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SUMMARY
Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive

health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that

supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting

single-cell suspensions of human and nonhuman primate embryonicMacaca mulatta (rhesus macaque) testes containing PGCs into the

seminiferous tubules of adult busulfan-treated nudemice.We discovered that both human and nonhuman primate embryonic testis are

xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molec-

ular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells

to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies.
INTRODUCTION

Primordial germ cells (PGCs) are the pioneering cells of the

germline. Correct formation of PGCs is necessary for the

differentiation of high-quality haploid gametes and ulti-

mately reproductive success as adults. In the mouse, PGC

precursors first develop from the epiblast at the end of

gastrulation at embryonic day 6.25 (E6.25) (Kurimoto

et al., 2008). Definitive PGCs are identified 24 hr later at

E7.25 in an extra-embryonic structure called an allantois.

At this stage PGCs express transcription factors required

for pluripotency as well as germline development (Kuri-

moto et al., 2008). From E7.5 to E8.5, the PGCs leave their

extra-embryonic location, enter the embryo, and migrate

toward the genital ridges. The PGCs approach and colonize

the genital ridges beginning at E10.5. By E11.5, the PGCs

have finished colonizing the ridge, and the gonad is now

referred to as an indifferent gonad. During the migration

and colonization stages, the nascent PGCs maintain a

latent pluripotency program (Hargan-Calvopina et al.,

2016; Jameson et al., 2012). At E12.5, male gonads can be

distinguished from female gonads by the formation of

immature testis cords (Combes et al., 2009). Between

E12.5 and E14.5 the male PGCs enter G0 arrest, downregu-

lating most of the transcribed pluripotency-associated

genes to become pro-spermatogonia (Western et al.,

2008). During the pro-spermatogonia stage, male germ
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cells undergo epigenetic remodeling in preparation for dif-

ferentiation into spermatogonia after birth. Given that

PGCs are the founding germline cells in human reproduc-

tion, and abnormal PGC formation can lead germline loss,

understanding the basic cell and molecular biology of

PGCs, and creating bioassays that discriminate PGCs func-

tionally are critical areas of investigation.

Capitalizing on their knowledge of mouse PGC develop-

ment (Ohinata et al., 2009; Saitou et al., 2002), Hayashi and

colleagues devised methods to differentiate mouse embry-

onic stem cells (ESCs) and induced pluripotent stem cells

(iPSCs) into mouse PGC-like cells (PGCLCs). Remarkably,

the resulting PGCLCs could be transplanted into ovaries

or testes, giving rise to fertilization competent eggs, sperm,

and viable offspring (Hayashi et al., 2011, 2012). The differ-

entiation of human PSCs (hPSCs) into PGCLCs has

emerged as a major new model for uncovering the cell

and molecular events in human PGC specification (Irie

et al., 2015; Sasaki et al., 2015; Sugawa et al., 2015). In

the long term, this approach may have implications for

treating infertility. However, unlike the mouse model, an

approach to prove that human PGCLCs are functional

following transplantation is not currently forthcoming.

Methods for PGCLC differentiation in humans are based

upon similar signaling principles to the mouse, namely

the use of bonemorphogenetic protein 4 (BMP4) to induce

PGCLC fate. However, the transcription factor network
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downstream of BMP4 may be different in humans (Irie

et al., 2015; Sasaki et al., 2015; Sugawa et al., 2015). This

suggests either divergence of the transcriptional factor

network that drives PGC formation, or an artifact of

in vitro differentiation. To discriminate between the two

possibilities, it is necessary to investigate the molecular

and functional characteristics of bona fide PGCs in higher

primates so that appropriate standards can be established

for the generation of PGCLCs in primate models.

Human PGCs are specified in the embryo between the

second and third week of life after fertilization. Similar to

mice, human PGCs are first localized outside of the em-

bryo, then theymigrate into the embryo during week 3, ul-

timately entering the genital ridges and indifferent gonads

between the fourth and fifth week of life (Chiquoine, 1954;

Witschi, 1948). Gonadal sex determination occurs between

week 5 and 6, andmale PGCs advance in differentiation to-

ward pro-spermatogonia after week 10 post-fertilization

(Gkountela et al., 2013; Guo et al., 2015). During the

PGC stage of embryo development, both mouse and hu-

man PGCs express the tyrosine kinase receptor cKIT on

their surface, with repression of cKIT occurring as PGCs

differentiate into pro-spermatogonia (Gkountela et al.,

2013; Høyer et al., 2005). In adults, cKIT is again expressed

on a subset of differentiating spermatogonia just prior to

entering meiosis (Unni et al., 2009). Recent work in the

cynomologous (cy) macaque (Macaca fascicularis) suggests

that cyPGCs are specified prior to primitive streak forma-

tion, at 11 days post-fertilization. At this time, the cyPGCs

express cKIT as well as proteins encoding the pluripotency

and PGC transcription factors OCT4, SOX17, TFAP2C, and

PRDM1 (Sasaki et al., 2016). These transcription factors

remain expressed in PGCs until after embryonic day 50.

From embryonic day 50 to 70, expression of the pro-sper-

matogonial marker PLZF (ZBTB16) is initiated in cyPGCs,

while genes associated with pluripotency including OCT4

and NANOG are repressed (Sasaki et al., 2016).

