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Ergodicity breaking on the neuronal 
surface emerges from random 
switching between diffusive states
Aleksander Weron1, Krzysztof Burnecki1, Elizabeth J. Akin2, Laura Solé2, Michał Balcerek1, 
Michael M. Tamkun2,3 & Diego Krapf   4,5

Stochastic motion on the surface of living cells is critical to promote molecular encounters that 
are necessary for multiple cellular processes. Often the complexity of the cell membranes leads to 
anomalous diffusion, which under certain conditions it is accompanied by non-ergodic dynamics. Here, 
we unravel two manifestations of ergodicity breaking in the dynamics of membrane proteins in the 
somatic surface of hippocampal neurons. Three different tagged molecules are studied on the surface 
of the soma: the voltage-gated potassium and sodium channels Kv1.4 and Nav1.6 and the glycoprotein 
CD4. In these three molecules ergodicity breaking is unveiled by the confidence interval of the mean 
square displacement and by the dynamical functional estimator. Ergodicity breaking is found to take 
place due to transient confinement effects since the molecules alternate between free diffusion and 
confined motion.

The stochastic motion of molecules in living cells is essential to maintain a myriad of physiological processes. 
Nevertheless, while diffusion naturally mixes cell components, the cellular environment must be organized in 
order to maintain a living state. This process is typically fulfilled by actively bringing the system out of ther-
modynamic equilibrium. In the plasma membrane, different organization levels are observed including the 
compartmentalization and segregation into functional domains1–3, the aggregation into nanoclusters4, 5, and the 
immobilization of macromomecular complexes6, 7. Given the multiple biological roles that involve membrane 
diffusion, its quantitative investigation is highly relevant to cell biology. In general, the organization of the plasma 
membrane is based on intricate interactions involving the cytoskeleton, membrane proteins, and lipids. During 
the last decade, our understanding of membrane dynamics and interactions has rapidly evolved due, in a signif-
icant fraction, to advances in single-particle localization and tracking8, 9. Single-particle tracking (SPT) allows 
the direct investigation of temporal maturation and spatial heterogeneities. The most typical characterization of 
individual trajectories is based on the time-averaged (TA) mean square displacement (MSD)
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where T is the experimental time, Δ the lag time, and r(t) the particle position at time t. Note that throughout 
the manuscript, we employ overlines to indicate time averages and brackets 〈…〉 to indicate averages over an 
ensemble of particles.

Brownian motion is characterized by a TA MSD that scales linearly in lag time. However, SPT in live cells often 
reveals complexities accompanied by deviations from normal diffusion10–12. In particular the TA MSD can show 
a non-linear scaling
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where Kα is the generalized diffusion coefficient and, for subdiffusive processes, 0 < α < 1. Besides a non-linear 
TA MSD, other striking anomalies that can arise in biomolecule dynamics involve ergodicity breaking and 
aging13. We refer to the ergodic property as the equivalence of time and ensemble averages, one of the corner-
stones of statistical mechanics.

In living cells, ergodicity breaking has been revealed in the motion of molecules both in the cytoplasm and 
on the cell surface. In the cytoplasm, the motion of lipid granules in fission yeast cells displays features of weak 
ergodicity breaking associated with a continuous time random walk (CTRW) subdiffusion with a truncated 
power-law waiting time distribution14. The motion of insulin granules in MIN6 insulinoma cells also exhibits 
fingerprints of a heavy-tailed CTRW likely due to the random waiting times between binding and unbinding 
of the granules to microtubules15. In the plasma membrane of human embryonic kidney (HEK) cells, ion chan-
nels exhibit non-ergodic behaviour because they bind to clathrin-coated pits with a heavy-tailed distribution 
of immobilization times7, 16. The DC-SIGN receptor motion shows ergodicity breaking on the surface of CHO 
cells caused by heterogeneous dynamics with frequent changes of diffusivity17. Furthermore, ergodicity breaking 
caused by bulk-mediated diffusion was also observed in reconstituted lipid bilayers18.

Frequently, when dealing with biological data, only a few trajectories of considerable length are available. If the 
ergodic hypothesis holds, it is possible to analyse individual sufficiently long trajectories instead of attempting to 
acquire a large number of measurements, which may not be feasible. In such cases it is critical to assess ergodicity 
so that temporal and ensemble averages can be interchanged. Classical approaches to demonstrate ergodicity rely 
on direct comparison of time and ensemble averages or the characterization of the ergodicity breaking param-
eter, which quantifies the fluctuations of the TA MSDs19. However, these tests require numerous realizations of 
the process. To address such a situation, ergodicity can be tested in a single trajectory employing the concept of 
dynamical functionals20–22.

