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SUMMARY

Working memory is an essential component of human cognition. Persistent activity related to 

working memory has been reported in many brain areas, including the inferior temporal and 

prefrontal cortex [1–8]. The medial temporal lobe (MTL) contains “concept cells” that respond 

invariantly to specific individuals or places whether presented as images, text, or speech [9, 10]. It 

is unknown, however, whether the MTL also participates in working memory processes. We thus 

sought to determine whether human MTL neurons respond to images held in working memory. We 

recorded from patients with chronically intractable epilepsy as they performed a task that required 

them to remember three or four sequentially presented pictures across a brief delay. 48% of 

visually selective neurons continued to carry image-specific information after image offset, but 

most ceased to encode previously presented images after a subsequent presentation of a different 

image. However, 8% of visually selective neurons encoded previously presented images during a 
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final maintenance period, despite presentation of further images in the intervening interval. 

Population activity of stimulus-selective neurons predicted behavioral outcome in terms of correct 

and incorrect responses. These findings indicate that the MTL is part of a brain-wide network for 

working memory.

RESULTS

Over 41 sessions, we recorded 1,807 units (668 single units, 1,139 multi-units) from the 

parahippocampal cortex (PHC; 387 units), entorhinal cortex (EC; 378 units), hippocampus 

(518 units), and amygdala (524 units) from microwires chronically implanted in the medial 

temporal lobes of 18 patients undergoing treatment for pharmacologically intractable 

epilepsy. Subjects performed 192 or 216 trials of a modified Sternberg task, in which 

subjects viewed four or three pictures chosen from a pool of eight or nine, respectively, 

followed by a mask and a final maintenance period (Figure 1A). After this maintenance 

period, subjects saw two images and signaled which was present in the previous stream by a 

key press. The task required only that subjects remember the pictures, and not their order.

As in previous reports [9, 11–13], medial temporal lobe (MTL) neurons responded 

selectively to presentation of specific stimuli. 17% of units (312/1,807) were significantly 

modulated by the presented image (α = 0.001, permutation test of maximum Poisson 

likelihood ratio over time windows from 100 to 1,000 ms after stimulus onset). Figure 1B 

shows an example of one selective response. In line with our previous findings [13], the 

PHC contained a greater proportion of stimulus-selective units (25%, 96/387) compared 

with the EC (17%, 64/378; p = 0.009, Fisher’s exact test), the hippocampus (15%, 77/518; p 

= 0.0003), and the amygdala (14%, 75/524; p < 0.0001). There were no significant 

differences between other regions (all p > 0.3).

Responses Persist until Subsequent Image Presentation

Although subjects saw each image for 200 ms in all trials, we manipulated the blank period 

following image offset (inter-stimulus interval, ISI) so that it lasted 0, 200, 500, or 800 ms. 

We sought to determine whether neurons ceased to encode stimulus information shortly after 

the start of these blank periods or whether stimulus information persisted.

We first measured the latency and duration of the visual response for each image-selective 

unit by determining the contiguous time window that optimized the increase in likelihood 

for a Poisson model with different firing rates for different stimuli over a model assuming a 

constant mean rate. This procedure effectively determines the response onset and offset as 

the endpoints of the window maximizing the amount of stimulus information, assuming 

Poisson spiking (see the Supplemental Experimental Procedures). To ensure the accuracy of 

latencies and durations, we restricted this analysis to the 107 units that were selective when 

tested separately for each ISI (α = 0.05, permutation test of maximum Poisson likelihood 

ratio), although results below did not change substantially if all 312 visually selective units 

were included.
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Among these 107 units there was no significant difference in latency between ISIs (F(3,309) 

= 0.8, p = 0.48, two-way repeated-measures ANOVA) but, as previously reported [13], 

latencies differed by region (F(3,103) = 14.6, p < 10−7). Average latencies were 198 ms in 

the PHC, 272 ms in the EC, 286 ms in the hippocampus, and 238 ms in the amygdala (Table 

S1). These latencies are earlier than those in our previous study [13]; the latency measure in 

the present study combines information across multiple trials, providing better latency 

estimates for weakly modulated units but potentially shifting estimates toward the earliest 

latency in any trial (see the Supplemental Experimental Procedures).

