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Abstract

Most regression-based tests of the association between a low-count variant and a binary outcome 

do not protect type 1 error, especially when tests are rejected based on a very low significance 

threshold. Noted exception is the Firth test. However, it was recently shown that in meta-analyzing 

multiple studies all asymptotic, regression-based tests, including the Firth, may not control type 1 

error in some settings, and the Firth test may suffer a substantial loss of power. The problem is 

exacerbated when the case-control proportions differ between studies. We propose the BinomiRare 

exact test that circumvents the calibration problems of regression-based estimators. We quantify 

the strength of association between the variant and the disease outcome based on the departure of 

the number of diseased individuals carrying the variant from the expected distribution of disease 

probability, under the null hypothesis of no association between the disease outcome and the rare 

variant. We provide a meta-analytic strategy to combine tests across multiple cohorts that requires 

that each cohort provides the disease probabilities of all carriers of the variant in question, and the 

number of diseased individuals among the carriers. We show that BinomiRare controls type 1 error 

in meta-analysis even when the case-control proportions differ between the studies, and does not 

lose power compared to pooled analysis. We demonstrate the test in studying the association of 

rare variants with asthma in the Hispanic Community Health Study/Study of Latinos.
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Introduction

With whole-exome and whole-genome sequencing studies becoming increasingly common, 

low-count variants are frequently observed. Regression-based association tests such as the 

Wald, Score, and likelihood ratio tests, are known to be poorly calibrated for rare variants, 

i.e. they often do not protect type 1 error rates. An exception is the Firth test (Firth, 1993) in 

which a penalized likelihood is used to correct for the asymptotic bias of the parameter 

estimates. The Firth test has better type 1 error performance, but, as Ma et al. (2013) 
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showed, in meta-analyzing test statistics from multiple studies, even the Firth test may not 

always protect type 1 error and may lose power compared to the pooled test.

In this work we propose a novel test for the association of low-count variants with an 

outcome, that works well in both pooled- and meta-analysis. To test a given variant, we first 

estimate the within-sample disease probability model using the entire sample. We account 

for potential confounding bias by estimating this probability in a regression model, adjusting 

for covariates. Under the null hypothesis of no association between the genetic variant and 

disease status, we use this model to obtain disease probabilities for each of the carriers. 

Under the null hypothesis the number of diseased carriers is distributed as a random variable 

sampled from Poisson-Binomial distribution with these probabilities, and p-values are 

readily obtained. For meta-analysis, each cohort provides the estimated disease probabilities 

of the carriers, and the total number of diseased carriers.

BinomiRare does not suffer from the same asymptotic calibration problems as the traditional 

regression-based tests, as it only requires estimation of a probability model based on the 

entire sample. Therefore, as we show, it controls type 1 error in both pooled- and meta-

analysis. It is extremely quick and efficient: it requires fitting a simple regression model to 

all observations once, and then calculating Poisson-Binomial probabilities based on the 

probabilities of disease in the carriers and the number diseased carriers, to obtain p-values. 

In what follows, we first provide a detailed description of the BinomiRare approach, 

followed by demonstration in simulations and in studying the association of rare variants 

with asthma in the HCHS/SOL. Asthma is a particularly interesting trait, since its prevalence 

widely differs between the HCHS/SOL ethnic groups.

Methods

We begin by describing the BinomiRare approach for the simple case of no covariates, and 

then generalize it to accommodate adjusting variables. Consider a study sample of N 
individuals. For the i = 1, . . . , N individual, let Di ∈ {0, 1} denote disease status, and gi ∈ 
{0, 1, 2} denote the allele count at the variant of interest. In practice, since the variants of 

interest are rare, usually gi ∈ {0, 1}. We say that individual i is a “carrier” if gi > 0, and a 

“non-carrier” otherwise. Let  denote the number of carriers in the study, 

and  denote the number of diseased carriers.