Here we study ergodicity breaking in the dynamics of membrane proteins on the somatic surface of hip-
pocampal neurons. Neurons are particularly complex cells that require high spatio-temporal regulation and com-
partmentalization of the plasma membrane in order to properly detect, integrate, and transduce nerve signals. 
However, the organization of the neuronal surface lacks a thorough understanding. We express three different 
tagged molecules that traffic to the surface of the soma: the voltage-gated potassium and sodium channels Kv1.4 
and Nav1.6, and the glycoprotein CD4. These molecules are found to transiently aggregate into nanoclusters. 
Interestingly, transient confinement in nanoscale domains causes ergodicity breaking, which is manifested in two 
different ways. First, significant differences are observed between time- and ensemble-averaged MSD. Second, a 
dynamical functional test unmasks ergodicity breaking at the individual trajectory level.

Results
Nav1.6 and Kv1.4 were tagged with an extracellular CF640R fluorophore via biotin-streptavidin. CD4 receptors 
were tagged with a CF640R-conjugated antibody. Known crystal structures similar to the three molecules studied 
in this work are shown in Fig. 1a–c as ribbon representations in order to highlight the main features of these mol-
ecules and emphasize the differences between them. Figure 1a shows the only solved structure for a eukaryotic 
Nav channel, the NavPaS protein from cockroach. Note that NavPaS lacks more than 400 cytoplasmic amino 
acids as compared to the Nav1.6 channel studied in the present work. Thus, the Nav1.6 intracellular domain is 
larger than the structure pictured in Fig. 1a. No high resolution structure exists for the Kv1.4 ion channel so we 
show the structure of Kv1.2 complexed with the beta2 subunit in Fig. 1b. The intracellular mass of 2,360 amino 
acids illustrated in Fig. 1b likely extends farther into the cytoplasm relative to Kv1.4 since Kv1.4 contains only 
1,488 cytoplasmic amino acids. Both the Nav and Kv channels contain 24 membrane spanning alpha helices. The 
CD4 dimer shown in Fig. 1c is the same construct that we are expressing. Surface-labelled molecules are imaged 
by total internal reflection fluorescence23 and tracked using an automated algorithm24. We obtained respectively 
386, 694, and 1528, Nav1.6, Kv1.4 and CD4 trajectories longer than 100 frames (a statistical analysis of trajectory 
lengths is presented in Supplementary Fig. S1).

Figure 1d–f show representative trajectories of Nav1.6, Kv1.4, and CD4 proteins, where different trajectories 
are shown with various colours matched to the TA MSD in Fig. 1g–i. The trajectories depicted in Fig. 1 suggest 
periods of confinement within nanoscale domains. Previously we have reported that surface Nav1.6 channels in 
the soma of hippocampal neurons form nanoclusters with a mean radius of 115 nm23. Although these clusters 
are stable for longer than 30 minutes, individual Nav1.6 molecules are seen to associate with and dissociate from 
these domains at much faster rates. Here we find that nanoscale confining domains also emerge for Kv1.4 and 
CD4. Marked heterogeneities are observed in the TA MSDs, which can be attributed to molecules with different 
degrees of confinement and different diffusivities. Most trajectories are classified as subdiffusive, i.e., they display 
a sublinear TA MSD as in Eq. (2) with α < 1.

Ion channels in the soma of hippocampal neurons exhibit intermittent diffusive behav-
iour.  Qualitative observations indicate that surface molecules in the somatic surface are subjected to transient 
confinement. Thus we employ an automated algorithm to detect changes in the particle diffusive behaviour. To 
segment trajectories, we characterize local diffusion by means of a sliding-window TA MSD. It is possible to 
classify the state according to different parameters such as maximal excursion length25, diffusion coefficient17, or 
anomalous exponent α. All these metrics provide useful information. We chose to identify the diffusive state via 
the anomalous exponent because it involves a classification according to a non-dimensional parameter.

The classification of the diffusive state according to the anomalous exponent is exemplified in Fig. 2. Figure 2a 
shows a Nav1.6 trajectory and Fig. 2b,c show the X and Y positions as a function of time, where the periods in a 
confined state, as found by a thresholding algorithm, are shaded and marked in red. The local anomalous expo-
nent α(t) and general diffusion coefficient Kα(t) are shown in Fig. 2d,e, which are found from a linear regression 
of log(MSD) vs. log(time) on the first eight time points. The local TA MSD is computed with a sliding window 
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of 23 data points. The anomalous exponent α(t) exhibits stretches close to one and stretches of low values. When 
a molecule undergoes confined motion, the TA MSD is bounded by the confining domain and thus it saturates. 
Thus we foresee that periods of confined motion display a local TA MSD with an anomalous exponent close to 
zero. In order to find the optimal threshold to resolve low and high α values (confined and free states, respec-
tively), we employ the k-means method, a classical classification algorithm26. The Nav1.6 data yields a threshold 
αth = 0.45.