Response durations increased with ISI, suggesting that stimulus-selective activity persisted 

past image offset but was blocked by the presentation of the following image. A two-way 

ANOVA on estimated response durations revealed significant effects of both ISI (F(3,309) = 

30.5, ε = 0.84, p < 10−14, two-way repeated-measures ANOVA with Greenhouse-Geisser 

correction) and region (F(3,103) = 6.5, p = 0.0005), but there was no significant interaction 

(F(9,309) = 1.3, p = 0.22). Responses were longer in the 200 ms, 500 ms, and 800 ms ISI 

conditions compared with the zero ISI condition (200 ms: t(106) = 4.1, p < 0.0001; 500 ms: 

t(106) = 7.3, p < 10−10; 800 ms: t(106) = 6.8, p < 10−9; dependent samples t test), and in the 

500 ms and 800 ms conditions compared with the 200 ms condition (500 ms: t(106) = 4.9, p 

< 10−5; 800 ms: t(106) = 5.1, p < 10−5). There was no significant difference between the 500 

ms and 800 ms ISI conditions (t(106) = 1.1, p = 0.27). Figure 2A shows a unit where 

response duration differed by ISI. Figure 2B shows durations by ISI for the population. 

Averaged across ISIs, responses were longer in the PHC and amygdala compared with the 

EC and hippocampus (PHC versus EC: t(63) = 4.2, p < 0.0001; PHC versus hippocampus: 

t(51) = 2.5, p = 0.02; amygdala versus EC: t(41) = 5.0, p < 0.0001; amygdala versus 

hippocampus: t(35) = 2.7, p = 0.01; unequal variance t test), but did not differ between the 

PHC and amygdala (t(63) = 0.05, p = 0.96) or between the EC and hippocampus (t(31) = 

−1.3, p = 0.22) (Table S2).

We also investigated the persistence of responses—i.e., the extent to which neurons 

continued responding after image offset—in a different way, by examining the proportion of 

variance in firing rate explained by the stimulus in different ISI conditions (Figure 2C). We 

computed ω2, a debiased measure of proportion of variance explained [14], in 200 ms 

windows aligned to units’ latencies, averaged across the 107 units. ω2 provides an 

interpretable measure of information about stimulus identity without explicitly determining 

stimulus preferences or comparing against baseline. In the zero ISI condition, significant 

information was contiguously present for 379 ms after response onset (p < 0.05, permutation 

test of mean ω2 corrected for displayed time points). In the 200 ms ISI condition, 

information lasted for 656 ms after onset; in the 500 ms condition for 748 ms; and in the 800 

ms condition for 895 ms. Inspecting all 312 stimulus-selective units, 48% (150) carried 

information from 200 to 400 ms after response onset at non-zero ISIs (α = 0.01, permutation 

test of Poisson likelihood ratio); 18% (55) carried information from 400 to 600 ms at ISIs 

over 200 ms; and 5.1% (16) carried information from 700 to 900 ms in the 800 ms ISI 

condition (all p < 10−6, binomial test). Computing ω2 for the interaction between stimulus 

and ISI revealed significant differences between 0 and 200 ms ISI conditions from 146 to 

419 ms after response onset and between 200 and 500 ms conditions from 415 to 578 ms 

after onset (Figure S1), but not between 500 and 800 ms conditions.
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Maintenance Period Activity

Although the blank screen between image presentations is comparable to the “delay period” 

in delayed match-to-sample studies (e.g., [2, 3]), our task also included a 2.4 s final 

maintenance period during which the subject had to hold all previously presented images in 

working memory. For each visually selective unit, we modeled spiking activity from 300 to 

2,400 ms after the start of the maintenance period as the sum of unknown coefficients 

reflecting contributions of maintained stimuli. 8% of visually selective units (24/312) were 

modulated by stimuli held in working memory (α = 0.01, permutation test of F statistic), a 

substantially greater proportion than the 1% expected by chance (p < 10−13, binomial test). 

