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Abstract

Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density 

lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a 

variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, 

macrophages exposed to oxidized phospholipids drastically change their gene expression pattern 

and function. These ‘Mox,’macrophages were identified in atherosclerotic lesions, however, it 

remains unclear how lipid oxidation products are sensed by macrophages and how they influence 

their biological function. Here, we review recent developments in the field that provide insight into 

the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
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Introduction

Since the discovery of lipid oxidation products as biologically active compounds by 

Hermann Esterbauer[1–3], the presence of oxidized lipids has been confirmed in a variety of 

tissues that are either chronically inflamed or oxidatively damaged. Lipid oxidation is 

associated with the pathogenesis of various diseases including atherosclerosis, diabetes, 

cancer, Alzheimer’s disease, rheumatoid arthritis, and the pathophysiology of aging. In all of 

these settings, macrophages play a key role in controlling the initiation and progression of 

the disease. Phospholipids that contain unsaturated fatty acids are major constituents of cell 

membranes and lipoproteins and are particularly prone to oxidative modification, which 

results in the formation of a large variety of biologically active compounds. Oxidized 

phospholipids (OxPL) derived from oxidation of lipoproteins or from apoptotic cell 

membranes were shown to accumulate at sites of chronic inflammation and oxidative tissue 

damage, where they not only affect biophysical properties of membranes, but also can be 

considered endogenous danger associated molecular patterns (DAMPs) that modulate 

immune responses (reviewed in [4–7]). After the identification of OxPL as biologically 
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active components of minimally oxidized LDL[8, 9], OxPL have been ascribed pro- as well 

as anti-inflammatory properties, depending on their structural features and functional 

groups, which also determine their recognition by extracellular or intracellular receptors. 

The effects of OxPL on modulation of inflammatory responses have been extensively 

reviewed[10–14], however, little is known about the mechanisms that control the formation 

and degradation of OxPL in different cell types. Moreover, the effects oxidized lipids have 

on cells of the immune system are poorly understood. OxPL are recognized by macrophages 

via various mechanisms involving intra- and extracellular receptors, eliciting a series of 

responses that result in context-specific phenotypic adaptation. Here, we will summarize 

recent findings that illustrate how macrophages and other cells recognize and respond to 

OxPL and we will discuss the functional consequences of these responses for inflammatory 

control and tissue homeostasis.

Structures and biological functions of oxidized phospholipids

Oxidative modification of lipids is mediated by free radical-induced mechanisms involving 

enzymes such as NADPH oxidase and myeloperoxidase. Thus, at sites of inflammation, 

where neutrophils and other cells generate an environment of high oxidative stress, lipid 

oxidation products accumulate and exert a variety of biological activities. Polyunsaturated 

fatty acids and especially arachidonic acid are highly susceptible to lipid peroxidation, 

which leads to the generation of lipid hydroperoxides, which can undergo carbon-carbon 

bond cleavage giving rise to the formation of short chain, unesterified aldehydes and 

aldehydes still esterified to the parent lipid, termed core-aldehydes. It has been shown that 

activation of the NADPH oxidase during apoptosis leads to oxidation of the membrane 

phosphatidylserine (PS), but also phosphatidylcholine (PC) and phosphatidylethanolamine 

(PE)[15]. The presence of oxidized PC (OxPC) on the surface of apoptotic cells has been 

demonstrated using the monoclonal antibody EO6, which exclusively binds to OxPC[16–

19]. Furthermore, enzymatic oxidation of phospholipids involving 12/15 lipoxygenase 

produces biologically active mediators[20, 21]. The cholesteryl esters found within LDL are 

also subject to oxidative modification, which may contribute to endothelial activation[22]. 

Miller et al. found that oxidized cholesteryl esters (OxCE) use toll-like receptor 4 (TLR4) 

and spleen tyrosine kinase (Syk) to induce a pro-inflammatory response in 

macrophages[23].

Initially, three biologically active phospholipids present in minimally modified low-density 

lipoprotein (mm-LDL), which were derived from oxidation of 1-palmitoyl-2-arachidonoyl-

sn-glycero-3-phosphorylcholine (PAPC), were structurally identified: 1-palmitoyl-2-

oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-

glycero-3-phosphorylcholine (PGPC), and 1-palmitoyl-2-(5,6-epoxyisoprostane)-PC 

(PEIPC)[8, 24]. These lipids were shown to activate endothelial cells in a structure-specific 

manner[25, 26]. Furthermore, a group of CD36-activating truncated oxidized phospholipids 

was described by Podrez et al. These species include an sn-2 acyl group that requires a γ-