Thresholding the sliding TA MSD according to the anomalous exponent efficiently determines whether the 
molecules are in a transiently confined or in a free diffusive state. As seen in Fig. 2a–c, proteins on the somatic 
surface of hippocampal neurons alternate between two different states. While one of these states displays diffu-
sion over large distances, in a second state the molecules are confined within nanoscale domains. In the cases of 
Nav1.6 and Kv1.4 most trajectories display 5 to 30 switchings between confined and free states but the number of 
switchings for CD4 is smaller, because the sojourn times are longer (Supplementary Fig. S2).

Ergodicity breaking in trajectory dynamics.  Interestingly, the time traces of the TA MSD δ ∆( )2  scatter 
broadly. One possible explanation for this behaviour is rooted in ergodicity breaking13. In this scenario, the TA 
MSD does not converge to the ensemble average. Further, as a consequence of ergodicity breaking the time aver-
ages remain random variables in violation of the central limit theorem27. In order to test ergodicity, we compare 
time and ensemble MSDs for each set of molecules. However, given the large scatter of the time averages we study 
the ensemble average of TA MSD (EA TA MSD), δ ∆( )2 . Figure 3a–c show both EA MSD and EA TA MSD for 
Nav1.6, Kv1.4, and CD4. The EA MSD is shown together with the 95% confidence interval28. The same figures are 
shown in logarithmic scales in Supplementary Fig. S3. In all three cases the TA MSD lie outside the EA MSD 

Figure 1.  Single-molecule trajectories and their TA MSD. (a) Structure of cockroach NavPaS protein (PDB 
accession code 5X0 M). This is the only solved structure for any eukaryotic Nav channel. (b) Structure of 
Kv1.2 assembled with the beta2 subunit (code 3LUT). (c) Structure of CD4 dimer (assembled from codes 
1WIO and 2KLU). Structures were produced using PyMOL. The yellow bands in panels a–c represent the 
plasma membrane with the intracellular protein domains being below the membrane. (d–f) Trajectories in a 
representative cells obtained by single-particle tracking. (g–i) TA MSDs of the trajectories in panels (d–f). The 
dashed lines are guides to linear behaviour.
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confidence interval, with the TA MSD being significantly smaller. This difference is a direct indication of ergodic-
ity breaking, with the gap between EA MSD and TA MSD being much larger in Nav1.6 and Kv1.4 than in CD4.

Strong ergodicity breaking arises from the separation of the phase space into uncoupled regions. Thus it can 
only be assessed in the ensemble of molecules in mutually inaccessible domains. However, when weak ergodicity 
is broken, the particles are able to explore the whole phase space29 and therefore non-ergodic behaviour can be 
probed at the single-molecule level. This intriguing weakly ergodic behaviour was recently exploited to develop 
tools to identify non-ergodic dynamics from single-particle trajectories22. The inference of ergodicity breaking 
in single trajectories is based on dynamical functional tests21, 28, where the dynamical functional is defined as 
the time-averaged characteristic function of the normalized increments evaluated for the Fourier mode ω = 1. 
Here, each coordinate of a two-dimensional trajectory (X(n), Y(n)) is treated separately, i.e., X(n) and Y(n) are 
restricted to be one-dimensional processes. Given a trajectory X(n) of N points, the normalized increments, i.e., 
the normalized velocities, are

Figure 2.  Trajectories are found to alternate between confined and free states. (a) Example of Nav1.6 trajectory. 
The trajectory is coloured according to being in the free or confined state. This trace consists of 600 data 
points. (b,c) Time series of the trajectory along X and Y directions. (d) Time series of α according to Eq. (2) 
using a sliding window TA MSD. A threshold αth = 0.45 as found using a k-means algorithm is employed for 
discrimination between states. (e) Time series of the generalized diffusion coefficient Kα obtained using a 
sliding window TA MSD.

Figure 3.  Ergodicity breaking in Nav1.6, Kv1.4, and CD4. (a–c) EA MSD with the 95% confidence interval 
vs. EA TA MSD. (d–f) Dynamical functional test of all trajectories evaluated at n = 100 points (5 s). Blue bars 
correspond to trajectories with F < 0.04, whereas the light green bars correspond to F ≥ 0.04.
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where we assumed the increments have zero mean. Normalization ensures the method is independent of meas-
urement units. The dynamical functional is then defined as21
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where 〈…〉 denotes an ensemble average. This functional fully characterizes the ergodic properties of stationary 
infinitely divisible (SID) processes. A SID process is ergodic if and only if ∑−
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1  goes to 0 as n increases20. 