Of these units, 9 were in the PHC, 3 were in the EC, 3 were in the hippocampus, and 9 were 

in the amygdala (all p < 0.05, binomial test). Figure 3 shows one example unit; Figure S2 

shows 15 additional units. Performing the same analysis over the 1,495 non-stimulus-

selective units revealed only 8 significant units (p = 0.98, binomial test). Table S3 shows 

proportions of visually selective and maintenance-selective units separately for each subject. 

On average, previously presented images explained 1.1% of variance in spiking in visually 

selective units (ω2; bootstrap 95% confidence interval [CI] 0.6%–1.6%).

Units selective at both presentation and maintenance generally showed similar stimulus 

preferences during both periods. 71% of units (17/24) were most strongly modulated during 

maintenance in trials where subjects were maintaining the image that was the preferred 

stimulus at presentation, i.e., the picture producing the greatest change in firing rate relative 

to baseline (chance: 12%; p < 10−10, Poisson binomial test). The average correlation 

between firing rate at sample presentation (between computed response onset and offset) and 

the maintenance period was 0.74 (inverse-Fisher-transformed mean of Fisher-transformed 

Pearson correlations; p < 10−7, permutation test; Figure S3A). Modulation at presentation 

was greater for maintenance-selective units than other visually selective units (median 

absolute change in spikes fired to preferred stimulus versus baseline of 1.6 versus 0.9, p = 

0.02, Mann-Whitney U test), but many units were strongly modulated at presentation but 

non-selective during maintenance (Figure S3B).

Although only a small proportion of units showed significant stimulus-specific modulation 

during the maintenance period when tested individually, weaker effects were present in the 

remaining visually selective units as well. We determined units’ preferred stimuli on every 

fourth trial, and used remaining trials to compare maintenance period activity between trials 

when the preferred stimulus was presented and trials when it was not. For each unit, we 

computed maintenance period modulation as the difference in mean firing rate between 

these groups in units of baseline SD, adjusted for the sign of modulation by the preferred 

stimulus at presentation. Averaged over all visually selective units, modulation was 

significantly greater than zero, indicating that neurons were modulated during the 

maintenance period when subjects maintained their preferred stimulus in working memory 

(modulation = 0.09, t(311) = 6.4, p < 10−9). Modulation was significant even in visually 

selective units without significant maintenance period selectivity when tested individually 

(modulation = 0.05, t(287) = 4.9, p < 10−5). Thus, this population was also modulated during 

maintenance. No effect was present in the non-visually selective units (modulation = −0.002, 

t(1487) = −0.6, p = 0.53).
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Maintenance period activity reflected previously presented images regardless of their 

positions in the stream. We observed significant maintenance period modulation whether the 

preferred stimulus was presented third to last (modulation = 0.07, t(311) = 4.7, p < 10−5), 

second to last (modulation = 0.08, t(311) = 5.3, p < 10−6), or last in the trial (modulation = 

0.11, t(311) = 5.3, p < 10−6). Although modulation was numerically greater when the 

preferred stimulus was presented later in the stream, the effect of position was not significant 

(F(2,622) = 2.5, ε = 0.86, p = 0.09, one-way repeated-measures ANOVA with Greenhouse-

Geisser correction; Figure S3C).

Relationship between Neural Activity and Behavior

Modulation by the preferred stimulus was stronger during initial stimulus presentation, the 

inter-stimulus interval, and the final maintenance period in trials when subjects correctly 

remembered the stimulus than when they did not. To inspect presentation and maintenance 

activity, we examined trials in which a given unit’s preferred stimulus was shown both as a 

sample image and at probe presentation, and compared firing rates in trials when subjects 

correctly selected the image to trials when subjects incorrectly selected the alternative 

image. Across the 274 visually selective units with at least one such incorrect trial, we 

recorded a median of 19 correct and 3 incorrect trials. To inspect activity during the ISI, we 

limited our analysis to trials with an ISI of 500 ms or longer, leaving 186 units with at least 

one correct and incorrect trial where the preferred stimulus was presented and probed, with a 

median of 9 correct and 2 incorrect trials. An insignificant proportion of units responded 

significantly differently between correct and incorrect trials, but significant effects are not 

expected at the unit level for these trial counts with small population-level effects (see the 

Supplemental Experimental Procedures). We thus examined the mean modulation across 

units, computed as the difference in firing rate between the relevant correct and incorrect 

trials in units of baseline SD, adjusted for the sign of the modulation by the preferred 

stimulus at presentation.