hydroxy-α,β-unsaturated carbonyl or a γ-oxo-α,β-unsaturated carbonyl and were found to 

be generated during LDL oxidation[27]. These lipids, collectively referred to as oxPCCD36, 

were found to directly contribute to the development of foam cell formation in 

macrophages[28]. In this study the authors describe that even trace amounts of oxPCCD36 
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are enough to induce CD36-dependent binding and uptake of LDL[28]. Accumulating 

evidence suggests that biologically active OxPL that are present in atherogenic lipoproteins, 

in atherosclerotic lesions, and in membrane vesicles released from activated and apoptotic 

cells play an essential role in the development of atherosclerosis [14, 29, 30]. Indeed, OxPL 

affect a variety of vascular cell types, including endothelial [31–36] and smooth muscle [37–

39] cells. Furthermore, OxPL have potent effects on immune cells. Studies performed by our 

lab have shown that phospholipid oxidation products of PAPC (OxPAPC) inhibit basic steps 

of the classical dendritic cell (DC) maturation process[7, 40]. Inhibitory effects on DC, 

anergic effects on T-cells as well as on the formation on Treg cells have been reported[41, 

42], and one report demonstrates an important role for OxPL on epigenetic modulation of 

DC activation[41].

Levuglandins/ketoaldehydes are derived from oxidation of arachidonic acid and contain 

highly reactive aldehydes, which readily form lysyl adducts with proteins[43]. Macrophages 

recognize LDL that has been modified with levuglandins[44], and free levuglandins as well 

as protein-adducts have been demonstrated at sites of inflammation and oxidative stress, 

including atherosclerotic lesions and kidneys of patients with end-stage renal disease[45, 

46]. However, the exact role of levuglandins/ketoaldehydes in contribution to disease 

progression remains to be elucidated. Given the ability of levuglandins/ketoaldehydes to 

react with primary amines, it was postulated that levuglandins might also react with 

phosphatidylethanolamines. Indeed, it was shown that γ-ketoaldehydes are able to react with 

ethanolamine at a much faster rate than with lysine[47, 48] to produce compounds that 

induce inflammatory reactions in macrophages[49]. The γ-ketoaldehyde/levuglandin 

modification of phosphatidylethanolamines produces a highly cytotoxic 

phosphatidylethanolamine[50], and using mouse models of hypertension, it was shown that 

scavenging γ-ketoaldehydes prevented immune-mediated hypertension and associated 

comorbidities[51]. Another modification of phosphatidylethanolamines has been described 

to result in the formation N-acyl-phosphatidylethanolamines (NAPEs), which are precursors 

to N-acyl-ethanolamines (NAEs), thought to be highly potent satiety signals generated in the 

intestines[52]. Recently, a derivative of carboxyalkylpyrrole(CAP)-

phosphatidylethanolamine (CAP-PE) has been identified in the plasma of ApoE−/− 

mice[53]. These CAP-PE derivatives directly bind and activate TLR2/1 to induce platelet 

activation[53]. Similarly to the phosphatidylethanolamine adducts, the CAP-protein 

derivatives, such as those formed by ω-(2-carboxyethyl)-pyrrole (CEP), have also been 

shown to induce platelet activation, but even more startlingly, they induce VEGF receptor-

independent angiogenesis through TLR2 activation[54]. Moreover, the CEPs have been 

extensively described for their role as inducers of inflammation in age-related macular 

degeneration[55].

OxPL and macrophages: Identification of Mox

Macrophages sense changes in their tissue microenvironment and respond by changing their 

phenotype and function accordingly. In chronically inflamed tissues, the formation of OxPL 

may contribute to the initiation of the macrophage-dependent inflammatory process, but also 

to the perpetuation of inflammation, possibly by interfering with inflammatory resolution. 

Several studies have reported a variety of cellular responses to an oxidatively damaged 
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microenvironment by analyzing the reaction of macrophages to OxPL[56–59]. Of special 

interest, it has been noted that the profiles of inflammatory gene expression and recruitment 

of monocytes and macrophages induced by oxidized lipids is remarkably similar to the 

“low-grade inflammation” seen in settings of diet-induced obesity or atherosclerosis, and 

generally in metabolic tissue damage[60, 61]. Furthermore, we have shown that OxPL 

induce specific macrophage recruitment in the air-pouch model of inflammation, by a 

mechanism involving CCR2[62].

