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Abstract

The unpredictability of actual physical, chemical, and biological experiments due to the multitude 

of environmental and procedural factors is well documented. What is systematically overlooked, 

however, is that computational biology algorithms are also affected by multiplicity of parameters 

and have no lesser volatility. The complexities of computation protocols and interpretation of 

outcomes is only a part of the challenge: There are also virtually no standardized and industry-

accepted metadata schemas for reporting the computational objects that record the parameters 

used for computations together with the results of computations. Thus, it is often impossible to 

reproduce the results of a previously performed computation due to missing information on 

parameters, versions, arguments, conditions, and procedures of application launch. In this article 

we describe the concept of biocompute objects developed specifically to satisfy regulatory 

research needs for evaluation, validation, and verification of bioinformatics pipelines. We envision 

generalized versions of biocompute objects called biocompute templates that support a single class 

of analyses but can be adapted to meet unique needs. To make these templates widely usable, we 

outline a simple but powerful cross-platform implementation. We also discuss the reasoning and 

potential usability for such concept within the larger scientific community through the creation of 

a biocompute object database initially consisting of records relevant to the U.S. Food and Drug 

Administration. A biocompute object database record will be similar to a GenBank record in form; 

the difference being that instead of describing a sequence, the biocompute record will include 

information related to parameters, dependencies, usage, and other information related to specific 

computational instance. This mechanism will extend similar efforts and also serve as a 

collaborative ground to ensure interoperability between different platforms, industries, scientists, 

regulators, and other stakeholders interested in biocomputing.
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Background

The 20th and 21st centuries have witnessed many collaborative efforts resulting in such 

technological marvels as the Internet, microchips, telecommunications and wireless 

communications, Hadron particle collider, and space travel, among many others. These 

advances would have been impossible without the related scientific communities' 

willingness to standardize and harmonize their technologies. We hope that next-generation 

sequencing (NGS) (also known as high-throughput sequencing (HTS)), and standardization 

and bioinformatics harmonization efforts will yield another success story: a collaborative 

ground for ensuring future interoperability between platforms, industries, scientists, 

regulators, and developers.

NGS technology is still in the scientific research and innovation domain of its lifecycle, 

facing many challenges to its confident and appropriate use. Procedural differences in 

computational techniques and subject datasets can result in unreproducible results or false 

discoveries where computational artifacts are interpreted as scientific facts. For example, 

analysis tool choices and parameter settings can profoundly affect results from two common 

HTS analyses: transcriptome assembly and quantification [1] and somatic mutations 

identification [2]. Unless we establish highly scrutinized and consistent protocols for 

regulatory analytics, our conclusions will always be affected by the false impression of 

reliability. The need is urgent for validation procedures and computational protocols for 

results that will be used in regulatory sciences with a high health impact, and some progress 

is being made in this regard through the High-performance Integrated Virtual Environment 

(HIVE) project [3,4].

Regulatory scientists have already started receiving the front wave of HTS technology 

application reviews ranging across a wide spectrum of bioinformatics applications, including 

disease diagnosis, food safety, and infectious diseases. Although, it is difficult to regulate an 

industry still in its infancy, the promise of this particular technology and the immense 

potential of its applications are greatly accelerating the need for its regulation. Computation 

validation protocols used for analysis of large data are critical in the scientific conclusion-

making process because the complexity and size of computation results can easily 

overwhelm regulatory and research scientists, rendering them unable to detect errors or 

validate inconsistencies by other means.

Significant amount of work has been done in sharing of workflows and experiments. The 

myExperiment project provides a virtual research environment for social depositing and 

sharing of bioinformatics workflows [5]. The concept of research objects has been explored 

within this context. It has been proposed that workflow-centric research objects with 

executable components can be considered as computational research objects [6,7]. Workflow 

creation and management software such as Taverna [8] and others [9] allows researchers to 

access different tools and resources and create complex analysis pipelines, and projects such 
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as Open Science Framework, BioDBcore, and BioSharing provides the logical and 

conceptual backbone for reproducible science (https://osf.io/cdi38/) (https://biosharing.org/) 

[10,11].

However, workflows are often very generic, and they cannot and should not be validated for 

all possible inputs and parameters. Instead, a workflow should be validated with a particular 

usage pattern, such as a limited set of input types and parameter settings. Running the 

workflow with a different usage pattern would fall outside the scope of validation and may 

produce valid or invalid results. To validate a workflow, then, one needs to strictly constrain 

applicability and parametric limits. An instance of a workflow executed at a particular point 

in time and space, applied to known subjects with known set of parameters using known 

experiment or research object or a pipeline, can be verified or invalidated through rigorous 

examination and made into valid biocompute object.