Across the population, the mean modulation was significantly greater than zero for the initial 

response (from 0 to 200 ms after response latency; modulation = 0.35, t(273) = 2.4, p = 

0.01), for activity during the ISI (from 300 to 700 ms after response onset, or 100 to 500 ms 

after image offset + response latency; modulation = 0.26, t(185) = 2.4, p = 0.02), and during 

the maintenance period (modulation = 0.12, t(273) = 3.5, p = 0.0005). Among units with at 

least one error trial, maintenance period activity was linked to behavior in both the 20 units 

with significant maintenance period selectivity (t(19) = 3.6, p = 0.002) and the remaining 

254 units (t(253) = 2.9, p = 0.004). Thus, even units that did not show significant 

maintenance period selectivity when tested individually were linked to behavior when tested 

together.

DISCUSSION

The role of the MTL in working memory processes has proved controversial [15–19]. 

Although MTL lesion patients are unimpaired in most tests of working memory [20–23], 

many patients with prefrontal lesions are equally unimpaired in such tests [24, 25], despite 

electrophysiological evidence for persistent activity [1, 5, 26]. Deficits are present in MTL 
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lesion patients with more difficult working memory tasks [27–31], but these deficits have 

been attributed to the use of long-term memory by controls [19, 32, 33]. Thus, the 

involvement of the MTL in working memory remains unclear from lesion studies. fMRI 

results have proved equally difficult to interpret. Whereas some studies have reported 

activation of the MTL in the delay period of working memory tasks, others have not [19]. In 

any case, increased activity during the delay compared to baseline could reflect incidental 

task-related modulation rather than stimulus-specific representations. Some evidence for 

stimulus-specific activity comes from a study reporting greater delay period activation in the 

parahippocampal place area (PPA) when holding a scene versus a house in working memory 

[34], although another study reported differential PPA activation to scenes only in a delayed 

paired-associate task, and not in a delayed match-to-sample task [35].

Our study directly measured the activity of MTL neurons with stimulus-specific visual 

responses during working memory maintenance, in a task with no long-term memory 

demand. Activity reflected previously presented images even after presentation of additional 

images and a mask. Our results thus support the view of working memory as a distributed 

process [8], present in a variety of cortical and subcortical structures, including the MTL. 

Moreover, modulation was linked to behavior, indicating that the stimulus-selective 

persistent activity we report most likely arises from interactions between other components 

of this brain-wide network for working memory and the MTL, and may even have some 

causal role in task performance.

Our findings have implications for claims of “activity-silent” working memory [36, 37]. The 

stimulus-selective persistent activity we observed is weak and unlikely to be measurable 

with non-invasive techniques, but it is nonetheless highly significant. It is thus possible that, 

in reports of activity-silent working memory, maintenance is subserved by similarly weak 

activity that is invisible to the techniques used but sufficient for behavior. Manipulations 

such as the transcranial magnetic stimulation used in [37] could increase the strength of 

preexisting persistent activity, rather than reactivating a truly latent representation. Further 

studies are necessary to determine whether working memory is ever truly silent, or whether 

it is present but beyond the detection threshold of non-invasive techniques. Moreover, our 

finding that maintenance period modulation is higher in correct trials than incorrect trials 

suggests that whatever mechanisms give rise to this activity are causally involved in the task. 

Thus, if short-term synaptic plasticity is important to execution of this working memory task 

[36, 38], it must either produce persistent activity or act in concert with it to produce 

behavior.

The effects we observe in the human MTL resemble previous reports in macaque inferior 

temporal cortex (IT). Most animal studies of working memory have required maintenance of 

only a single, unmasked stimulus. Although some IT neurons show stimulus-selective 

persistent activity for up to 10 s after sample offset [2, 3] or even after the trial is complete 

[39], activity in the majority of neurons rapidly decays to baseline [6, 7]. We find similar 

effects in the MTL. However, in the IT, presentation of an occluding stimulus weakens 

persistent activity [7], and presentation of intervening non-match stimuli eradicates it 

entirely [4]. We observed stimulus-specific persistent activity in the MTL in the final 

maintenance period of our task, but this activity was significant in only 8% of visually 
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selective units. Our results resemble a report of stimulus-specific activity in 6% of macaque 

entorhinal neurons after presentation of intervening non-match stimuli [40]. By contrast, in 

one of few animal studies of multiple-item working memory, 43% of neurons in macaque 

lateral prefrontal cortex (lPFC) showed activity related to the first image after presentation 

of a second image [26]. However, these lPFC neurons had strikingly different stimulus 

selectivity between image presentation and the second delay, whereas MTL neurons 

preferred the same images at presentation and maintenance.