The single-molecule ergodicity estimator is obtained by replacing the ensemble average in Eq. 4 with the time 
average along the trajectory with N + 1 increments V(0), V(1), …, V(N),
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Ê n

N n
e e

N
( ) 1

1 1 (5)k

N n
i V k n V k

k

N iV k

0

[ ( ) ( )]

0

( ) 2

The smallness of ∑−
=
− ˆn E k( )k

n1
0
1  for large n is the necessary condition for ergodicity, whereas violation of this 

condition reveals ergodicity breaking. We emphasize that the estimator based on a single trajectory allows to 
reject, with some degree of certainty, the ergodic hypothesis but it cannot confirm it.

Reliable statistical tests of single-particle trajectories in living cells are desired to identify trajectories for which 
time averages do not represent the process. Lanoiselée and Grebenkov22 introduced the modification to the esti-
mator Ê n( )
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where the first term can be interpreted as the time-averaged characteristic function of the normalized increments 
X(k + n) − X(k) at lag time n, and the last term ensures that the estimator is strictly zero for a constant process 
X(n) = X0. The ergodicity estimator generalizes to
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where the summation over k is shifted from the original range 0, …, n − 1 for convenience. There is a sharp dif-
ference between both estimators; we apply Eq. (5) to the short-time increments (or velocities V(k)) and we apply 
Eq. (6) to the long-time increments (or positions X(k)). Let us underline that the high-Fourier modes, with large 
frequency ω, become more important for a finite-length trajectory.

There are three modifications with respect to the original estimator21: (i) one can consider Fourier modes 
beyond ω = 1, (ii) the bias is partly removed by subtracting the constant term and changing the normalization, 
and most importantly, (iii) one can apply the estimators to the long-time increments of a trajectory. Even though 
the differences between Eqs 5 and 6 are subtle, the application of the improved estimator to the positions of a 
tracer instead of the short-time increments is a key feature. Following ref. 22, we set ω = 2 and for simplicity we 
denote ≡ ˆF n F n( ) ( )2 . When dealing with SID processes, it is sufficient to consider the estimator defined in Eq. 5 
with ω = 1. However, the estimator defined in Eq. 6, which depends on ω, relaxes the stationarity requirement and 
thus it allows evaluation of CTRWs. Since the estimator vanishes in the limit that omega increases to infinity for 
ergodic processes, but remain nonzero for a nonergodic CTRW22, the estimation at very large omega might be 
thought as optimal. However, in practice this strategy is not convenient because of measurement artefacts such as 
localization errors and blurring. General formulas for any Fourier mode omega are presented in ref. 22 and a 
thorough analysis is performed in the interval 0 ≤ ω ≤ 10. It follows that the choice ω = 2 is sufficient for many 
practical stationary and non-stationary cases.

Ergodicity implies the estimator F(n) decays to zero, allowing rejection of ergodicity: a large F(n) confirms 
ergodicity breaking but smallness of F(n) does not prove ergodicity. Supplementary Fig. S4a,b show the mag-
nitude of the ergodic estimator |F(n)|, computed for X and Y coordinates of the trajectory shown in Fig. 2. We 
observe that the magnitude related to the X coordinate is significantly greater than zero over the whole meas-
urement time, indicating that this trajectory is not ergodic. For comparison, we show in Supplementary Fig. S5 
the dynamical functional |F(n)| for Brownian motion and for fractional Brownian motion with Hurst exponent 
H = 0.35, i.e., anomalous exponent α = 0.730. Both these processes are ergodic.