A critical event leading to the resolution of inflammation is the removal of apoptotic 

cells[63, 64]. Delayed apoptosis results in increased oxidative stress and diminished 

phagocytosis, and may be associated with the prolongation and persistence of inflammatory 

disorders[65, 66]. These observations strongly indicate that improved tissue remodelling 

could be a direct consequence of increased engulfment capacity of macrophages. Taking into 

consideration that apoptosis is essential for successful resolution of acute inflammation, 

OxPL generated during apoptosis could influence this process, by upsetting the balance of 

macrophage phenotypes. In this context, OxPL were shown to be important recognition 

signals on apoptotic cells[18], which could facilitate phagocytosis by macrophages[15, 67]. 

The Tabas group showed that OxPL induce apoptosis in macrophages undergoing ER-stress 

via CD36/TLR2 activation[68] and Gerhard Kronke’s group reported that 12/15 

lipoxygenase plays a major and unexpected role in the non-inflammatory clearance of 

apoptotic cells, via a mechanism involving the formation of oxidized 

phosphatidylethanolamines (OxPE)[20]. On the other hand, phagocytosis was shown to be 

inhibited in macrophages by mm-LDL[69] and OxPAPC[58], and Sylvia Knapp’s group 

discovered that this inhibition involves WAVE1[70, 71], which is a cytoskeleton bound A-

kinase anchoring protein. The group showed that WAVE1 knockout macrophages are 

resistant to OxPAPC-inhibited phagocytosis, and that the E. coli infected chimeric WAVE1-

knockout mice have a better survival rate compared to controls[71]. Altogether, this has 

important implications in the regulation and outcome of inflammatory responses in 

atherosclerosis and sepsis.

In chronically inflamed tissues, where macrophages are constantly exposed to high levels of 

oxidized lipids, macrophages survive for surprisingly long periods of time, despite the toxic 

environment[72]. This implies the upregulation of survival mechanisms, such as antioxidant 

pathways and phase II detoxification genes. We have previously shown that UV-light-

induced oxidation of phospholipids have protective effects on skin cells, via induction of 

redox-sensitive transcriptional programs involving activation of nuclear factor (erythroid-

derived 2)-like 2 (Nrf2)[73, 74]. In atherosclerosis, the intra-plaque milieu is complex, 

leading to a remarkably diverse macrophage population[75]. Within an atherosclerotic 

plaque, lipid mediators ranging from cholesterol crystals to OxPL activate the 

inflammasome and pattern recognition receptors, as well as other receptors to induce both 

pro- and anti-inflammatory phenotypic polarizations (M1 and M2)[76]. Our group 

characterized a novel OxPL-induced macrophage phenotype, “Mox”, in murine 

atherosclerotic lesions[58]. The Mox phenotype significantly differs from pro-inflammatory 

“M1” and anti-inflammatory “M2” macrophages and is characterized by an Nrf2-dependent 

gene expression pattern[58]. Nrf2-dependent gene expression is induced by OxPL in the 

vasculature and especially in endothelial cells[77, 78] where it is believed to exert protective 
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effects. However, it was also shown that Nrf2 deficiency in macrophages had differing 

effects on atherosclerotic lesion formation[79–81] and we have shown that Nrf2 deficiency 

in macrophages did not protect against HFD-induced insulin resistance[82]. Nrf2 in 

macrophages was shown to exert direct anti-inflammatory effects[83] and an anti-

inflammatory, reparative function in the brain was ascribed to Mox macrophages detected in 

microglia after stimulation of nicotinic receptors[84]. Of note, a recent report demonstrated 

regulation of chronic inflammatory pain by OxPAPC in neurons via activation of TRPA1 

channels[85].

Interestingly, based on their specific gene expression profile, Mox macrophages have been 

described to play a role in iron metabolism, favouring iron storage due to compromised iron 

release[86]. These and other observations also indicate that Mox contribute to inflammation. 

We have shown that OxPL induce a low level of inflammatory gene expression through a 

TLR2-dependent mechanism[87]. Moreover, we were able to show that Mox macrophages 

secrete IL-1β[58]. In macrophages, the events leading up to IL-1β secretion involves the 

transcription of pro-IL-1β, activation of the NLRP3 inflammasome, which constitutes an 

activated caspase-1, which then cleaves pro-IL-1β. However, the endogenously formed 

activators of IL-1β production in chronically inflamed tissue are not known. In settings of 

‘sterile inflammation,’ such as in obesity and atherosclerosis, the underlying question 

whether products of lipid oxidation could evoke an inflammatory response via 

inflammasome-dependent cytokine production remains unanswered. In this regard, OxPL 

were shown to induce NLRP3 inflammasome activation in macrophages[88] and Jonathan 

Kagan’s group recently showed that endogenously formed OxPAPC is able to directly 

activate caspase 11, thereby activating the NLRP3 inflammasome in a non-canonical fashion 

in dendritic cells[89]. These findings could have important implications for a variety of 

diseases where caspase 11 activation and inflammasome-dependent activation of the 

immune response has been reported[90].

