrap (Fig. 1, step r) takes a matrix input (e.g., gene expression or similarity matrix) and

returns a cell cluster. Overviews of SNN and Walktrap (Pons and Latapy, 2005) are presented in Supple-

mentary Appendices C and D, respectively. Next (Fig. 1, step s), we evaluate a gene’s functional relevance

to the cell cluster. Finally (Fig. 1, step t), we use the identified characteristic genes to reduce potential

impurities in the cell cluster. Figure 2 demonstrates this ‘‘purification’’ step at work. More details on step r

can be found in Supplementary Appendix A, and details for steps s and t in Supplementary Appendix B.

2.3. Stopping criteria

The algorithm stops if all Walktrap clusters obtained from Walktrap clustering are of size 2 or less or all

candidates have zero transitivity, when further clustering is meaningless.

3. RESULTS

We use three public data sets to evaluate our algorithm: Mouse Embryonic Cells (Deng et al., 2014),

Human Embryonic Cells (Yan et al., 2013), and Human Cancer/Somatic Cells (Ramsköld et al., 2012). To

FIG. 2. First 3 outer loops of BiSNN-Walk on mouse embryo data set. Outer loop 1 has three inner loops. On the first

inner loop, our initial cluster contains nine fibroblast cells and one mid-blastocyst cell. Notice that on the second inner

loop, the mid-blastocyst is removed from the cell, and we obtain the cleaned stable cluster on our third inner loop. The

second outer loop also contains three inner loops. On the first inner loop, we obtain our initial cluster of seven early-2-

cell-stage cells and one 16-cell-stage cell. On the second inner loop, the 16-cell-stage cell was removed, and the

zygotes, which are much closer in developmental to early-2-cell stage, are added. On the third inner loop, we obtain the

cleaned stable cluster. A similar self-correcting behavior can be seen in the third outer loop.

Table 1. Comparison Between Adjusted Rand Index of Final Clusters

Mouse embryo Human embryo Human cancer

BiSNN-Walk 0.472 (311/317) 0.776 (124/124) 0.883 (82/86)

SNN-Cliq 0.574 (177/317) 0.796 (124/124) 0.661 (86/86)

GiniClust 0.098 (317/317) 0.379 (119/124) 0.870 (69/86)

Adjusted Rand Index are calculated against ground truth. Number in parentheses is

(number of cells clustered/total number of cells).
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ensure a level of uniformity of gene expression, we ran RNA short reads from each experiment through the

standard ENCODE pipeline [ENCODE Consortium (2016)] using STAR for alignment (Dobin et al., 2013)

and RSEM (RNA-Seq by Expectation Maximization) for transcript quantification (Li and Dewey, 2011).

Gene expressions are normalized using transcript per million. The three data sets will be referred hereafter

as ‘‘mouse,’’ ‘‘human embryo,’’ and ‘‘human cancer,’’ respectively. The expression matrices for mouse,

human embryo, and human cancer are of sizes: 41‚ 128 genes · 317 cells , 60‚ 483 genes · 124 cells , and

60‚ 483 genes · 86 cells , respectively; their collection summary can be found in Tables 2–4. Supplementary

Appendix I contains brief descriptions of each experiment.

The run time of BiSNN-Walk is O(krnm2), where k = number of clusters or number of outer loop iterations,

n = number of genes, m = number of cells, and r = number of inner loop iterations. Since m and k / m are

relatively small compared to n, n will dominate the run time. r is reflective of the quality of data—cleaner data

will require less iterations. The minimum number of r is 2: one round to obtain an initial cluster and another

round to verify that it is stable. Table 5 details BiSNN-Walk’s outputs on the evaluation data sets.