Transplanting mouse germ cells into the seminiferous

tubules of adult mice was used to determine that spermato-

genic potential is initiated as PGCs become pro-spermato-

gonia between E12.5 and E14.5 (Ohta et al., 2003). In

contrast, using neonates as recipients, epiblast cells at

E5.5, and embryonic tissues containing PGCs at E8.5,

were shown to have both spermatogenic and teratoma-

forming potential (Chuma et al., 2005), most likely on ac-

count of the latent pluripotency program of nascent

PGCs (Matsui et al., 1992; Resnick et al., 1992). Curiously,

in the neonatal recipients transplanted with E10.5 tissues,

spermatogenesis occurred without teratoma formation.

This suggests that neither differentiation into pro-sper-

matogonia, or repression of the latent pluripotency pro-

gram per se are required for spermatogenic potential

following PGC transplantation. In primates, the degree of
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latent pluripotency in PGCs is unclear given that neither

cyPGCs, nor human PGCs, express SOX2 (Perrett et al.,

2008; Sasaki et al., 2016). Testing this hypothesis by

transplanting human PGCs into human testicles is not

conceivable.

In the monkey model, transplantable testicular stem

cells can be identified and quantified using primate-to-

nude mouse xenotransplantation, a method that was first

described by Nagano and colleagues usingmonkey and hu-

man donor cells over 15 years ago (Nagano et al., 2001,

2002). Primate-to-nude mouse xenotransplantation is a

quantitative bioassay that demonstrates the functional ca-

pacity of primate cells to engraft the basement membrane

ofmouse seminiferous tubules, proliferate to produce char-

acteristic chains and networks of spermatogonia, and

persist long term. Primate cells do not produce complete

spermatogenesis in mouse tubules, probably due to species

differences, but recapitulate many of the unique biological

functions of spermatogonial stem cells (SSCs) that are not

recapitulated by any other cell type. Based on these criteria,

xenotransplantation to mouse seminiferous tubules has

emerged as a routine bioassay for nonhuman primate and

human SSCs (Dovey et al., 2013; Hermann et al., 2007,

2009; Izadyar et al., 2011; Maki et al., 2009; Sadri-Ardekani

et al., 2009, 2011; Wu et al., 2009; Zohni et al., 2012).

Xenotransplantation was recently extended to human

fetal testis at 22 weeks of gestation (Durruthy-Durruthy

et al., 2014), an age where fetal testes are enriched in pro-

spermatogonia. In that study, 22 week fetal testicular

cells produced colonies of primate cells in the mouse sem-

iniferous tubules that were similar in morphology to those

produced by adult human spermatogonia. At the other

extreme, transplanting undifferentiated human iPSCs

(hiPSCs) or human ESCs (hESCs) directly into the seminif-

erous tubules of busulfan-treated nude mice resulted in pu-

tative germ cell colonies accompanied by proliferating cell

masses that correspond to embryonal carcinoma and yolk

sac-like tumors (Durruthy-Durruthy et al., 2014; Ramathal

et al., 2014), and occasionally teratomas (Durruthy-Durru-

thy et al., 2014). It is unclear whether xenotransplanting

embryonic testes containing PGCs will yield colonies, tu-

mors, or both.

Unlike humans, the nonhuman primate is amenable to

autologous and allogeneic transplantation to test the com-

plete spermatogenic potential of donor stem cells (Her-

mann et al., 2012). Autologous/allogeneic transplantation

is not feasible as a routine bioassay due to cost and biolog-

ical variability among individual outbred animals; xeno-

transplantation is the preferred method for initial studies.

Therefore, in the current study, we used hormone-guided

time-mated breeding to obtain accurately staged rhesus

macaque embryos in Carnegie stage 23, the end of the

PGC period. We chose Carnegie stage 23 because this



time point represents E13.5 of mouse embryo develop-

ment, a known transplantable stage in the mouse.
RESULTS

To study germline development we used the time-mated

breeding program at theOregonNational Primate Research

Center. A total of n = 10 rhesus macaque adult females of

reproductive age were used for this project. To time embry-

onic development, serum estradiol and progesterone were

measured daily in naturally cycling females starting be-

tween 5 and 8 days after the onset of menses (Figure 1A).

Once estradiol levels had risen to >50 pg/mL, indicating

the selection and development of the single preovulatory

follicle, an adult fertile male was paired with the female un-

til the estrogen peak was detected. The male was removed

24 hr after the estrogen peak. The length of time males

and females were paired together ranged from 3 to 7 days

total. Based on previous studies, fertilization (day 1 of

embryo development) was estimated to occur 72 hr after

the estrogen peak (Weick et al., 1973). Pregnancy was

confirmed by ultrasound around 3–4 weeks later.

Estrogen peaks in individual females varied widely in

naturally cycling females ranging from before day 10, up

to 15 days after the first day ofmenses (Figure 1B). This con-

firms thatmeasuring the estrogen peak, and not date of last

menstrual cycle, is a more accurate measure for fertiliza-

tion. Embryos were collected by C-section at embryonic

days 46–50 (days 48–52 post-estrogen peak), correspond-

ing to Carnegie stage 23 of embryo development. Crown

rump length (Figure 1C), and embryo weights (Figure 1D)

were performed within minutes of C-section. Crown

rump length is a classic indicator of embryo age, and com-

bined with embryo weights we show that, based on hor-

mone-guided embryonic staging, the older embryos were

larger (Figure 1C) and heavier (Figure 1D) than younger

embryos. All pregnancies were singletons, and a total of

n = 9 males and n = 1 female embryos were used for this

study.