The cellular metabolic programming, or bioenergetics, of macrophages has been linked to a 

macrophage’s inflammatory phenotype: pro-inflammatory “M1” macrophages rely upon 

glycolysis for their bioenergetic needs while anti-inflammatory “M2” macrophages rely on 

oxidative phosphorylation[91–95]. Recently, multiple studies identified the importance of 

cellular metabolism in the determination of macrophage pro-[96] or anti-inflammatory[97] 

function. Further investigation revealed that the mitochondrial dysfunction caused by pro-

inflammatory stimuli prevented macrophages from assuming an anti-inflammatory 

polarization state[98].

However, the metabolic profile of Mox has not been examined. Furthermore, the 

mechanisms by which OxPL induce inflammatory signaling and metabolic changes in Mox 

remain poorly defined. OxPL can induce ceramide accumulation in macrophages[99], and 

since mitochondrial damage can be mediated by ceramides, Mox macrophages may have a 

compromised bioenergetic profile. Activation of TLR2 signaling by OxPL may contribute to 

the low-grade chronic inflammation, and ceramide synthesis was shown to be induced by 

TLR2 stimulation[100]. TLR2 is known to hetero-dimerize with either TLR1 or TLR6, 

which collaborate with OxPL receptors CD14 or CD36 respectively[68, 101, 102]. Together, 
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these studies indicate that OxPL may affect macrophage bioenergetics via mechanisms 

involving TLR2-dependent ceramide production.

How are OxPL recognized?

Among a number of recently characterized danger signals, phospholipid oxidation products 

accumulate under conditions of increased oxidative stress and cell death. They serve as 

indicators of inflammation-induced tissue damage and were shown to act as endogenous 

regulators of the innate immune response[4]. For instance, diet-induced oxidative stress is a 

major cause for vascular, liver and adipose tissue damage, hallmarks of atherosclerosis, fatty 

liver disease and insulin resistance and diabetes[103]. Disturbed redox balance due to 

chronic inflammation in neurological disorders may contribute to formation and 

accumulation of OxPL in the brain[104]. Nevertheless, how the recognition of an altered 

tissue microenvironment by immune cells and the mechanism by which oxidative damage 

ultimately translates into an inflammatory reaction is not clear.

Based on the current literature, OxPL may bind to and initiate a response through soluble 

acceptors in the blood plasma, by membrane-bound receptors, or by intracellular sensor 

proteins. Depending on their functional reactive groups, they are able to either covalently 

modify these receptor proteins, or possibly bind to and interact in a reversible manner. In 

inflamed tissue, OxPL can either act pro-inflammatory or anti-inflammatory, and for most 

OxPL whose biological functions have been investigated, dual pro and anti-inflammatory 

effects were described. So far, OxPL have been documented to directly bind to LPS binding 

protein (LBP), CD14, MD-2, and CD36, which may lead to activation or inhibition of TLR4 

or TLR2 signaling. Intracellularly, OxPL interact with caspase 11 or Keap1/Nrf2, exerting 

pro- or anti-inflammatory effects, respectively. Here we summarize the evidence for the 

various systems that recognize and respond to OxPL. Table 1 catalogs the evidence for 

OxPL effects as distinguished by phospholipid class (i.e. PC, PE, PS, PG, PA, and PI). It is 

important to keep in mind that many studies were performed with mixtures, which contain a 

large number of diverse oxidized moieties, making it difficult to conclude which oxidized 

moieties are tied to which downstream consequences. Nonetheless, the studies that include 

enriched, purified, or synthetic OxPL species are included in Table 2.

OxPL modify proteins at the cell membrane and in the cytosol

Using cultured RAW 264.7 macrophages and fluorescently labeled POVPC or PGPC 

Hermetter’s group identified primary protein targets of these phospholipids by mass 

spectrometry[105]. They showed that the aldehyde-containing POVPC binds to proteins in 

the cell membrane by covalently reacting with amino groups of proteins. Interestingly, 

POVPC was exchangeable from lipoproteins to cells, where only a selective group of 

proteins was modified by labeled POVPC. PGPC on the other hand, freely travelled through 

the cell membrane into the cytosol[105]. Berliner’s group took a different approach to 

identify the proteome that is modified by OxPL in endothelial cells, using biotin as affinity 

tag at the polar head group of the phospholipids[106]. They then showed that the interaction 

of OxPL with proteins involves modification of cysteines[107].
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OxPL are DAMPS that are recognized by pattern recognition receptors

Upon oxidative modification, phospholipids structurally resemble DAMPs that are 

recognized by pattern recognition receptors (PRRs)[5]. Sensing of these endogenously 

formed danger or “altered-self” molecules by the innate immune system is mediated by 

immune-modulating and scavenger receptors such as CD36, TLRs, CD14, LBP, and C-

reactive protein[108, 109]. The fact that the oxidation process renders phospholipids 

“visible” to the innate immune system indicates a crucial role for phospholipid oxidation 

products in the pathogenesis of both chronic inflammatory and autoimmune diseases[4].