In summary, we found that the human MTL represents stimuli held in working memory. In 

many neurons, information decayed slowly after image offset and dissipated shortly after the 

next image presentation. A small subpopulation carried information even after presentation 

of additional images and a mask. Population activity of stimulus-selective neurons during 

both encoding and the maintenance period predicted behavioral outcome in terms of correct 

and incorrect responses. The presence of weak but behaviorally relevant stimulus-selective 

persistent activity in the MTL indicates that it is part of a brain-wide network subserving 

working memory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MTL neuronal responses decay after stimulus offset and are blocked by 

subsequent stimuli

• MTL delay period activity reflects the contents of working memory

• Activity of MTL neurons predicts successful working memory performance

• The MTL is part of a brain-wide network for working memory
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Figure 1. Experimental Design and Example Response
(A) Behavioral task. In each trial, the subject saw a stream of four or three images, chosen 

from a pool of eight or nine, respectively, for 200 ms each. In three-quarters of trials, a blank 

screen was presented after each image, such that the inter-stimulus interval was either 200, 

500, or 800 ms. In the remaining one-quarter of trials, there was no intervening blank screen. 

Following image presentations, subjects saw a mask followed by a fixation cross, which was 

presented for a minimum of 2.4 s. The fixation cross then disappeared, and subjects saw two 

probe pictures simultaneously, one of which had been presented in the preceding stream of 

images. After these probes disappeared, the subject pressed a key to signal the previously 

presented image.

(B) Spike rasters and peri-stimulus time histograms for a stimulus-selective single unit 

recorded from the right entorhinal cortex at sample presentation, including presentations at 

all inter-stimulus intervals. Images at the top indicate presented stimuli.
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Figure 2. Activity after Stimulus Offset
(A) Spike rasters and peri-stimulus time histograms for a single unit recorded from the right 

amygdala that showed increases in the duration of stimulus responses with increasing inter-

stimulus interval (ISI). At ISI = 0: latency = 248 ms, duration = 188 ms; at ISI = 200 ms: 

latency = 230 ms, duration = 394 ms; at ISI = 500 ms: latency = 236 ms, duration = 651 ms; 

at ISI = 800 ms: latency = 230 ms, duration = 936 ms.

(B) Duration of image responses of 107 units with significant stimulus information 

computed separately for each inter-stimulus interval. Points are jittered to reveal their 

distribution. Error bars are ±SEM. p values indicate significance according to unequal 

variance t test.

(C) Debiased proportion of variance explained by image identity (partial ω2) averaged over 

the same 107 units shown in (A). Information was computed over all spikes in a 200 ms 

window centered at the corresponding time on the x axis. Colored dotted lines indicate the 

onset of the next picture in the corresponding ISI conditions. Bars at the top indicate 

significant image information at the given time point in the corresponding ISI condition (p < 

0.05 corrected for all time points by permutation test of mean ω2). Error bars are ±SEM. See 

also Figure S1 and Tables S1 and S2.
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Figure 3. Maintenance Period Activity
Spike rasters and peri-stimulus time histograms for a single unit recorded from the right 

amygdala that encoded a previously presented image during the maintenance period. Images 

at the top indicate presented stimuli, with photos of lab personnel and photos provided by 

the patient replaced with blue placeholders. A red line separates trials where the preferred 

stimulus (the spider) was not presented (top) from trials where it was (bottom). Black 

histograms indicate average firing rate over all trials; red histograms indicate average firing 

rate after removing trials that included the preferred stimulus. Responses following image 

presentation (A) and responses during the maintenance period (B) are shown. See also 

Figures S2 and S3 and Table S3.
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