Single study, no covariates

Under the null hypothesis, g ⊥ D, where ⊥ denotes independence, and we can estimate the 

within-sample disease probability in the study as the proportion

(1)

Sofer Page 2

Genet Epidemiol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here note that even if the variant is associated with the disease status, since the variant is 

assumed rare, the disease probability will likely not change much if calculated based only 

using non-carriers, say, or using the entire sample. Under the null hypothesis the following 

holds:

(2)

Therefore, the disease status in any carrier i could be treated as a random draw from a 

Bernoulli distribution with probability p̂d, and the total number of diseased carriers is a draw 

from a Binomial(nc, p̂d) distribution. We calculate the p-value for testing the association of 

the genetic variant with the disease using the binomial probability function, as the 

probability of obtaining the observed number of diseased individuals within the carriers nc, 

plus the probability of a less likely number of individuals. Since the Binomial distribution is 

asymmetric, a “more extreme number of individuals” is defined as the number of individuals 

with probability lower than the probability of the observed number of individuals. In 

practice, we use the so-called mid p-value. The mid p-value was first proposed by Lancaster 

(1961) and lately shown to be beneficial in exact tests for Hardy-Weinberg equilibrium when 

the variant’s minor allele frequency is low (Graffelman and Moreno, 2013). Specifically:

Let X ~ binomial(nc, p̂d). Define p̂d(k) = p(X = k|p̂d, nc). The mid p-value is given by:

(3)

and this is the p-value of the test of association between variant g and the disease.

Adjustment for covariates

Adjustment for confounders is often important, most notably in avoiding population 

stratification by adjusting for principal components of the genetic data (Astle and Balding, 

2009). If carriers are enriched for diseased individuals, solely due to to the association of 

both the disease and the genetic variant with ancestry, a test that does not adjust for ancestry 

may wrongly reject the null hypothesis. We handle confounders by estimating their effect on 

the probability of disease in the whole sample, and accounting for them in estimating disease 

probabilities that are allowed to vary between study individuals. Let h(·) be a link function, 

e.g. the logistic function h(u) = log[u/(1−u)], or the identity function h(u) = u, and let xi be 

the vector of adjusting covariates of individual i = 1, . . . , N. Consider the model

(4)

We fit the model to obtain maximum likelihood estimates α̂, β̂. Assuming no genotype-

covariates interaction on the effect on disease, under the null hypothesis
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(5)

As in the simpler case of no covariates, the disease status in a carrier i can be treated as a 

random draw from a Bernoulli distribution with probability p̂d,i. However, since the disease 

statuses of the different carriers are not identically distributed (potentially pd̂,i ≠ p̂d,j for i ≠ 

j), the total number of diseased carriers is now a draw from a Poisson-Binomial distribution.

The Poisson Binomial distribution

A Poisson-Binomial random variable is a sum of independent Bernoulli random variables 

with different probabilities of success. Here, the number of diseased carriers nc,d is 

distributed as a Poisson-Binomial random variable with a parameter vector p̂ = (p̂d,k1, . . . 
p̂d,knc )

T, where k1, . . . , knc is the vector of indices of the carriers of the genetic variant. 

Although the computation of the Poisson-Binomial distribution is not straightforward, Hong 

(2013) developed a computationally efficient algorithm that is implemented in a public R 

package “poibin” (Hong, 2011). To compute p-values, we take a similar approach to the mid 

p-value described before. Define Dpb(p̂) to be the Poisson-Binomial random variable with 

parameter vector p̂. Then the BinomiRare p-value for a variant-trait association is calculated 

by:

(6)

Meta-analysis

Suppose now that there are s = 1, . . . , S studies to combine the evidence from in meta-

analysis. Suppose the sth study has Ns individuals,  carriers, and  diseased carriers, and 

study level covariates are allowed to differ between studies. Consider the model

(7)

We fit the model in each individual study to obtain maximum likelihood estimates α̂
s, βŝ 

from (7), and obtain disease probabilities for each individual in the study population. Let 

 be the vector of estimated disease probabilities in the carriers of the 

sth study, s = 1, . . . , S. Denote the vector of length  of disease probabilities 

across all carriers in the combined set of studies by . The BinomiRare test 

for a single (pooled) study readily generalizes to meta-analysis. Each variant is tested using 

the mid p-value based on the Poisson-Binomial random variable Dpb(p̂) 

Sofer Page 4

Genet Epidemiol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 diseased carriers. We summarize the proposed approach to testing the 

associations between rare variants and a disease outcome using BinomiRare in the following 

procedure:

Procedure for meta-analysis

1. Each study fits a disease probability model on all study individuals. The 

probability models do not include the tested variants. Estimated disease 

probabilities are assigned for each of the study participants.