First indications that OxPL bear similarities with compounds that can be recognized by 

TLRs came from our studies showing that these lipids potently inhibit bacterial ligand-

induced TLR4 activation[102]. Our group was first to show that OxPAPC inhibited LPS-

induced NF-κB-mediated inflammatory gene expression in human umbilical-vein 

endothelial cells (HUVEC) and in LPS-injected mice protecting mice from lethal endotoxin 

shock[102]. We further demonstrated that OxPAPC bound to LPS-binding protein (LBP) 

and CD14, which blocked the interaction of LPS with both proteins in vitro[102]. These 

results were supported by others[101, 110–112], showing that OxPAPC can bind to CD14 

and MD2 to interfere with LPS-TLR4/MD2 activation. Moreover, OxPAPC inhibited N-

palmitoyl-S-dipalmitoylglyceryl-Cys-Scr-(lys)4 (Pam3CSK4)-induced TLR2 activation, 

which was reversed by serum and sCD14, suggesting that CD14 is one of the targets of 

OxPAPC.

Oxidative modification of phospholipids provides epitopes for the adaptive immune 
system

The patterns that are generated during oxidation of phospholipids are also recognized by the 

humoral part of the adaptive immune system. Both IgG and IgM antibodies directed against 

oxidized low-density lipoprotein (oxLDL) are present in the plasma of humans and animals 

and their titers have been shown to correlate with atherosclerosis progression and measures 

of lipid peroxidation[113, 114], as well as in several autoimmune disorders such as systemic 

lupus erythematosus and rheumatoid arthritis[115]. Detailed studies in ApoE-deficient mice, 

which show increased levels of oxLDL, led to the cloning of a set of abundant monoclonal 

IgM antibodies directed against oxLDL, which includes the prototypic EO6 antibody that 

specifically binds to OxPL on the surface of oxLDL and apoptotic cells[17, 116, 117]. This 

antibody recognizes the PC headgroup, which is exposed after conformational changes 

following the oxidation of the phospholipid[118].

OxPL bind to soluble immune receptors

CD14—CD14 is a co-receptor for both TLR2 and TLR4 that has been shown to exist in 

both a membrane-bound and soluble form. CD14 has been shown to enhance the sensitivity 

of TLR2 activation to Pam3CSK4, and is essential for LPS-induced activation of TLR4. As 

shown by Erridge et al., OxPAPC, in particular the components PGPC and POVPC, are able 

to potently inhibit Pam3CSK4 activation of TLR2, in a HEK cell model with TLR2-

overexpression[111]. The authors concluded that this inhibition was likely due to the binding 

of OxPL directly to CD14, due to the rescue of the inhibition upon supplementation with 

soluble CD14. Furthermore, Valery Bochkov’s group found that OxPL mixtures with the 
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head groups PE, PS, and PA induced a mobility shift in soluble CD14, indicating a direct 

binding interaction of these phospholipids to CD14[101]. OxPL with the PC head group also 

bind to CD14, but do not cause a mobility shift due to the overall neutral charge of the 

complex. The structural requirements for OxPL binding to CD14 require further 

investigation, so far there is experimental evidence for PECPC, PEIPC, OxPAPE, OxPAPC, 

and OxPAPS to interact with CD14[101, 111, 119] (Table 2). Walton et al. ruled out an 

involvement of CD14 in transmitting pro-inflammatory effects of OxPAPC on endothelial 

cells, instead identifying another GPI-anchored protein recognizing OxPL[120].

LPS binding protein—OxPAPC and a number of purified components of OxPAPC are 

able to directly bind to LBP and inhibit LPS action[101, 102, 111, 112, 121]. Unlike for 

CD14, it was found that oxidized phospholipids with any head group (PC, PE, PS, and PA) 

were able to inhibit the binding of LPS to LBP (Table 1). Eighteen total OxPL have been 

documented to interact with LBP, out of the twenty-four investigated. This implies that there 

is little chemical specificity in the interaction, and that for the most part, oxidation of the 

phospholipid is the only prerequisite for inhibitory interaction with LBP. It has never been 

determined whether LBP is required for OxPL-induced inflammation.