There exists an analogy between actual physical, chemical, or biological experiment and in-

silico biocomputation; in this context we use the term generalized scientific experiment for 

both: bench experiments conducted at a wet lab, and computational experiments conducted 

either by computer software or through scientists' analytic derivations. Many judgments 

described in this concept article are applicable, not just to computations but to experiments 

in general.

To describe validation protocols in a generalized manner, we represent an experiment as a 

black box as shown in Figure 1 with certain predefined inputs, predetermined outputs types, 

and distinct parameters that control the experimental flow. For example, in the wet lab case 

of the black-box chemical experiment, the actual chemical reagents play the role of an input, 

yielded chemical compounds play the role of the results, and the conditions governing how 

the experiment is executed play the role of the parameters. Similarly, in a computational 

experiment aligning short high-throughput DNA sequencing reads, the alignment algorithm 

is the black box, the sequence files of the genome and sequence reads are the input, the 

alignment file that maps reads to genome is the result, and the set of algorithmic control 

arguments are the parameters driving the alignment procedure.

Well-designed and customizable experimental procedures are capable of producing different 

results for the same inputs depending on the given set of parameters. For validation, 

however, an instance of an experiment is complete if and only if the complete set of 
parameterization is well defined in the form of a protocol. This introduces a distinction 

between an experimental method, experimental protocol, and an actual experimental 

instance.

Figure 2 provides a visualization of an experimental procedure. Scientifically, the most 

fundamental aspect is an experimental method shown in the center of the illustration. Next is 

the experimental protocol, which includes details about the experimental method applicable 

in certain conditions within specific parameter/condition settings for running the experiment. 

Most specific is the experimental instance, which includes not only the parameter values of 

the experimental protocol and the general details of the experimental method, but also 

includes specific input files. A general experimental method might be an algorithm of an 
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aligner such as BLAST [12] that is proven to produce mappings between subject and query 

sequences that meet specific algorithmic criteria. Expanding on this, an experimental 

protocol would be a BLAST analysis pipeline with certain parameters defined (i.e., gap 

penalty, etc.) in order to use the underlying algorithm for detecting viruses, bacteria, or 

human sequences. Finally, an experimental instance would be running a BLAST algorithm 

with a predefined set of parameters on a specific data at a specific point in time and place.

Experimental Method

An experimental method is defined as application technique of underlying scientific theory 

to real-life objects with an expectation of gaining a particular result. To adhere to the 

conventional scientific methodology, an experimental method can be considered valid if it 

satisfies the following criteria:

• Objectivity: observations made by one scientist should be consistent with those 

made by others following the same method.

• Reproduction: the ability to conduct the protocol multiple times, each time 

returning the expected results within the acceptable and estimated range of errors 

and within the known limits of accuracy.

• Deduction: a theoretical foundation explaining scientific facts and observations 

within an experimental method and accepted by the scientific community.

• Prediction: observations that must conform to inductive theoretical hypotheses, 

allowing extraction of predictive knowledge about the experimental subjects 

under the assumption(s) of the applied theoretical model.

Experimental Protocol

Experimental protocol is defined as the specific set of procedures and conditions/parameters 

necessary to conduct an experiment within the limits of usability and scientific accuracy. 

Figure 3 displays the design of an experimental protocol that includes

• Usability domain/domain of inputs: a set of inputs for which the protocol can be 

used and can produce scientifically valid outcomes within permissible error rates.

• Parametric space: a set of parameters or conditions that are acceptable for the 

given experimental method to produce scientifically accurate results.

• Knowledge domain/domain of outputs: a set of scientific results and/or 

conclusions extracted from observation of conducted experiments using 

experiment protocols; a particular protocol may reliably produce some scientific 

facts while unfit to produce others with requisite level of trustworthiness 

depending on domain of inputs and parametric space.

• Range of errors: the accepted range of deviations from theoretically expected 

outcomes while maintaining the integrity of scientific methods employed in the 

protocol.
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Figure 3 shows that an experimental protocol will have a specific set of input and output 

domains as illustrated. The input domains define what an analysis pipeline can validly 

accept, while the output domain defines what can be extracted from a pipeline's output. This 

covers both the range of what can be fed into the pipeline as well as what can be interpreted 

from the results.

Thus, an experimental protocol is the procedural basis of the experimentation process. It is 

important to recognize that a single experiment can have multiple usability domains and 

parametric subspaces where validity can be confirmed independently. The simple example 

shown in Figure 4 demonstrates the variable validity of a single pipeline with respect to 

distinct usability domains. For instance, short-read aligners are practical and mostly accurate 

for divergent viruses and bacteria with smaller k-mer seed size and large mismatch rates. 