At the time of necropsy, embryos were photographed,

and Carnegie staging of external characteristics was per-

formed according to previous comparisons of rhesus ma-

caque embryonic development (Hendrickx and Sawyer,

1975). All males had distinct external genitalia, and upon

necropsy the gonads of both male and female embryos

were located in the abdominal cavity. Male and female go-

nads were closely associated with a primitive embryonic

kidney called the mesonephros (Figures 1E and 1F).

Histological sectioning of the male gonad at embryonic

day 49 revealed cord-like structures in the cortex (Figures

1F and 1G), and all PGCs at this age were positive for the

surface receptor cKIT with low genomic levels of 5mC rela-
tive to somatic cells of the gonad (Figure 1H).We also deter-

mined that the majority of cKIT-positive PGCs were also

positive for the pluripotent transcription factor OCT4

(Figure 1I), with only rare examples of cKIT-positive,

OCT4-negative PGCs (data not shown). Taken together,

hormone-guided time-mated breeding leads to accurate

staging of embryo development in the rhesus macaque,

where small differences in crown rump length and embryo

weights positively correlate with the predicted day of em-

bryo development. Similar to humans (Gkountela et al.,

2013), the embryonic gonads at this stage are closely asso-

ciated with the mesonephros.

To better characterize the Carnegie stage 23 primate

PGCs, we performed immunofluorescence for the base-

ment membrane protein Laminin and the PGC marker

OCT4 (Figure 2A). All OCT4-positive PGCs were located

within the Laminin-positive cords in the testicular cortex

at this age. We also discovered that the cKIT-positive

PGCs were all positive for VASA (Figure 2B and higher po-

wer Figure 2C). Furthermore, almost every OCT4-positive

PGC expressed PRDM1 (BLIMP1) and TFAP2C, and every

cKIT-positive PGC expressed SOX17 (Figures 2D–2F). Taken

together, the pluripotency and PGC transcription factor

expression of Carnegie stage 23 rhesus PGCs is consistent

with male PGCs that have not yet progressed to the pro-

spermatogonia stage.

To create a comprehensive resource of PGC identity at

Carnegie stage 23, we chose to perform RNA sequencing

(RNA-seq) of cKIT-positive PGCs sorted by fluorescence-

activated cell sorting (FACS). As a negative control we

used rhesus embryonic fibroblasts, which do not express

cKIT, and riPSCs which express cKIT at background levels

(Figure 3A). When staining embryonic gonads in Carnegie

stage 23 (n = 3 pairs of testes, n = 1 single testis and n = 1

pair of ovaries with cKIT-APC-conjugated antibodies), we

found cKIT-positive cells in less than 1% of the gonad at

day 49–50 (Figures 3B and 3C). The total number of PGCs

sorted from a pair of gonads ranged from 1,721 to 9,549

cells (Figure 3D).

The purity of the PGC population was confirmed by sort-

ing 28 individual cKIT-positive cells from a day 49 embry-

onic testis into single wells of a 96-well plate, followed by

single-cell, real-time PCR using a panel of diagnostic germ

cell genes (Figure 3E). The negative control for this assay

involved RT-PCR on a well with no cells (0). Positive con-

trols were performed on wells that contained 10, 100,

and 1,000 cKIT-positive sorted PGCs. Single-cell analysis

revealed that all PGCs co-expressed DAZL, VASA, and

NANOS3, indicating that the sorting strategy yielded a pop-

ulation of highly pure PGCs. Consistent with the immuno-

fluorescence, we discovered that rare cKIT-positive PGCs

had repressedOCT4 expression (one cell) and five cKIT-pos-

itive PGCs had repressed PRDM1 (Figure 3E). To determine
Stem Cell Reports j Vol. 9 j 329–341 j July 11, 2017 331



Figure 1. Time-Mated Breeding to Acquire Rhesus Macaque Embryos at Carnegie Stage 23
(A) Strategy for rhesus macaque time-mated breeding using estrogen to monitor ovulation. Day 1 of embryo development (fertilization)
was estimated to occur 72 hr after the estrogen peak.
(B) Estradiol measurements (pg/mL) in the serum of females (animal identification number is shown, n = 10 animals).
(C) Embryo crown rump length (mm) of Carnegie stage 23 embryos (n = 10 embryos).
(D) Embryo weight (g) of Carnegie stage 23 embryos (n = 10 embryos).
(E) A pair of embryonic testicles (T) isolated from a day 47 embryo, and associated mesonephros (m), indicated by the arrow.
(F) H&E stain of a testis at embryonic day 49 and associated mesonephros (m) with glomeruli. Scale bar, 200 mm.
(G) H&E stain of testis cords at embryonic day 49 (arrow points to cords). Scale bar, 50 mm.
(H) Immunofluorescence of embryonic testis at day 49 showing that cKIT-positive PGCs are depleted in 5mC (n = 1 embryonic testis, n = 2
technical duplicates). Scale bar, 10 mm.
(I) Immunofluorescence of embryonic testis at day 49 showing cKIT/OCT4 double-positive PGCs (n = 1 embryonic testis, n = 2 technical
duplicate). Scale bar, 20 mm.
whether some PGCs are also negative for PRDM1 protein,

we performed immunofluorescence for VASA together

with PRDM1, and show that while the majority of PGCs

were VASA/PRDM1 double-positive, we can detect rare ex-
332 Stem Cell Reports j Vol. 9 j 329–341 j July 11, 2017
amples where PRDM1 is no longer expressed in VASA-pos-

itive PGCs (Figure 3F).