MD2—Another study found that the oxidized phospholipid KOdiA-PC directly inhibits the 

binding of LPS to MD2, providing yet another mechanism by which OxPL are able to 

inhibit LPS action[122]. This was supported by other studies using both binding experiments 

and functional assays to indicate that OxPAPC can compete with LPS to bind MD2[111]. 

The structural requirements of OxPL needed to activate or inhibit MD2-dependent signaling 

remain unknown. Taken together, these findings indicate that OxPL can compete with 

serum-soluble factors to inhibit LPS, and likely other bacterial or viral components, which 

induce systemic inflammation. This mechanism of scavenging accessory proteins by 

OxPAPC, or by inhibiting TLR-signaling may represent a negative feedback during 

inflammation to blunt innate immune responses and provide protection from overshooting 

inflammatory reactions.

Membrane receptors recognizing OxPL

CD36—CD36 is membrane protein known to have properties of fatty acid binding and 

uptake, and is expressed on a wide variety of cells, including macrophages. Podrez et al. 

classified a series of short-chain OxPCs, which bind to and activate CD36 on macrophages 

and platelets[27, 123]. They also found that adding these OxPL to cholesterol-containing 

liposomes enhanced their CD36-mediated uptake into macrophages[28]. The Hazen group 

further identified OxPS on apoptotic cells as an essential component for CD36-mediated 

macrophage phagocytosis of apoptotic cells[67]. Within this same study, it was shown that 

loading cells with oxidized phosphatidylserines, but not non-oxidized PS, facilitated their 

uptake by macrophages. There is evidence for CD36 activation by the following species of 

OxPL: OxPAPC, LysoPC, PGPC, POVPC, HOOA-PC, KOOA-PC, HOdiA-PC, and KOdiA-

PC (Table 2). As mentioned previously, it was also found that the same individual species 

with PS head-group also bind CD36.
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TLR2—Our lab has shown that OxPAPC induces pro-inflammatory gene expression in 

macrophages via a mechanism that involves TLR2[87] . TLR2 dimerizes with other TLRs, 

namely TLR1 and TLR6, to recognize distinct sets of ligands[124]. TLR2 heterodimers 

interact with CD36 or CD14, so it is possible that OxPL induce TLR2-dependent signaling 

via binding to these accessory receptors. The crystal structure of TLR2 with TLR1 and 

ligand Pam3CSK4 was elucidated in 2007 and with it, a better understanding of the TLR2 

binding pocket[125]. Compared to conventional TLR2 agonists, such as lipoteichoic acid 

(LTA) or Pam3CSK4, OxPL have been shown to function as weak agonists for TLR2, with 

agonistic activity mainly residing in the long-chain fraction of OxPAPC[87]. Previously, 

only LysoPC[126] and LysoPS[127] purified species have been shown to activate TLR2. 

Based on these studies, the activation of TLR2 is not head group specific, as noted by the 

inclusion of both PC and PS head groups in the TLR2-activating lipids. As of now, there is 

no published evidence to support whether PE species activate TLR2. OxPL species that have 

been described to inhibit the action of TLR2 include PGPC, POVPC, PECPC, PEIPC, 

KOdia-PC, OxPAPC and OxPAPE[40, 110, 111].

TLR2-deficiency in mice was shown to be protective in various settings of non-infectious 

inflammatory disease models including atherosclerosis, reperfusion injury, and 

diabetes[128–130]. Oxidative tissue damage is a prominent feature in these diseases, and as 

such, TLR2 recognition of oxidatively modified DAMPs may influence disease initiation 

and progression. However, further studies are necessary to fully understand the structural 

requirements of OxPL for either activation or inhibition of TLR2.

TLR4—While there are many reports demonstrating that oxidized phospholipids inhibit 

TLR4-mediated effects[40, 101, 102, 110, 111], there is controversial evidence to date to 

support a role for TLR4 in OxPL-induced inflammation. While some studies imply TLR4 in 

mediating effects of OxPL[131] or LysoPC[126], others have ruled out an involvement of 

TLR4 in OxPL-mediated pro-inflammatory effects[132]. OxPL species that have been 

shown to inhibit LPS-induced TLR4 activation include PGPC, POVPC, PECPC, PEIPC, 

OxPAPC and OxPAPE (Table 2).

TLR9—A recent report showed TLR9 to be activated by CEP in platelets, thereby 

increasing platelet reactivity[133]. These findings further imply an important role for lipid 

oxidation in the control of thrombogenicity[53, 123, 134, 135], and increase the spectrum of 

immune receptors recognizing endogenously formed oxidation products.