2. For each variant, each study s = 1, . . . , S identifies the set of carriers and 

provides

• The vector  of their estimated disease probabilities.

• , the number of diseased individuals among them.

3. The meta-analysis site calculates the BinomiRare p-value for each of the variants 

based on the combined vector of estimated disease probabilities 

, the total number of diseased individuals carrying this variant 

, and the Poisson-Binomial distribution with parameter vector p̂.

In the Supplementary Material, we show how one can calculate power for the Binomi-Rare 

test for a given study based on the number of cases and controls, the number of carriers, and 

the effect size of the variant.

Simulation studies

We studied the size and power of the BinomiRare test and compared it to other existing tests 

in various simulation scenarios. In all simulations we generated 10,000 individuals. We 

considered pooled analyses, in which all data are available to the investigators and are 

analyzed together, mimicking a single study, and meta-analyses of 5 studies, each with 2,000 

individuals. For meta-analysis, we considered both the settings in which all studies have the 

same case-control proportions, and the settings in which the studies have different case-

control proportions.

We sampled disease status according to the logistic model

with x a confounder, simulated as associated with both the genotype g and the disease status 

D, as explained henceforth. When studying pooled and meta-analysis with the same case-

control proportions, we set α1 = . . . = α5 = −2.6, so there are about 7% diseased individuals 

among non-carriers with x = 0. When studying meta-analysis with different case-control 

proportions between studies, we set α1 = −2.6, α2 = −2.4, . . . , α5 = −1.6. The confounder x 

was generated by first sampling a random variable from a normal distribution , 

with σx ∈ {0.02, 0.01, 0.005, 0.0025}, depending on the scenario, then thresholding at 0. 
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After thresholding xi ∈ [0, 1). Then, each variant count gi was sampled from a Binomial 

distribution with probabilities xi, i = 1, . . . , n. Thus, xi was associated with both the 

outcome and the variant, satisfying the definition of a confounder. Lower σx yielded lower 

counts of the variant. We ran 107 simulations from each scenario to evaluate type 1 error, 

and 104 simulations to evaluate power.

To glean into the effect of model misspecification in pooled and meta-analysis on the 

performance of the various estimators, we simulated an additional scenario in which the 

disease status was sampled according to a linear disease risk model:

with now αs = 0.02, 0.04, . . . , 0.1. We applied both pooled and meta-analysis.

The compared tests were the BinomiRare, Firth (implemented using the “logistf” package 

(Heinze et al., 2013)), Wald, Score, and Likelihood Ratio test (LRT). When studying meta-

analysis, we applied inverse-variance weighted fixed-effect meta-analysis for the Firth and 

Wald tests, summed the score test statistics from each study to obtain a test statistic 

distributed as N(0, f) in meta-analyzing the Score test, and for the LRT, we summed the 

study-specific LRT statistics to obtain a χ2 distribution with f degrees of freedom, where f is 

the number of meta-analyzed studies, and the distributions are under the null. When there 

were no carriers in one of the studies, it did not contribute to the meta-analysis.

The HCHS/SOL

The HCHS/SOL (LaVange et al., 2010; Sorlie et al., 2010) is a community based cohort 

study, following self-identified Hispanic individuals from four field centers (Chicago, IL; 

Miami, FL; Bronx, NY; and San Diego, CA). The study was approved by the institutional 

review boards at each field center, where all participants gave written informed consent. 