To identify PGC-specific genes that can be used as a

reference for PGC identity relative to somatic cells, we



Figure 2. Rhesus PGCs Express PGC Transcription Factors and Are Localized in Testis Cords
(A) Immunofluorescence of embryonic testes at day 49 showing OCT4-positive PGCs within LAMININ-positive cords. Scale bar, 10 mm.
(B) Immunofluorescence for cKIT and VASA showing all cKIT-positive cells are VASA positive and localized in the cortex of the embryonic
testes. Scale bar, 100 mm.
(C) Immunofluorescence for cKIT and VASA showing co-localization.
(D) Immunofluorescence for PRDM1 and OCT4 showing co-localization.
(E) Immunofluorescence for TFAP2C and OCT4 showing co-localization.
(F) Immunofluorescence for cKIT and SOX17 showing co-localization.
All experiments were performed on n = 1 embryonic testis at day 49 in technical duplicate. Scale bars, 20 mm unless otherwise stated.
performed RNA-seq of cKIT-sorted PGCs and embryonic

livers from the same embryos (n=4 embryos).We identified

more than 2,000 differentially expressed genes (DEGs)

between PGCs and embryonic liver (R2-fold) with genes

upregulated in PGCs including cKIT, OCT4 (POU5F1),

PRDM1, TFAP2C, VASA, (DDX4), as well as Spalt-

like transcription factor 4 (SAL4), Piwi-like 2 (PIWIL2),

Maelstrom (MAEL), and melanoma-associated antigen B2

(MAGEB2) (Figures 4A and 4B). We also identified genes

for receptors that were enriched in PGCs and not somatic

cells, notably insulin-like growth factor 1R (IGF1R), integrin

a6 (ITGA6), as well as neural cell adhesion molecule

(NCAM1) (Figure 4C). Analysis of chromatin modifiers en-

riched in PGCs included the lysine demethylases (KDM3B,

KDM5B, and KDM1A) (Figure 4D). These enzymes are
responsible for removing methyl groups from the amino

acid lysine, most notably from histone tails. In the mouse,

one of the characteristic features of PGCs soon after specifi-

cation is the depletionof histoneH3 lysine 9dimethylation

(H3K9me2) from chromatin (Seki et al., 2007). Staining the

rhesus fetalmale testis at day 49of embryodevelopment for

H3K9me2 together with VASA revealed that themajority of

VASA-positive PGCs had low to undetectable levels of

H3K9me2 in the genome (Figure 4E).

To determine the similarity and differences between rhe-

sus PGCs in Carnegie stage 23 (around 7 weeks of rhesus

embryo development) and humanPGCs at 7weeks, we first

compared the RNA-seq dataset of human PGCs to conven-

tional (primed) hESCs, and identified 1,998 DEGs at R3-

fold (Irie et al., 2015). Next, we performed this same
Stem Cell Reports j Vol. 9 j 329–341 j July 11, 2017 333



Figure 3. Sorting Rhesus PGCs from Car-
negie Stage 23 Gonads using cKIT
(A) FACS plot showing APC-conjugated
cKIT antibody binding in rhesus fibroblasts
(negative) and rhesus iPSCs (negative).
(B) Representative FACS plot showing APC-
conjugated cKIT antibody binding in rhesus
embryonic gonads at Carnegie stage 23.
(C) The percentage cKIT-positive rhesus
PGCs in embryonic gonads. Each shape cor-
responds to cKIT-positive cells from the
gonads of one embryo (n = 5 embryos total).
(D) Total number of cKIT-positive rhesus
PGCs sorted from a pair of testes (n = 3
embryos) and a pair or ovaries (n = 1 embryo,
pink arrow) at Carnegie stage 23.
(E) Single-cell analysis of 28 cKIT-APC sor-
ted rhesus PGCs analyzed in technical trip-
licate for pluripotency and germline genes
including OCT4, PRDM1, NANOS3, DAZL, and
VASA. A standard curve was established
using 1,000, 100, 10, and 0 cells. Yellow,
high expression levels; black, background
expression levels.
(F) Immunofluorescence for PRDM1 and
VASA showing that the majority of VASA-
positive cells are PRDM1-positive; however,
a minor number of VASA-positive PRDM1-
negative cells can be identified (arrow)
(n = 1 day 49 embryonic testis, n = 2 tech-
nical duplicates). Scale bar, 20 mm.
analysis by comparing the cKIT-positive rhesus PGCs to

primed rhesus iPSCs (Sosa et al., 2016), and identified

1,276 DEGs at R3-fold (Figure 4F). By comparing the

DEG lists from the two species, we discovered 273 upregu-

lated genes in common between human and rhesus PGCs

relative to undifferentiated PSCs, including genes involved

in reproduction, gamete generation, and piRNA metabolic

process. Similarly, we identified 520 genes that were

commonly downregulated in human and rhesus PGCs rela-

tive to undifferentiated PSCs, including genes involved in

developmental processes and specifically neural develop-

ment (Figure 4F). Species- or stage-specific differences

were also revealed in this analysis, with human PGCs

more highly enriched in genes associated with transcrip-

tion, and rhesus PGCs repressed genes involved in mitotic

cell cycle relative to their respective PSCs.