GPCRs—A number of GPCRs have been implicated to play a role in recognizing and 

transmitting signals induced by OxPL. Due to structural similarities of fragmented OxPL 

with platelet activating factor (PAF) and the finding that PAF-receptor antagonists could 

inhibit some effects of OxPL[136, 137], the PAF-receptor has been implicated as one of the 

major receptors[138–140]. Other GPCRs that have been shown to be involved in mediating 

effects of OxPL include the prostaglandin E2 (EP2) receptor[141], the S1P1 receptor[142], 

VEGF receptor[143], and GRP-78[144].

Intracellular ‘receptors’ that sense OxPL—Intracellular sensors for OxPL exist, 

however, whether sufficient amounts of OxPL are produced inside the cell or if they have to 
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be transported across cell membranes has not been elucidated. However, it has been shown 

that some OxPL species, including PGPC, readily cross the cell membrane[105] and Tom 

McIntyre’s group identified TMEM30a as a transport channel, facilitating OxPL traffic from 

outside the cell to the mitochondria[145].

Keap1/Nrf2—Nrf2 is a cytosolic redox-regulated transcription factor that is bound by 

Keap1, a redox-sensitive chaperone protein that promotes the degradation of Nrf2. Upon 

oxidative or electrophilic stress, Keap1 is thought to undergo a conformational change, 

disrupting its ability to bind Nrf2, allowing Nrf2 to translocate to the nucleus and promote 

transcription of antioxidant response systems[146]. The mechanism by which OxPL activate 

Nrf2-dependent gene expression may be by direct binding of electrophilic functional groups 

(such as those containing cyclopentenones) to Keap-1. On the other hand, OxPL have been 

shown to activate protein kinase C (PKC)-dependent signaling[10], and Nrf2 was shown to 

be phosphorylated at Ser-40 by PKC[147, 148].

Caspase 11/NLRP3—Recently a study showed the ability of OxPAPC to directly activate 

caspase11 and subsequently the NLRP3 inflammasome in dendritic cells[89]. These authors 

demonstrated direct binding of certain species of OxPAPC, likely PEIPC, to caspase11 in a 

similar manner as intracellular LPS would bind to and activate caspase 11. Others have 

shown that OxPL induce NLRP3 activation in macrophages[88].

PPARγ—Among nuclear hormone receptors, peroxisome proliferator-activated receptor-γ 
(PPARγ) was shown to recognize OxPL. McIntyre’s group showed that OxPL activate 

PPARγ-dependent gene expression, leading to the expression of cyclooxygenase 2 in 

monocytes[149, 150].

Conclusion and Outlook

Together, oxidative modification of phospholipids represents a common underlying 

mechanism in many diseases where tissue damage is involved. The formation of OxPL 

seems to be a general feature in chronic inflammatory settings that often lead to debilitating 

states in many patients. Therefore, attempts to lower OxPL levels are promising approaches 

to combat inflammation and tissue damage[151]. Not surprisingly, OxPL can be used as 

predictive biomarkers for certain diseases[152]. On the other hand, some commercial 

enterprises have explored the use of Lecinoxoids, which are ‘oxidized phospholipid-like 

small molecules,’ for anti-inflammatory therapies[153–155]. For instance, Lecinoxoid 

VB-201 had a notable effect in a mouse model of experimental autoimmune 

encephalomyelitis[155], and inhibited CD14 and TLR2-dependent inflammation[154]. 

Devising novel strategies for lowering OxPL levels as well as exploiting anti-inflammatory 

properties by developing small molecules modeled after OxPL should produce novel 

therapies against chronic inflammatory diseases.
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Abbreviations

CAP carboxyalkylpyrrole

CAP-PE carboxyalkylpyrrole-phosphatidylethanolamine

CEP carboxyethyl-pyrrole

DAMPs danger associated molecular patterns

DC dendritic cell

HUVEC human umbilical-vein endothelial cells

LBP LPS binding protein

LTA lipoteichoic acid

mm-LDL minimally modified low-density lipoprotein

NAEs N-acyl-ethanolamides

NAPEs N-acyl-phosphatidylethanolamines

Nrf2 nuclear factor (erythroid-derived 2)-like 2

OxCE oxidized cholesteryl esters

oxLDL oxidized low-density lipoprotein

OxPAPC oxidation products of PAPC

OxPC oxidized phosphatidylcholine

OxPL oxidized phospholipids

PAF platelet activating factor

Pam3CSK4 N-palmitoyl-S-dipalmitoylglyceryl-Cys-Scr-(lys)4

PAPC 1-palimitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine

PC phosphatidylcholine

PE phosphatidylethanolamine

PEIPC 1-palmityoyl-2-(5,6-epoxyisoprostane)-sn-glycero-3-phosphorylcholine

PGPC 1-palmityoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine

PKC protein kinase C

POVPC 1-palmityoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine
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PPARγ peroxisome proliferator-activated receptorγ

PRR pattern recognition receptors

PS phosphatidylserine

Syk spleen tyrosine kinase

TLR4 toll-like receptor 4
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Highlights

• Oxidized phospholipids (OxPL) are endogenous danger-associated molecular 

patterns.