Individuals were sampled via a two-stage sampling scheme, in which census block units 

were sampled in the first stage, and households were sampled from the block units at the 

second stage. The sampling was preferential towards Hispanics/Latinos. Almost 13,000 

study participants consented for genotyping. Of these, 11,222 study individuals are available 

with genotyping data and self reported doctor diagnosis of current asthma status. We 

removed at random correlated individuals, defined as relatives of first, second, or third 

degree, and individuals living in the same household as other participants. 7,175 eligible 

individuals remained.

Genotyping and quality control are described in Conomos et al. (2016) which also defined 

the construction of the Genetic Analysis Groups, a classification of individuals based on 

both their self-reported ethnicity and their genetic makeup, into six groups: Central 

American, Cuban, Dominican, Mexican, Puerto Rican, and South American. Table 1 

provides the number of eligible individuals belonging to each of the genetic analysis groups, 

and the number of participants with current asthma, of those. The observed proportions of 

asthmatic individuals differ among the genetic analysis groups: while about 4% of the 

individuals in the South American, Central American, and Mexican genetic analysis groups 
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reported current asthma, about 10% of the Cuban and the Dominican genetic analysis groups 

reported current asthma, and 26% of the individuals in the Puerto Rican genetic analysis 

group. It is easy to show, based on the strategy for power calculation provided in the 

Supplementary Material, that for a variant that has the same frequency and the same effect in 

all genetic analysis groups, the BinomiRare has the highest power to detect associations in 

the Puerto Rican group (and much higher power if all groups are combined).

We analyzed 601,914 genotyped SNPs with a minor allele count of up to 250 on the entire 

HCHS/SOL together. We compared the Firth and the BinomiRare tests when pooling all 

individual level data together, and in meta-analyzing results applied on each geneticanalysis 

group separately. For Firth, we used the small sample approximation implemented in the 

SKAT R package (Lee et al., 2015) when the groups had less than 2,000 individuals, and use 

a fixed-effects inverse-variance weighted meta-analysis. Distributions of p-values are 

compared by scatter plots, and genomic inflation factor λgc (Devlin and Roeder, 1999) for 

each of the analyses were calculated based on transforming the median p-values into 

random variables, since BinomiRare does not have a test statistic. Specifically, we had

where p is a vector of p-values and  is the distribution function of a chi-square random 

variable with one degree of freedom. We also report the top results from all analyses, as all 

variants with p-value < 10−6.

Results

Simulation studies

Table 2 provides type 1 error and power estimates obtained from various simulation studies, 

and focusing on the BinomiRare and the Firth tests. To save space, the type 1 error is scaled 

by the p-value threshold (α), so that the desired number is 1 (conversely, the type 1 error is 

the written number, multiplied by α). In all settings, we do not provide power when the 

corresponding type 1 error was inflated. One can see that in all these simulations, the 

BinomiRare controlled the type 1 error. Although it is always slightly less powerful than the 

Firth test in the pooled scenario, it is almost as powerful when the allele count is very low, 

and it controls type 1 error in meta-analysis, while in these simulations the Firth test does 

not. Additional simulation results are provided in the Supplementary Material. In brief, these 

results show that the Wald test, Score test, and LRT usually do not protect the type 1 error 

when testing rare variants, while the LRT sometimes becomes very conservative. When 

considering sensitivity to model misspecification of using a logistic model when the data 

were simulated from a linear model, both BinomiRare and the Firth tests performed well in a 

pooled analysis, but Firth has increased inflation in meta-analysis.
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Association of rare variants with current asthma in the HCHS/SOL Analyses of the entire 
HCHS/SOL cohort

Table 3 reports results from the compared analyses as λgc, p-values of two variants with p-

value < 10−6, and the correlation between the p-value obtained using all tests and the Firth 

pooled. Figure 1 displays scatter plots comparing the distribution of p-values of the same 

tests to p-values of Firth pooled. There were two adjacent variants reported, and all analyses 

gave similar p-values. rs13401266 had 71 carriers and rs13421020 had 72 carriers, and 25 of 

the carriers of both variants self reported current asthma diagnosis.