However, the same arguments might be not practical when applied to large eukaryotic 

subjects like humans where heuristic-alignment algorithms cannot exhaust all potential 

alignment locations. Instead, for human subjects, the same programs are useful when 

considering much larger seed sizes and allowing significantly smaller mismatch rates.

Unlike the image, however, real-world scenarios involve much larger parametric spaces and 

can have as many dimensions as potential arguments available for customization in the 

bioinformatics application.

Figure 4 illustrates the validity domains of a pipeline in three dimensions. The parametric 

space in this case is expansive, but only small subsets represented by the dark blue shapes 

are valid in the pipeline. Parameters that fall outside these areas are not within the scope of 

the pipeline validity and cannot guarantee validation of results as scientifically meritable. 

With complex computations using heuristic algorithmic methods, sometimes the operating 

system and the execution platform can affect outcomes as much as data and the parameters. 

When a validation question is raised on platform-dependent bioinformatics, there should be 

a clear measure of minimal system requirements for which the application is expected to 

perform accurately. A platform's requirement specifications should be reasonably justifiable, 

and an attempt should be made to avoid narrowly defined, heavily customized, specific 

computing platforms with unique requirements.

Experimental Instance

Experimental instance is defined as the actual physical execution of an experiment at a given 

time and location where the protocol is applied to a specific set of inputs within both its 

usability domain and parametric space. The resulting outcomes are then used as observations 

from within the knowledge domain with accepted error rates.

Biocompute Object (Experimental Instance)

To address traceability and reproducibility issues of the bioinformatics protocols, it is 

proposed (and implemented in the HIVE platform) [4] to record all values from parametric 

space of a validated bioinformatics application in the form of a biocompute metadata record 

that can be stored in a database. Such records store all arguments of the underlying software 

application together with the version information of the executable program used to run the 
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bioinformatics computations. If a particular pipeline is validated to run with an exact set of 

arguments, strict constraints can be used to limit the computation scope to a single point in 

parametric space. If a pipeline is validated for a range of different values for some 

arguments, a set of flexible constraints can be used to limit the volume of accessible 

parametric space. The popular Galaxy platform (http://galaxyproject.org) [13] has 

implemented a concept similar to biocompute objects in analysis histories. Galaxy histories 

maintain a complete record of each analysis tool run in a multi-step analysis, including its 

version, inputs, parameter settings, and outputs. All of this information is stored in Galaxy's 

internal database. A history downloaded from a Galaxy server includes all analysis 

information in a simple text file as well as all input and output datasets in the history. A 

downloaded history can be stored for archival purposes or uploaded to any Galaxy server. 

When a history is uploaded to a server, it is recreated in its entirety with all analysis details 

automatically populated in the Galaxy database. Galaxy also has limited forms of validation 

during tool and workflow execution.

Having validated biocompute types in a computation universe would be equivalent to having 

standardized data types in the data universe. Correspondingly, just like databases that 

contain metadata records, one could create (and such exist in the HIVE platform) [3,4]) a 

database of biocompute objects containing the set of uniquely identifiable computation 

instances. References to these may then be used in publications and for review processes in 

the same manner as for data: genomes, reads, etc. In Galaxy, Pages—interactive Web-based 

research supplements with embedded datasets, histories, workflows, and visualizations—

enable reviewers and readers to inspect and reproduce analyses performed in a paper [14–

17].

Biocompute objects can be used in two distinct scenarios: federated and integrated systems. 

In the scenario where computation is conducted in a high-performance computational 

environment such as HIVE, the input data are already integrated into the execution 

environment and addressable with unique internal references (identifiers) and, as such, 

biocompute objects do not need to include a copy of input or output data to be complete 

(self-sufficient) and provide a level of reproducibility. In federated environments, such as in 

the Galaxy ecosystem with many public (http://bit.ly/gxyservers) and private servers where 

input data or outputs are detached in either location or time, there is a need to specify 

concise and uniquely identifiable external references or include a copy of input and output 

data in order to provide comprehensive provenance to computation and become complete. 

Whatever a particular requirement, a biocompute object is valid only if it is complete.