• Receptors that interact with OxPL include CD14, TLR2, CD36, Nrf2, and 

Caspase 11.

• OxPL induce a pro-inflammatory response in macrophages.

• OxPL antagonize the effects of pathogen-associated molecular patterns.

• We provide a summary of structure-function relationships of diverse OxPL 

species.
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Table 1

Evidence for oxidized phospholipid recognition sorted by head group

Oxidized Phospholipid Class Head Group Structure (X) Activation Inhibition

OxPC Choline CD36[120], Nrf2[77, 78], 
Casp11/NLRP3[89], 

TLR2[87]

TLR2[40, 111], 
TLR4[111, 112], CD14/
MD2[111], LBP[101]

OxPE Ethanolamine CD36[67, 78, 118], 
Nrf2[78]

TLR2[111], TLR4[110, 
111], CD14[101], 

LBP[101]

OxPS Serine CD36[67, 78], Nrf2[78] CD14[101], LBP[101]

OxPA Phosphatidic Acid Nrf2[78] LBP[101]

OxPG Glycerol Nrf2[78] N/A

OxPI Inositol N/A N/A
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Table 2

Catalog of oxidized phospholipids by epitope

General Phospholipid Structure

sn-2 Moiety Structure (Y) Abbreviation (C16:0 in 
sn-1)

Associated Head Group 
(X)

Arachidonoyl PA- PC, PE, PS, PA, PG, PI

Oxygenation

Hydroxy- arachidonoyl PA(X)-OH or HETE-(X) PC[78, 156–158], PE[156–
158], PS

Hydroperoxy- arachidonoyl PA(X)-OOH or HPETE-(X) PC[78], PE, PS

5,6-Epoxyisoprostane E2 PEI-(X) PC[24, 78, 89]

5,6- Epoxycyclopentenone PEC-(X) PC[119, 159]

15-deoxy-Δ12,14- Prostaglandin J2 15d-PGJ2-(X) PC[119, 160]
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General Phospholipid Structure

sn-2 Moiety Structure (Y) Abbreviation (C16:0 in 
sn-1)

Associated Head Group 
(X)

F2-Isoprostane F2-IP-(X) PC[161]

H2-Endoperoxide Isoprostane H2-IP-(X) N/A

E2-Isoprostane E2-IP-(X) N/A

D2-Isoprostane D2-IP-(X) N/A

E2-Isolevuglandin E2-IL-(X) PC[162, 163]

Chain Fragmentation

Glutaroyl PG-(X) PC[8, 78] [25, 26, 76, 136, 
164], PE, PS
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General Phospholipid Structure

sn-2 Moiety Structure (Y) Abbreviation (C16:0 in 
sn-1)

Associated Head Group 
(X)

Azelaoyl PAze-(X) or PAz- (X) PC[78, 165, 166], PE, PS

5-Oxovaleroyl POV-(X) PC[8, 26, 78, 164], PE, PS

9-Oxononanoyl PON-(X) PC[16, 164], PE, PS

5-Hydroxy-8-oxo-6- octenoyl HOOA-(X) PC[27, 28], PS[67]

9-Hydroxy-12-oxo- 10-dodecenoyl HODA-(X) PC[27, 28], PS[67]

5-Hydroxy-8-oxo-6- octendioyl HOdiA-(X) PC[27, 28], PS[67]

9-Hydroxy-10- dodecenedioyl HDdiA-(X) PC[27, 28], PS[67]

5-Keto-8-oxo-6- octenoyl KOOA-(X) PC[27, 28], PS[67]
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General Phospholipid Structure

sn-2 Moiety Structure (Y) Abbreviation (C16:0 in 
sn-1)

Associated Head Group 
(X)

9-Keto-12-oxo-10- dodecenyl KODA-(X) PC[27, 28], PS[67]

5-Keto-6-octendioyl KOdiA-(X) PC[27, 28], PS[67]

9-Keto-10- dodecenedioyl KDdiA-(X) PC[27, 28], PS[67]

Ester Hydrolysis

Hydroxy Lyso-(X) PC[126], PE[167], PS[127]
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