3.1. Cell clustering results

3.1.1. Performance comparison versus SNN-Cliq. Adjusted Rand Index (ARI), a recommended metric

to quantify agreement between clusters (Milligan and Cooper, 1986; Santos and Embrechts, 2009), was used to

compare our clustering results against SNN-Cliq’s. Please refer to Supplementary Appendix E for an overview

of ARI. Direct comparison between the two clustering algorithms is not straightforward. First, SNN-Cliq

requires the neighborhood parameter k and there is little guidance as to how to choose this parameter; we

therefore obtained the SNN-Cliq clusters by varying k from 4 to 12 and considered the clustering result with

the highest ARI; in other words, we purposely gave an advantage to SNN-Cliq’s clustering result. In addition,

neither BiSNN-Walk nor SNN-Cliq clustered all cells; therefore, we also used the number of clustered cells to

gauge algorithm performance, with more cells clustered being more preferable.

From the results shown in Table 1, BiSNN-Walk is comparable to SNN-Cliq in terms of cell-clustering

quality. For mouse data, ARI for SNN-Cliq is higher, but it only clustered about half of the cells. A major

difficulty with this data set is distinguishing the three blastocyst stages. SNN-Cliq refused to cluster this

stage almost entirely at optimal k parameter, which is why only 177 out of the 317 cells were clustered. In

fact, if we force SNN-Cliq to cluster a similar number of cells (304/317) as BiSNN-Walk, SNN-Cliq’s ARI

drops down to 0.465, slightly lower than our result. For human cancer, SNN-Cliq has a much lower ARI

even though the number of cells clustered is comparable. For human embryo, BiSNN-Walk has a slightly

lower ARI, while the number of clustered cells is the same. Taking a closer look at the results, we found

that BiSNN-Walk was not able to separate zygote, oocyte, and 2-cell-stage cells, whereas SNN-Cliq could.

Table 2. Collection Details of Mouse Embryonic Cells

Developmental stage Hours after ovulation No. of samples

Zygote 20–24 4

Early-2-cell 31–32 8

Mid-2-cell 39–40 12

Late-2-cell 46–48 10

4-Cell 54–56 14

8-Cell 68–70 48

16-Cell 76–78 58

Early-blastocyst 86–88 43

Mid-blastocyst 92–94 60

Late-blastocyst 100–102 30

C57 2-cell NA{ 8

Liver — 13

Fibroblast — 10

{In correspondence with the author of the article, the ‘‘C57 2-cell’’ cells have different genetic background than the
other 2-cell cells, and are of worse sequencing quality. So, the exact placement of the C57 2-cell cells in the 2-cell
developmental stage is unclear.
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This problem does not appear if we had used Euclidean distance as an initial similarity matrix; in fact, in

that case we actually have a slightly higher ARI than SNN-Cliq (0.798 vs. 0.796). This is yet another

motivation for exploring the theoretical properties of our entropy-based measure so that we can select a

more appropriate starting point.

Figure 3 shows heatmaps of BiSNN-Walk clusters against ground truths. Both ground truth and BiSNN-

Walk clusters are roughly ordered chronologically, and the visible diagonal block structure suggests strong

concordance. As mentioned previously, it is difficult to separate 8- and 16-cell cells as well as the early-,

mid-, and late-stage blastocysts; however, the diagonal structure of the heatmap indicates that developmental

stages that are chronologically close are clustered together. Human embryo cell clusters are also ordered

according to developmental stages. Similar to mouse data, the diagonal pattern is clearly visible, indicating

that developmental stages are clustered by chronological proximity. Human cancer results are not ordered in

any particular order, but as indicated by the diagonal structure and the high ARI score, most ground truth cell

types are found perfectly. LNCaP cells (prostate cancer cell line cells) and LNCaP-HTC cells (prostate

cancer cells isolated by EPCAM markers in Petri dish) could not be separated due to their close resemblance.

SKMEL5 and UACC are two melanoma cell lines and could not be separated due to their similarity. The

PC3 bladder cancer cell lines were not clustered because they were among the last four cells to be clustered,

causing Walktrap to return two clusters of size 2, thus triggering the stopping condition.