To stage rhesus and human PGCs, we created a heatmap

of diagnostic genes that represent early PGCs (prior to

DAZL and VASA expression), late PGCs (DAZL and VASA

positive but prior to the emergence of major sex-specific

transcriptional differences), advanced PGCs (enrichment
334 Stem Cell Reports j Vol. 9 j 329–341 j July 11, 2017
of the male-specific gene NANOS2 and genome-defense

pathways), as well as genes expressed by pro-spermato-

gonia and SSCs, and genes either unique to or shared

between primed and naive PSCs (Gkountela et al., 2013; Sa-

saki et al., 2015; Figure 4G). This heatmap illustrates that

rhesus PGCs in Carnegie stage 23 are older than human

PGCs at 7 weeks, expressing late stage PGC genes including

PIWIL4, as well as some advanced PGC genes includingmi-

crorchidia 1 (MORC1), MOV10L1, and TDRD5, which in

humans are enriched in PGCs after 10 weeks (Gkountela

et al., 2015). Notably, the rhesus PGCs have not advanced

to pro-spermatogonia or spermatogonia as they do not

express NANOS2 or PLZF (ZBTB16) (Sasaki et al., 2016).

Therefore, we stage the molecular age of rhesus PGCs in

Carnegie stage 23 as being older than 7 weeks and most

likely equivalent to human PGCs between 8 and 10 weeks

of human development.

Finally, we characterized colony-forming potential of

Carnegie stage 23 testicular cells containing PGCs using

the established primate-to-nude mouse xenotransplanta-

tion assay. For this experiment n = 4 pairs of embryonic



(legend on next page)
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testes at day 46–50were digested to single cells, and the sin-

gle-cell suspensions were injected into the rete testis of

busulfan-treated nude mice. Primate-derived colonies

were identified by whole-mount immunofluorescence us-

ing the rabbit antibody that was raised against nonhuman

primate (Nhp) testis cells. The average total number of cells

in a pair of embryonic testes at Carnegie stage 23 was 1.3

million, and total cellular viability of this population prior

to injection was >97%. For each single-cell suspension of

embryonic donor testis pairs, n = 2 busulfan-treated nude

mice were injected (n = 8 mice total). For embryonic testes

at day 46–47, only one of the two recipient testes had

evidence of primate donor-derived cells. For the day 50 em-

bryonic testes, both recipient testes exhibited evidence

of primate donor-derived cells (Figure 5A). We discovered

two types of colonies in the recipient mouse testes after xe-

notransplant. The first were typical chains or networks of

Nhp-positive cells, consistent with colonies produced by

adult primate SSCs (Figures 5B and 5C). The second were

atypical events within the tubules (Figures 5D and 5E).

These atypical events corresponded to cells that stained

positive with the anti-NhP antibody, but did not exhibit

typical spermatogonia-like colonymorphology (Figure 5E).

To determine whether transplanting the embryonic testes

caused tumors, we inspected the mouse testis at necropsy,

followed by dissociating the testis and inspecting the entire

tubule system under the light microscope (Figures 5F and

5G). We found no difference in tubule transparency or ev-

idence of tumor formation in themouse testis transplanted

with rhesus cells comparedwith the unmanipulatedmouse

testis.

To evaluate colony-forming potential of human PGCs

at a similar molecular age we transplanted n = 3 pairs of

human embryonic testes at 74–78 days of development

post-fertilization (Figure 5H) and show that human testes

containing PGCs have colony-forming potential in this
Figure 4. Rhesus PGCs in Carnegie Stage 23 Are Equivalent to Hu
(A) RNA-seq heatmap of cKIT-sorted PGCs from the gonads of n = 4 emb
testes (n = 3 male embryos), and pairs of ovaries (n = 1 female embr
control (n = 4 embryos). The age of the embryo is shown in days (d). Th
black are male samples. The numbers refer to the sample number. See
(B) RPKM (reads per kilobase of transcript per million mapped read) of
liver cells. Data are shown as average of n=4 embryos with mean and
(C) RPKM of selected genes encoding receptors. Data are shown as av
(D) RPKM values of selected genes enriched in PGCs that are also in
embryos with mean and SD.
(E) Immunofluorescence of histone H3 lysine 9 dimethylation (H3K9m
negative for H3K9me2 (white arrow) (n = 1 embryonic testis at day 4
(F) Identification of overlapping and distinct genes enriched or dep
hESCs or riPSCs. See also Charts S2 and S3.
(G) Heatmap of diagnostic genes that discriminate PGCs as being ea
spermatogonial stem cells (SSCs) or PSCs. See text for additional deta
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assay (Figures 5I–5J). Similar to xenotransplantation

with rhesus macaque, atypical events were also iden-

tified following transplantation with human embryonic

testes, and these were similarly reduced in number with

increasing age (Figures 5K and 5L). Dissectedmouse tubules

transplanted with human cells also had no evidence of tu-

mors (data not shown), similar to the results in Figures 5F

and 5G. Therefore, our results indicate that human and

nonhuman primate PGCs are transplantable in busulfan-

treated adult nude mice, and are not tumorigenic. This

assay could be used in future to determine identity of

PGCLCs differentiated in vitro from PSCs.
DISCUSSION

This work describes the use of hormone-guided time-mated

breeding to examine the molecular and functional charac-

teristics of rhesus macaque PGCs in Carnegie stage 23 of

embryo development using RNA-seq and xenotransplanta-

tion into busulfan-treated adult nude mice. This resource

should serve as an important reference for the differentia-

tion of primate PGCLCs in vitro from PSCs, and also the

behavior of single-cell suspensions of tissues containing

bona fide PGCs in the busulfan-treated xenotrans-

plantation model. Furthermore, future studies aimed at

characterizing the germline identity of these colonies,

and determining whether the colonies represent PGCs,

pro-spermatogonia, or spermatogonia are now warranted.