Different experimental instances may have distinct types of inputs and outputs. One can 

therefore assemble multiple experiments into complex experimental pipelines by joining 

appropriate nodes of internal inputs and outputs into a workflow graph. From the validation 

perspective, however, a complex experimental pipeline is still an experimental instance 

where the collection of all external inputs, produced results, and parameters play similar 

roles. Thus, reference to bioinformatics applications are extended to all potential 

components or combinations thereof: algorithms, standalone tools, integrated applications, 

pipelines, and workflows.
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Biocompute Template (Experimental Protocol) and Template Library

It is conceivable to use well-identified, characterized, and validated biocompute objects as a 

basis for other computations with the same protocol and alter only a few of the conceivable 

elements of parametric and input spaces. This process is called templating and allows 

modification of all parameters or only a limited subset of an existing biocompute object. 

Such templated biocompute objects turn into re-useable constructs for computational 

protocols. Templated objects can then be transformed into analysis pipelines or workflows 

and used for batch execution of computations with different inputs in a series of experiments 

to provide analytical consistency in large-scale studies.

To ensure that biocompute templates are widely usable, tools that use these templates could 

be implemented within Docker (https://www.docker.com/) software containers. Docker 

containers make it simple to run software across a wide variety of computing platforms, 

including different flavors of Linux, Mac OS, and cloud computing frameworks. With a 

biocompute template in a Docker container, using the template becomes as simple as 

downloading its container and filling in the template for a particular analysis. This simplicity 

is maintained no matter how complex the analysis and how many software tools it uses. 

Because the container would work across platforms, the same template could be used on a 

local workstation to analyze one sample and then used again in the cloud to analyze 

thousands of samples.

Validation Schema

Validation of a scientific experimental method extends outside the scope of this perspective: 

It is generally assumed that the peer review–publication process serves as a reliable tool to 

determine a method's scientific validity. In addition, benchmark datasets such as those from 

the Genome in a Bottle consortium are simplifying scientific validation [18] (http://

jimb.stanford.edu/giab/). Here we are talking about the concept of computational 

authentication of experimental protocols from a biocompute object viewpoint. More 

precisely, testing an experimental protocol as applied to regulatory bioinformatics is the 

subject of this discussion. A well-defined validation schema for an experimental protocol 

needs to include the test sets of inputs, parameterizations, expected results, and limits of 

allowed errors. The actual validation happens by comparing the expected with actual results 

and accepting or disqualifying the protocol based on their similarity within the acceptable 

range of errors. Creating and maintaining certified test and validation kits for each type of 

experimental protocol facilitates the ability to test the scientific accuracy of a method at any 

given time. Thus, in order to validate a protocol, one must provide enough information to 

satisfy the experimental method criteria (discussed above) and determine the experimental 

protocol design characteristics (above) using one of the standardized biocomputation 

metadata objects appropriate to the particular experiment.

With respect to inputs for the testing protocol, one may use data generated from actual well-

characterized biological specimens or may use a simulated, artificially synthesized dataset 

that mimics a particular behavior of a biological system.

Simonyan et al. Page 7

PDA J Pharm Sci Technol. Author manuscript; available in PMC 2017 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.docker.com/
http://jimb.stanford.edu/giab/
http://jimb.stanford.edu/giab/


However, use of an experimentally generated data that is not well characterized as a test 

input might result not only in false validation, but also the false perspective of what a 

“validated” bioinformatics pipeline, to which future tools would be compared, should be. It 

is, therefore, important to ensure only the highest quality test input data are being used for 

this goal.

It has been argued that mathematical validity of underlying applications is better tested using 

simulated test data. Robustness, however, is better validated with actual biological data 

where the unexpected variability of input data may be a better filter for imperfections in 

computational approaches.

Based on the discussion above, the outlined procedure could be followed when validating 

scientific merit and interpretation unambiguity of biocompute objects:

• Provide references to publications where underlying scientific method is 

discussed.

• Describe experimental protocol by clearly defining usability domain, parametric 

space, knowledge domain, error rates (if applicable), prerequisite datasets, and 

minimal requirements for an execution platform.

• Generate or synthesize in-silico well-characterized input test sets.

• Execute application and accumulate results.

• Analyze results in detail to ensure outputs' validity.

• Create and register a biocompute metadata record.

• Save all valid outcomes associated with the biocompute object.

• Template a biocompute object for further uses.

• Ensure availability of dependencies, such as software versions and databases.

The validation can proceed as follows:

• A mechanism similar to Bankit can be set up for people to enter biocompute 

objects (https://submit.ncbi.nlm.nih.gov/subs/genbank/SUB1125119/submitter/) 

(it is possible to go one step further and enable direct submission from HIVE 

and/or Galaxy or other platforms).

• Submitters will submit information for generating a flat/xml or other format file 

(JSON, YAML, etc.) for human or machine reading.