Table 4. Collection Details of Human Somatic/Cancer Cells

Cell type No. of samples

Universal human reference RNA 20

Brain 16

Prostate cancer cell line (PC3) 4

Bladder cancer cell line (T24) 4

Melanoma-derived circulating tumor cells (CTC) 6

Melanocytes 2

Melanoma cancer 7

Embryonic stem cells 8

Prostate cancer cells (picked from Petri dish) 7

Prostate cancer cells (isolated by EPCAM marker) 8

Table 5. BiSNN-Walk Output Information

Time elapsed (s)

Average No.

of inner loops

No. of clusters found

(No. of real clusters)

Mouse 311 4 14 (13)

Human embryo 109 3.8 10 (9)

Human cancer 86 3.7 8 (11)

‘‘Avg No. Inner Loops’’ is average number of inner loops called per round of outer loop, and can be

interpreted as either the speed of convergence or quality of the data, as faster convergence is achieved

with cleaner data.

Table 3. Collection Details of Human Embryonic Cells

Developmental stage Hours (after fertilization) No. of samples

Oocyte 4 (after retrieval) 3

Zygote 19 3

2-Cell 27 6

4-Cell 48 12

8-Cell 72 20

Morulae 96 16

Late-blastocyst 144 30

hESC *30 days 32
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3.1.2. Performance comparison versus selected algorithms. BiSNN-Walk is compared with

GiniClust ( Jiang et al., 2016), a recently published clustering algorithm specifically designed to handle

scRNA-Seq data, and four general purpose biclustering algorithms: Plaid (Lazzeroni and Owen, 2002),

(Cheng and Church, 2000), Xmotifs (Voggenreiter et al., 2012), and BiMax (Madeira and Oliveira, 2004).

Please refer to Supplementary Appendix J for brief overviews of the algorithms.

To train each algorithm, we first find impactful tuning parameter(s) and explore a range of values where

such parameters returned reasonable answers. We then pick candidate values from that range and perform

an exhaustive search to choose the clustering most concordant with the ground truth (measured by Adjusted

Rand Index). Again, we purposely gave an advantage to these methods for their parameter selections.

GiniClust returns nonoverlapping cell clusters, so we use ARI to measure its cell clustering performance.

As the results in Table 1 show, BiSNN-Walk’s clustering results surpass that of GiniClust’s on all three

data sets, as measured by ARI. GiniClust’s performance on the developmental data sets, that is, mouse and

human embryo, was unspectacular. It was able to cluster together cells that are roughly close in devel-

opmental stages but was not able to find the finer stages. This may be because GiniClust was designed to

isolate small tight-knit rare cell types rather than general purpose biclustering. GiniClust’s human cancer

clusters were quite decent, although it only clustered 80% of the cells. Please find more detailed discussion

on GiniClust results in Supplementary Appendix J.

FIG. 3. BiSNN-Walk clusters compared to ground truths. x-Axis are the BiSNN-Walk clusters, and y-axis ground

truth. The value in each grid represents the percentage of ground truth cluster that is in the BiSNN-Walk cluster. For

example, in mouse data, the BiSNN-Walk cluster ‘‘Zy & 2e’’ contains all zygote and early-2-cell stage cells, thus the

values in grids (‘‘Zy & 2e,’’ ‘‘zy’’) and (‘‘Zy & 2e,’’ ‘‘2.e’’) are both as follows. 1. The distinct diagonal pattern for all

three data sets indicates that the ground truth was well recovered by BiSNN-Walk clusters.
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Because the other clustering algorithms allow overlapping cell clusters, ARI is not a suitable measure;

thus, we will visually compare their results to BiSNN-Walk’s. Figure 4 shows the cell clustering per-

formance of each algorithm for the mouse data set. Among the four algorithms, only Plaid clusters showed

a reasonable diagonal structure, indicating decent alignment with ground truth. A closer examination

shows that the Plaid was able to cluster related cell stages together but did not have the specificity to

FIG. 4. Cell clusters found by biclustering algorithm compared to ground truth for the mouse data set. x-Axis are the

cell clusters found by indicated algorithm, ordered roughly by developmental stage. y-Axis is ground truth ordered by

developmental stage. The value in each grid represents the percentage of ground truth cluster that is in each cell cluster.