Xenotransplantation of human and nonhuman primate

adult testicular cells into mouse testis is one of the major

bioassays for germline potential. Using this assay together

with FACS to isolate putative SSCs reveals that colony-

forming potential is enriched in germ cells with an

SSEA4, ITGA6, Thy1dim, EpCAMdim, or CD9 cell surface

phenotype (Izadyar et al., 2011; Valli et al., 2014; Zohni
man PGCs at 8–10 Weeks
ryos. This includes the cKIT-positive population sorted from pairs of
yo) with embryonic liver from the same embryos as a somatic cell
e age shown in pink refers to the female samples. The ages shown in
also Chart S1.
selected genes enriched in rhesus PGCs relative to rhesus embryonic
SD.
erage of n=4 embryos with mean and SD.
volved in chromatin regulation. Data are shown as average of n=4

e2) in VASA-positive PGCs (circled in white). Most PGCs are dim to
9, n = 2 technical replicates). Scale bar, 10 mm.
leted >3-fold in rhesus or human PGCs relative to undifferentiated

rly, late, or advanced, as well as genes that are found in primate
ils.



Figure 5. Rhesus and Human PGCs Are
Transplantable
(A) Xenotransplantation of Carnegie stage
23 rhesus testis cells leads to colonies in the
seminiferous tubules (n = 4 pairs of em-
bryonic testis).
(B) Quantification of typical colonies
following rhesus embryonic testis xeno-
transplantation. Error bars show the
average of technical replicates and SEM.
(C) Morphology of typical rhesus colonies
stained with the anti-NhP antibody, Scale
bar, 50 mm.
(D) Quantification of atypical events
following xenotransplantation of rhesus
embryonic testes. Error bars show
the average of technical replicates
and SEM.
(E) Morphology of an atypical rhesus event
stained with the anti-NhP antibody. Scale
bar, 50 mm.
(F) Dissociated tubules from a busulfan-
treated nude mouse testis that was xeno-
transplanted with donor embryonic testes.
Scale bar, 1 mm.
(G) Dissociated tubules from a busulfan-
treated nude mouse testis that was unma-
nipulated. Scale bar,= 1 mm.
(H) Xenotransplantation of human embry-
onic testes results in the identification of
colonies (n = 3 pairs of embryonic human
testes).
(I) Quantification of typical human col-
onies stained with the anti-NhP antibody.
Error bars show average of technical
replicates for n = 2 (day 74) or n = 1 (day 78)
and SEM.
(J) Morphology of a typical human colony
stained with the anti-NhP antibody. Scale
bar, 50 mm.
(K) Quantification of atypical events
stained with the ani-NHP antibody.

Error bars show average of technical replicates for n = 2 (day 74) or n = 1 (day 78) and SEM.
(L) Morphology of an atypical human event stained with the anti-NhP antibody. Scale bar, 50 mm. Error bars show average of technical
replicates and SEM.
et al., 2012). Specifically, xenotransplantation of unsorted

adult testicular cells into busulfan-treated nude mice

leads to �2.9–4.8 colonies per 100,000 cells transplanted,

whereas sorting cells for ITGA6, Thy1, and EpCAM results

in an average 9.6, 7.3, and 11.9 colonies per 100,000 cells

transplanted (Valli et al., 2014). In the current study, the

colony-forming potential from unsorted Carnegie stage

23 rhesus embryonic testes was 0.42 colonies per 100,000

cells transplanted (when averaging the results of all four

replicates in Carnegie stage 23). However, at day 50 of em-
bryo development, the average colony-forming potential

was 1.25 colonies per 100,000 cells transplanted.

In allogeneic mouse transplants, Chuma et al. (2005) re-

ported spermatogenesis and teratoma-forming potential

following transplantation of epiblast cells as well as

PGCs at E8.5 into the seminiferous tubules of 5–8-day-

old W (cKIT mutant) mouse pups. Just 2 days later, at

E10.5, teratoma potential was lost when donor tissues

containing PGCs were used (Chuma et al., 2005). Using

the adult testis as a recipient, our data reveal that primate
Stem Cell Reports j Vol. 9 j 329–341 j July 11, 2017 337



embryonic testes containing OCT4- and NANOG-positive

PGCs do not yield teratomas after xenotransplantation

into the adult testis. Therefore, repression of the latent

pluripotency program in PGCs is not a requirement for

xenotransplantation and colony-forming potential. We

did identify atypical microscopic events that were rela-

tively rare. It is not known whether these events are of

germ cell origin, or whether they may correspond to so-

matic cells of the embryonic testis that were able to sur-

vive in the seminiferous tubule epithelium. Notably, these

events were observed when either human or rhesus ma-

caque embryonic testis were used as donor cells, and in

both species the number of atypical events decreased

with increasing embryonic age. This was opposite to

typical colony-forming potential which appeared to in-

crease with age. One possibility for this is PGC number.