While genomic inflation is well controlled by the Firth pooled test, the meta-analyzed Firth 

is significantly deflated (λgc = 0.65)). Yet, as seen in Figure 1, there are many variants with 

low p-value in the Firth pooled analysis, and very low p-value in the Firth meta, reminiscent 

of the inflation observed in simulations. This inconsistent scatter pattern of Firth meta 

results compared to Firth pooled results is in agreement with the findings of Ma et al. 

(2013), where meta-analysis of Firth tests may lead to either poor power or poor type 1 error 

control, depending on the settings. The pooled and meta-analyzed BinomiRare are also 

somewhat deflated, but the deflation is not as bad (λgc = 0.91). Moreover, the pvalue of the 

top SNPs are slightly smaller for the BinomiRare. The BinomiRare p-values are almost 

identical in the pooled- and meta-analysis, since the estimated disease probabilities were 

similar in the two analyses. Finally, one can see that the p-values obtained by the 

BinomiRare tests are highly correlated with the p-values of the Firth pooled test, while the 

same does not hold for the meta-analyzed Firth.

From a computational perspective, testing 900 rare variants on chromosome 22 using 

BinomiRare (pooled) took about 6 minutes, while testing the same variants using Firth took 

more than an hour and a half (in both the logistf and the SKAT R packages), on the same 

computer.

Group-specific analyses

We also considered the results from the analysis of each of the groups. In the Supplementary 

Material, we provide figures with the number of variants with 1–50 carriers, 51–100 carriers, 

etc, in each of the genetic analysis groups, and λgc for each of the BinomiRare and Firth 

analyses for these categories of variants. We also compare the p-values from both tests. 

Table 4 provides details of 3 variants overall with p-values < 10−6 in the various analyses. 

For these, the BinomiRare p-values are similar but slightly larger than the Firth p-values. 

This is in agreement with Figure 10 in the Supplementary Material, showing that 

BinomiRare tends to be more conservative than the Firth in the group-specific analyses.

Discussion

We propose the BinomiRare test for the association of a low-count variant with a disease 

outcome. The BinomiRare fills an important gap in the existing methodology: it is useful for 

meta-analyzing association results from multiple studies, even when the case-control 

proportions differ between them. In such settings, the Firth test, which is the gold standard 

for testing rare-variants in general cohorts, performs poorly. For a single study, BinomiRare 
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is slightly conservative compared to the Firth test. Of note, it takes less then 10% of the 

computation time that the Firth test requires.

Other tests that do not rely on problematic asymptotic approximations to the rarevariant 

effect exist. For instance, tabulation of the disease status against carrier status leads to tests 

based on conditional or exact inferences (or both). However, such methods are generally 

inappropriate for population-based wide-scale association studies. First, adjustment for 

covariates is difficult, if at all possible. Second, they usually require consideration of various 

instantiations of the data under the specific model (e.g. permutations under fixed margins of 

the table, as in Fisher’s exact test), and are therefore too time consuming when considering 

millions of variants. Can the BinomiRare test be viewed as a generalization of a conditional 

or an exact test? If the probabilities of disease were known (rather than estimated), it would 

have been an exact test. Marginal tests provide means to test associations by conditioning on 

sufficient statistics of nuisance variables (Agresti, 2001), e.g. the four margins of 2×2 tables. 

However, existing marginal tests usually focus on comparing rates or odds between two 

groups (carriers and non-carriers, in our settings), and do not condition on the proportion of 

diseased individuals in the study, as the Binomi- Rare does. It would be interesting to study 

whether the BinomiRare test can be obtained using sufficiency arguments.

The BinomiRare test does not account for variability in the estimation of the disease 

probability. This is somewhat similar the controversial habit of fixing table margins in the 

context of significance tests for 2×2 tables. To alleviate this shortcoming, one can follow the 

recommendation of Berger and Boos (1994) and calculate maximal possible p-values over 

the range of plausible values of disease probabilities. However, since our test controlled type 

1 error in simulations, and the order of magnitude of the confidence intervals for marginal 

disease probabilities are  (giving, e.g., 0.015 maximum increase/decrease in 

probability for n = 1, 000, , and 95% confidence intervals), we do not pursue this 

approach.