The lack of distinct diagonal patterns indicates that the cell clusters found by these algorithms were not homogenous.
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obtain as fine a resolution as BiSNN-Walk clusters. Cell clustering results for other organisms show a

similar theme and plots are shown in Supplementary Appendix J.

3.2. Gene clustering results

One of the main features of our method is that it simultaneously clusters both cells and genes. We argue

that our gene clusters indeed make sense using two methods of evaluation: gene overlap analysis and

biological term-enrichment analysis.

In gene overlap analysis, we examine the overlap of top 100 characteristic genes of each cluster. Clusters

that are more biologically similar should share more characteristic genes. For instance, mid-2-cell and late-

2-cell stages should share more genetic drivers than, say, mid-2-cell and blastocyst stage. In enrichment

analysis, we enrich the top 100 characteristic genes of each cluster and see whether the enriched terms

make sense in the context of the cluster. For instance, for a cluster that contains mostly of brain cells, its

characteristic genes should return neuron-related enriched terms. In other words, in gene overlap analysis,

we check whether gene clusters make sense relative to each other, and in enrichment analysis, we verify

whether the gene clusters are representative of their associated cell cluster.

3.2.1. Gene overlap analysis. Figure 5 shows heatmaps of the overlap between top 100 charac-

teristic genes between clusters. For mouse and human embryo data, the apparent block diagonal structure in

Fig. 5 confirms the hypothesis that stages that are chronologically close will share more characteristic

genes. For human cancer, as expected, we see very low overlap between clusters of different cell types

except a somewhat elevated association between ‘‘Melanoma CTC’’ (circulating melanoma cells) and

‘‘Melanoma CL’’ (cancer line melanoma cells), which is reasonable, since they are of the same cell type.

However the reason why we only see an overlap of 15 genes may be explained by previous observation that

CTC profiles are quite distinct from those of cancer cell lines (Powell et al., 2012).

FIG. 5. Overlap between top 100 characteristic genes. The color saturation indicates the number of overlapping genes

between the top 100 characteristic genes of two clusters. Maximum value for each grid is therefore 100.
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3.2.2. Biological enrichment analysis. To perform enrichment analysis, we took the top 100

characteristic genes for each cluster and checked whether enrichment terms make sense with respect to the

types of cells in the cluster. GO term enrichment was used for human cancer data, whereas anatomy

enrichment was performed on mouse data. Since anatomy enrichment is not available for human, no

enrichment analysis was performed for human embryo. Selected enrichment results are shown in Tables 6

and 7, respectively. Enrichment was performed using InterMine’s Python API (Smith et al., 2012).

Mouse result shows highly relevant enriched terms for somatic cells (fibroblast, liver) and early em-

bryonic cells (2-cell and 4-cell stage). Eight-cell to blastocyst cells were not enriched well because the

clusters themselves are quite heterogeneous in the first place. Most of the human cancer cells have highly

relevant enriched terms. No enrichment was found for prostate and bladder cancer clusters because none of

Table 6. Enriched Terms for Mouse Embryo Data Set

Cluster name Cell types Enriched terms

Zy & 2.e Zygote early-2-cell Germ cell of ovary

Germ cell of gonad

2-Cell stage conceptus

2 2-Cell 2-Cell stage conceptus

1-Cell stage conceptus

2.m Mid-2-cell 2-Cell stage conceptus

1-Cell stage conceptus

4-Cell stage conceptus

2.l Late-2-cell 2-Cell stage conceptus

1-Cell stage conceptus

4 4-Cell 2-Cell stage conceptus

8 8-Cell

8–16 8-Cell

16-Cell

Bl.e Early-blastocyst embryo endoderm

Mid-blastocyst endoderm

Bl.e+Bl.m(1) Early-blastocyst primitive endoderm

Mid-blastocyst endoderm

Late-blastocyst early conceptus

Bl.e+Bl.m(2) Early-blastocyst

Mid-blastocyst

Late-blastocyst

Bl.m+Bl.l Late-blastocyst

Mid-blastocyst

Mid-2-cell

Liver(1) Liver Liver

Liver lobe

Liver and biliary system

Liver(2) Liver Liver

Liver lobe

Liver and biliary system

Fib Fibroblast Tendon

Mesenchyme

Bone

Cluster name is a nickname given to the reported cluster based on its cell type composition. Cell types lists the cell types

found in the reported cluster. Enriched terms lists relevant ontological terms. As one can see, liver, fibroblast, and early

developmental stages were well enriched. Early- and mid-blastocyst clusters also saw relevant enrichment. For