Our FACS experiments indicate that PGC number ranges

from around 1,700 to �10,000 PGCs in Carnegie stage

23. Therefore, it is conceivable that the best transplants

originated from testes with the highest number of PGCs.

Alternatively, it is also conceivable that the microenviron-

ment of the laminin-positive cords changes abruptly

at the end of Carnegie stage 23, leading to a change

in PGC colonizing ability. One way to distinguish

these possibilities would be to sort PGCs at a range of

developmental ages, and normalize PGC number prior

to xenotransplant.

Recently, transplanting undifferentiated hiPSCs into the

seminiferous tubules of busulfan-treated adult nude mice

yielded germ cell colonies as well as nonseminoma-type

germ cell tumors including embryonal carcinoma, yolk

sac tumors, and teratomas (Durruthy-Durruthy et al.,

2014; Ramathal et al., 2014). From this work it was unclear

whether these different outcomes were due to the seminif-

erous tubule microenvironment instructing hiPSCs to

differentiate into the tumors, or whether the seminiferous

tubule microenvironment first induced the differentiation

of PGCLCs that subsequently differentiated into the non-

seminoma-type germ cell tumors (Durruthy-Durruthy

et al., 2014; Ramathal et al., 2014). In our study, we discov-

ered that embryonic testes containing PGCs do not

generate tumors. This argues that the tumors generated

from hiPSCs/hESCs originate from the transplanted plurip-

otent cells and not a PGCLC intermediate.

In summary, the xenotransplant method is a valuable

tool for observing and quantifying the colonizing activity

of experimental cell populations. Although we did not

determine whether the colonies emerging after xenotrans-

plantation are spermatogonia. Future studies are now justi-

fied to address this. Importantly, the xenotransplantation

method is robust and accessible to most investigators

with the expertise to perform transplantation in mice,

but is limited because it does not recapitulate complete
338 Stem Cell Reports j Vol. 9 j 329–341 j July 11, 2017
spermatogenesis. A major strength of the nonhuman pri-

mate system is that once methods for producing putative

PGCLCs are established and validated using the xenotrans-

plant assay, the full spermatogenic potential of those cells

can be tested by autologous or allogeneic transplantation

into the testes of recipientmonkeys. If successful, the fertil-

ization potential of monkey PGCLC-derived sperm can be

tested by fertilization of primate eggs, and transfer of the

resulting embryos, with the potential to produce live

offspring. These experiments that provide the ‘‘gold stan-

dard’’ evidence of spermatogenic potential are not possible

in the human system, but should provide a valuable tem-

plate for development of human PGCLC differentiation

protocols.
EXPERIMENTAL PROCEDURES

Time-Mated Breeding of Rhesus Macaque
Time-mated breeding of rhesus macaque males and females was

performed by measuring estradiol daily in the female starting

from day 5 to 8 after menses began. A known fertile adult male

was paired with the female once her estradiol levels had risen

above baseline (>50 pg/mL). Twenty-four hours after ovulation,

as measured by the estradiol peak (Weick et al., 1973), the male

was removed. Day 1 of embryo development was estimated to

occur 72 hr after the estradiol peak. Pregnancy was confirmed by

measuring progesterone as well as by ultrasound. At the time of

necropsy Carnegie staging was performed according to (Hendrickx

and Sawyer, 1975). A total of n = 10 rhesus macaque embryos were

used in this study. All rhesus macaque time-mated breeding exper-

iments were conducted following Institutional Animal Care and

Use Committee Approval.

Staging of Human Embryos for Testis

Xenotransplantation
Human embryonic testes were acquired following elected termina-

tion and pathological evaluation only after UCLA-IRB review

which deemed the project exempt under 45 CRF 46.102(f). The

samples were acquired by the University of Washington Birth De-

fects Research Laboratory (BDRL), under the regulatory oversight

of the University of Washington IRB approved Human Subjects

protocol combined with a Certificate of Confidentiality from the

Federal Government. All consented testes provided to us by

BDRL were anonymous and carried no personal identifiers. Devel-

opmental age was estimated by prenatal intakes, foot length, Stree-

ter’s stage, and crown rump length. Any conceptus with a docu-

mented birth defect or chromosomal abnormality was excluded

from the study. The embryonic testes were shipped overnight for

immediate processing for xenotransplant in Pittsburgh. Three

pairs of embryonic testes were used in this study, n = 2 at E74

and n = 1 at E 78.

FACS
Rhesus cells were dissociated with 0.25% Trypsin-EDTA for 5 min

at 37�C. Dissociated cells were incubated in 1% BSA in PBS on



ice for 20 min containing the APC-conjugated primary immuno-

globulin G antibody raised against cKIT (1:100; BioLegend,

313205). Cells were then washed and incubated with 1% BSA in

PBS for 5 min on ice. Cells were passed through a 40 mM filter

(BD Biosciences) before flow analysis or FACS. DAPI (10 mg/mL;

Sigma) was used as viability dye at 1:1,000 dilution and all DAPI-

positive cells were excluded. Analysis was performed using LSR II

(Becton Dickinson) and FlowJo software (Tree Star).

Single-Cell Real-Time PCR
Single cells were sorted with a BD FACSAria cell sorter equipped for

biosafety level 2 sorting, and single-cell analysis was performed as

described using rhesus macaque specific assays from TaqMan

(Gkountela et al., 2013; Vincent et al., 2013).