The BinomiRare test is not recommended for high-count variants because it would be too 

conservative, as it assumes only a dominant model and cannot accommodate an additive 

inheritance model. Therefore, for minor allele count 250 and higher, we recommend using 

one of the traditional regression-based tests. The BinomiRare test uses estimated disease 

probabilities under the null hypothesis of no disease-variant association. We emphasize a 

few aspects of disease probability estimation. First, the computed probabilities are calculated 

from the case-control study, and are not population quantities. Still, using the Poisson-

Binomial distribution we are able to combine probabilities from different samples with 

different case-control proportion, while controlling type 1 error. Second, the disease 

probability model could be general. We used logistic regression, but any model is 

appropriate. In contrast to other regression-based estimators, our disease model does not 

pose any assumptions on the from of association between the variant and the disease. 

However, implicitly, BinomiRare will be more powerful with an additive change on the 

disease risk scale, while other tests that model the variant in a logistic regression, become 

more powerful with a change in the odds ratio. Third, better disease probability estimates 

may improve BinomiRare. In unreported simulation results, we tested the use of an “oracle” 

BinomiRare test, that is based on known disease probabilities. The oracle BinomiRare is, as 
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expected, more powerful than the BinomiRare test that estimates disease probabilities. 

However, in trying to estimate a better disease probability model under the null hypothesis, 

one should be wary of overfitting. We recommend assessing model fit using previously 

described methods (e.g. Harrell (2015)).

In the present study, we only discussed testing genotyped variants. Rare variants may also be 

imputed. BinomiRare could be applied to imputed dosages only when the imputation quality 

is good enough to produce actual count data (natural numbers rather then values such as 0.8, 

that are sometimes produced in imputation), i.e. when the distinction between a carrier and a 

non-carrier is clear.

This work can be extended in a few ways. First, it is of interest to extend the Binomi- Rare 

to studies with related individuals and with shared environment. This is challenging because 

the predicted disease probabilities are not independent of each other. Other avenues are the 

adaptation of the approach for continuous and secondary outcomes. While developing 

BinomiRare for these settings is challenging, it is likely more feasible than adapting the 

Firth test.

Software

An R package implementing the BinomiRare test for both pooled and meta-analysis can be 

installed using the R commands

library(devtools)

install_github(“tamartsi/BinomiRare”)

and the manual can be viewed in https://github.com/tamartsi/BinomiRare/blob/master/

BinomiRare-manual.pdf.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatter plots comparing p-values (with −log(p, 10) transformation) from Firth pooled test to 

Firth meta, BinomiRare pooled, and BinomiRare meta, on variants with 1–250 carriers in the 

HCHS/SOL current asthma analysis.
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Table 1

The number of analysis participants by genetic analysis groups, and the number of participants with current 

asthma (as percentage of their group in parentheses).

Group Participants Current asthma

CentralAmerican 773 29 (3.8%)

SouthAmerican 499 22 (4.4%)

Mexican 2688 119 (4.4%)

PuertoRican 1298 339 (26.1%)

Cuban 1234 136 (11%)

Dominican 670 70 (10.4%)

All combined 7162 715 (10%)
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Table 3

Comparison of the Firth and BinomiRare tests performed on the HCHS/SOL cohort of uncorrelated 

individuals, in pooled analysis of all individuals, and in meta-analyzing the six genetic analysis groups. λgc is 

the inflation factor, “cor W Firth pooled” is the correlation between the p-values in the Firth analysis on the 

pooled data set and the test in question, and rs13401266 (chr2:143070709, 71 carriers, 25 diseased) and 

rs13421020 (chr2:143074067, 72 carriers, 25 diseased) pval are the p-values of these variants in each of the 

analyses.

Test λgc cor w Firth pooled rs13401266 pval rs13421020 pval

Firth pooled 1.00 – 6.05×10−7 9.94×10−7

Firth meta 0.65 0.37 4.17×10−6 6.12 ×10−6

BR pooled 0.91 0.94 2.38×10−7 2.70×10−7

BR meta 0.91 0.94 2.38×10−7 2.70×10−7
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