Bl.e+Bl.m(2) and Bl.m+Bl.l clusters, significant terms were found, but were not reported since they did not seem relevant

to the developmental stage. No significant terms were found for 8-cell and 16-cell clusters. Please refer to Supplementary

Data for full list of enriched terms. EMAPA mouse development anatomy ontology database was used for enrichment.
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the 82 prostate genes and 11 bladder-related genes was part of the gene expression in the first place.{ This

indicates that these organs are poorly studied. The lack of enrichment in the ‘‘Melanoma CTC’’ cluster, as

argued previously, is likely due to the genetic profile of CTCs exhibiting stark departure from Melanocyte

and Melanoma cell line cells, both of which are significantly enriched with the term ‘‘melanosome.’’

4. DISCUSSION AND FUTURE WORK

Clustering is an important tool for genetic analysis; however, finding important genes associated with

those clusters is sometimes of more scientific interest. In this work, we presented a simple, fast, and self-

correcting biclustering algorithm BiSNN-Walk, based on SNN-Cliq (Xu and Su, 2015). Results from

applying BiSNN-Walk to three large scRNA-Seq studies showed that BiSNN-Walk is able to retain and

even improve SNN-Cliq’s clustering performance. Moreover, since BiSNN-Walk extracts cluster one at a

time according to their ‘‘tightness’’ (measured by transitivity and conductance), the order in which the

clusters is found can be reflective of their reliability. Being a biclustering algorithm, BiSNN-Walk also

returns characteristic genes ranked by their relevance to the associated cell cluster. We have shown from

multiple perspectives that BiSNN-Walk returns biologically sensible biclusters. We note that the clustering

algorithm SNN-Walktrap can be replaced if a better method is available.

We used a simple entropy-based measure as a guidance to choose among initial similarity matrices. Using

entropy as a surrogate for ‘‘clusterability’’ is a novel idea, and in our case it served well for choosing a

highly clusterable similarity matrix as initial input. Further investigations on this idea are underway. Several

other areas of the algorithm can be improved. The stopping criterion is currently too naive and should be

further investigated and improved. The definition of characteristic genes is a bit ad hoc. Although it worked

well in the three public data sets, a systematic way of tuning this parameter would greatly improve usability.
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Table 7. Enriched Terms for Human Cancer Data Set

Cluster name Cell types Enriched terms

Ref_RNA Reference RNA

hESC Human embryonic stem cells Stem cell population maintenance

Somatic stem cell population maintenance

Embryo development

Brain Brain Neuron part

Axon part

Synapse part

Prostate LNCaP cell line cells

LNCaP_HTC Petri dish extracted

Bladder T24 bladder cancer cell line

Melanoma CTC Circulating melanoma tumor cells

Melanoma CL SKMEL5 melanoma cell line Melanosome membrane

UACC melanoma cell line

Melanocyte Melanocyte Melanosome membrane

Cluster name is a nickname given to the reported cluster based on its cell type composition. Cell types lists the cell types found in the

reported cluster. Enriched terms lists relevant ontological terms. As one can see, four of the eight clusters saw relevant enrichment. Ref_RNA

saw a wide mix of significant terms, as expected. Significantly enriched terms were returned for all clusters except Melanoma CTC, but were

not reported since they did not seem relevant to the particular cell type. For the full list of enriched terms, please refer to Supplementary Data.

{Prostate and bladder-related genes were queried from www.humanmine.org.
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