RNA-Seq
cKIT-sorted rhesus PGCs, rhesus liver cells, and rhesus iPS cells

were lysed in 350 mL RLT buffer (QIAGEN) and RNA was extracted

using the RNeasy Micro Kit (QIAGEN) according to the manufac-

turer’s instructions. RNA was amplified and converted to cDNA

using the Ovation RNA-Seq System V2 (NuGEN). cDNA was soni-

cated to DNA fragments within the 200 bp range using a Covaris

S2 sonicator according to themanufacturer’s instructions (duty cy-

cle 10%, intensity 5, cycles per burst 200, and time 180 s). Subse-

quently libraries were generated using the Encore Rapid Library

System according to the manufacturer’s instructions. Library con-

centration was estimated using a Kapa Library Quantification Kit

(catalog no. 4827) according to the manufacturer’s instructions.

Rhesus macaque PGC and embryonic liver libraries were run using

100 bp paired-end reads on the HiSeq 2000 system (Illumina). The

rhesus iPSC libraries were run using a 50 bp single end read. ERCC

RNA Spike-In Mix (catalog no. 4456740, Invitrogen) was used ac-

cording to the manufacturer’s instructions in the all samples

except rhesus PGCs. ERCC (External RNA Controls Consortium)

standards were calculated to have an observed and expected corre-

lation of R > 0.96.

RNA-Seq Analysis
Raw reads in qseq format obtained from sequencer were first

converted to fastq format with customized perl script. Reads

quality was controlled with FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc). High-quality reads were then

aligned to rhesus macaque genome (MacaM) (Zimin et al., 2014)

or Homo sapiens genome (hg19) reference genome using Tophat

(Trapnell et al., 2009) (v. 2.0.13) by using a ‘‘-no-coverage-search’’

option, allowing up to two mismatches and only keeping reads

that mapped to one location. Reads were first mapped to MacaM

or hg19 gene annotation with known splice junction.When reads

did not map to the annotated genes, the reads were mapped to

entire MacaM or hg19 genome. The number of reads mapping to

genes was calculated by HTseq (Anders et al., 2015) (v. 0.5.4)

with default parameters. Expression levels were determined by

RPKM (reads per kilobase of exons per million aligned reads) in R

using customized scripts. For RNA-seq of human PGC and ESC,

published datasets GSM1466233, GSM1466234, GSM1574595,

and GSM1574596 (Irie et al., 2015) were obtained from GEO and

then processed exactly the same as described above.
Differential Gene Expression Calling

Figure 4A. R DESeq package was used to normalize counts per Re-

fSeq transcripts to evaluate differential expression. For comparison

between rhesus PGC and rhesus embryonic liver cells, differenti-

ated expressed genes with mean fold-change greater than 4 and

adjusted p value less than 0.05 were selected and plotted as

heatmaps.

Figure 4F. R DESeq package was used to normalize counts per Re-

fSeq transcripts to evaluate differential expression. For comparison

between hESC versus hPGC as well as rhesus PGC versus rhesus

iPSC, differentiated expressed genes with mean fold-change

greater than 3 and adjusted p value less than 0.05 were selected

and plotted as heatmaps. For comparison within different species

(rhesus versus human), only homologous genes shared by both

species were used for analysis.

Heatmap of Selected Genes

Figure 4G. Diagnostic germ cell, somatic cell, and pluripotency

genes were obtained from previously published literature.

Log2(RPKM+1) values were plotted.

Immunofluorescence
Immunofluorescence of was performed as described previously

(Gkountela et al., 2013, 2015). Dilutions and catalog numbers of

primary antibodies were: mouse anti-5mC (1:100, AMM99021;

AVIVA Biosciences)mouse anti-H3K9me2 (1:100, ab1220; Abcam),

goat-anti-VASA (R&D Systems, AF2030, 1:100), rabbit-anti-cKIT

(Dako, A4502, 1:100), goat-anti-OCT4 (Santa Cruz Biotechnology,

sc-8628 [concentrated], 1:100), rabbit-anti-PRDM1 (Cell Signaling

Technology, 9115, 1:100), rabbit-anti-TFAP2C (Santa Cruz

Biotechnology, sc-8977), goat-anti-SOX17 (Neuromics, GT15094,

1:100), and rabbit-anti-LAMININ (Abcam, ab11575, 1:100). All

samples were incubated with primary antibodies overnight

at 4�C. Sections were washed, incubated with FITC/TRITC-

conjugated secondary antibodies (Jackson ImmunoResearch) for

30 min and mounted in ProLong Antifade Reagent with DAPI

(Invitrogen). Samples were imaged on a Zeiss Axio Imager using

AxioVision 4.8 software (Zeiss).

Xenotransplantation
Pairs of testes from a single embryo were shipped overnight on

cold packs to Magee Women’s Health Research Institute in

cold Hank’s balanced salt solution. The testes were trypsinized

to single cells and 6–7 mL was injected into the rete testis as

described previously (Valli et al., 2014). At 6–8 weeks the ani-

mals were euthanized and the testes removed, visually in-

spected, documented as being soft or hard, and weighed. Testes

were then stained using whole-mount immunofluorescence

using the rabbit-anti-NhP antibody as described previously

(Valli et al., 2014). Colonies were counted according to (Valli

et al., 2014). All mouse transplantation studies were conducted

following Institutional Animal Care and Use Committee

Approval.

ACCESSION NUMBERS

The RNA-seq data have been deposited in theGEOunder the acces-

sion number GEO: GSE95736.
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