• This database will have two sections: a validated and reviewed section of 

biocompute objects and an un-reviewed and/or partially validated section. The 

validation can proceed through automatic and/or semi-automatic methods and 

can be either crowd-sourced or through dedicated curation.

Initially, authors propose to create biocompute objects for pipelines most appropriate for 

FDA HTS regulatory projects and research projects supporting scientific evaluation of 

regulated medical products. Efforts such as Common Workflow Language (CWL) (http://

www.commonwl.org/) and Workflow Definition Language (WDL) (https://
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software.broadinstitute.org/wdl/) that provides portability of data analysis workflows can be 

adopted or adapted to provide workflow and biocompute templates that are of interest to the 

FDA but are currently being validated by other communities. It is important to note that 

biocompute objects have an important unique feature that differentiate them from CWL/

WDL: Biocompute objects are concrete instantiations of a workflow with results in a 

database (see below). CWL and WDL do not explicitly have a notion of computational 

instances, archiving workflow templates and storing validated results in a database. It is 

possible that workflows available in myExperiment [5] can form the basis for the creation of 

new biocompute objects.

Biocompute Database

Biocompute object runs and biocompute template library elements can be submitted and 

stored in a database after going through a validation procedure as described in earlier 

sections. All entries (objects) can be versioned, and old objects can be archived. 

Mechanisms to identify duplicate objects and to refer to other objects within the database 

can be inherent in the database entry format. Users can browse, search, download via a web-

browser, or programmatically retrieve individual entries or the entire database and use the 

objects to run computations within their software platforms.

Users will be able to upload or type in biocompute objects that have metadata (information 

not needed for the computation), information on workflow, pipeline with all internal 

arguments, parametric domain instance, input domain, and output domain (Figure 5).

Utility and Evolving Perspective

The utility of the biocompute object database is manifold. The biocompute database will 

have entries describing computations for targeted purposes. For example, a biocompute 

object submitted by a user could capture the details about software version and parameters 

used to identify a foodborne pathogen in an instance of an outbreak from fresh spinach. 

After such biocompute object validation and template creation it can be re-applied to 

analyze future outbreaks in spinach and other similar food items.

Analogous to a GenBank record (which has information related to a specific sequence), this 

object can be made into human-readable text, xml, or any other format. Further, it can be 

used programmatically, can be browsed, searched, compared, versioned, and so on for a 

variety of purposes. Submission of such biocompute objects can be made as easy as a click 

of a button from Galaxy [20], HIVE [4], or other workflow-centric platforms and resources.

The usability of biocompute objects can be extended far beyond the HTS perspective and 

offer a mechanism for improving the reliability of treatments based on biomedical 

computations for patient-centric outcomes in a clinical setting. And it has critical importance 

for regulatory organizations such as the FDA, where the validity of the underlying 

computational algorithm can affect decisions on cancer diagnostics, vaccine and biosimilar 

safety, tissue and blood analysis, adverse event and outbreak analysis, and so forth.
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Several evolving and ongoing efforts are geared towards standardization of analysis 

methods, results interpretation, and data sharing [21,22] (https://biocaddie.org, https://

github.com/common-workflow-language/commonworkflow-language, ga4gh.org, https://

pebourne.word press.com/2014/10/07/the-commons/). Such evolution of the methodology 

and workflows should be reflected in novel validation schemas. All changes to implicated 

validation protocols should be reassessed from the perspective of inductivity within the new 

framework of understanding at the time such a change occurs.
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Figure 1. 
An experiment can be viewed as a black box that takes specific inputs under an established 

set or range of conditions and has predetermined outputs that are generated. A sample 

program command line is shown with generic terms covering the input, parameters, and 

output for the computation to emphasize the analogy of generalized experiment concept. 

Note: The image has been adapted from Pixabay released under Creative Commons CC0. 

No attribution or permission is required (https://pixabay.com/en/chemistry-

distillationexperiment-161575/).
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Figure 2. 
Visualization of an experimental procedure. The results are dependent on input, parameters 

and experimental methods, protocol, and instance.
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Figure 3. 
Illustration of an experimental protocol that will have a specific set of input and output 

domains.
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Figure 4. 
Illustration of validity domains of a pipeline in three dimensions. The parametric space (3 

axis) in this case is expansive, but only a small subset represented by the dark blue shapes 

are valid in the pipeline. Parameters that fall outside of these areas are not within the scope 

of the pipeline and not guaranteed to result in usable outputs.
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Figure 5. 
A visual description of the biocompute object that a user would create and upload into the 

Biocompute Database. The figure provides a view of how a biocompute object encapsulates 

workflow, pipeline, parametric domain instance, input domain, and output domain.
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