In order to evaluate ergodicity on a single trajectory basis, we compute F at n = 100 as the maximum of the X 
and Y time series estimators, F = max(|FX(n = 100)|, |FY(n = 100)|). The rationale being that, not to reject ergodic-
ity, the magnitudes of both FX and FY should be small. The value n = 100 was chosen in order to allow the compar-
ison of the dynamical function for all trajectories at the same time point (n = 100 corresponds to the length of the 
shortest trajectory). Figure 3d–f show the ergodicity estimator values for Nav1.6, Kv1.4, and CD4 molecules. We 
employ the concept of ε-ergodicity as a statistical test for the ergodic hypothesis. As with other hypothesis tests, 
an outcome leads to rejection of the hypothesis according to an ε significance level, i.e., a probability threshold. In 
this case the specification of the accuracy ε should depend on the experimental noise, the underlying anomalous 
diffusion process, and the trajectory length. The minimum trajectory length sufficient to identify ε-ergodicity 
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breaking was previously evaluated for a large class of anomalous diffusion processes, namely α-stable autoregres-
sive fractionally integrated moving average (ARFIMA) processes30. In general the minimum required trajectory 
length depends on the memory parameter, that is the type of random walk. In this work we choose an accuracy 
ε = 0.04, which requires ARFIMA trajectories of length around n = 100 as found by Loch-Olszewska et al.30 We 
then foresee ergodic trajectories to be characterized by an estimator F < ε for n = 100. However, a large fraction 
of the trajectories exceeds this value (Fig. 3d–f) indicating ε-ergodicity breaking.

Alternating between diffusive states is responsible for ergodic breaking.  We observed that all 
three studied proteins in the soma of hippocampal neurons exhibit transient confinement in nanodomains and 
ergodicity breaking. We hypothesize that ergodicity breaking is caused by alternating between confined and free 
states. Thus we tested this hypothesis by removing the stretches of the trajectories where the molecules exhibit 
confined behaviour. We then analysed trajectories with an aggregated non-confined behaviour longer than 100 
data points (N > 100). Figure 4a–c show the EA MSD together with the EA TA MSD of the trajectories without 
the confined regions. Again, the 95% confidence interval of the EA MSD is shown and the figures are presented 
in logarithmic scale in Supplementary Fig. S6. While minor differences between EA TA MSD and EA MSD in 
the free parts of the trajectories can be still observed, these differences are drastically reduced when compared to 
the raw data (Fig. 3a–c). The differences between the two averages are likely caused by errors in the segmentation 
of the trajectories, i.e., wrong identifications of free and confined states. Alternatively, a secondary underlying 
ergodicity-breaking mechanisms could still be functional, e.g., random diffusivities17, 31. Nevertheless, our rough 
confinement identification method indicates that ergodicity breaking in the data is primarily caused by transient 
confinement.

When the parts of the trajectory with confined behaviour (regions shaded in Fig. 2b,c) are removed and 
the remaining non-confined parts are stitched together, the dynamical functional test also suggests ergodicity. 
Supplementary Fig. S4c,d show the ergodic estimator |F(n)| for X and Y coordinates of the free state of the trajec-
tory shown in Fig. 2a. For both coordinates we can observe the estimator rapidly converges to zero. Figure 4d–f 
show the ergodic estimator results for the free part of the trajectories in the three types of membrane molecules. 
The horizontal axes are the same as in Fig. 3d–f to allow for comparison. The change in behaviour is evident with 
most of the trajectories now having an ergodic estimator F < 0.04 in agreement with ergodic dynamics.

The motion of the free (non-confined) state is ergodic but it is still subdiffusive, δ ∆ = = ∆ = ∆α
αx t K( ) ( )2 2 . 

The anomalous exponents are α = 0.90, 0.86, 0.92, respectively for Nav1.6, Kv1.4, and CD4. Statistical analyses of 
the anomalous diffusion exponents for the whole trajectory and for the free parts are shown in Fig. 5. We observe 
that the distribution of α for the whole trajectories is a mixture of two separated states: free and confined. The TA 
MSD subdiffusive behaviour of the free parts is characteristic of antipersistent random walks, such as diffusion on 
a fractal environment32, 33 or fractional Brownian motion34, 35.

Discussion
Weak ergodicity breaking has been priorly found in cell membranes due to transient binding16 and heterogeneous 
diffusion landscapes17. Non-ergodic behaviour was also observed in the cytoplasm for lipid granules in yeast14 
and insulin granules in MIN6 cells15. To the best of our knowledge, this is the first time ergodicity breaking is 
found to take place due to transient confinement effects. Given the large intracellular domains of the ion chan-
nels Kv1.4 and Nav1.6, one could posit that their confinement is caused by intracellular components. Thus the 

Figure 4.  Ergodic behaviour in Nav1.6, Kv1.4, and CD4 of trajectories where the confined states were removed, 
i.e., analysis of the free motion. (a–c) EA MSD with the 95% confidence interval vs. EA TA MSD. (d–f) 
Dynamical functional test of all trajectories evaluated at n = 100 points (5 s). Blue bars correspond to trajectories 
with F < ε = 0.04, whereas the light green bars correspond to F ≥ 0.04.
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underlying non-ergodic mechanism of Kv1.4 and Nav1.6 in hippocampal neurons is likely rooted in the cytoplas-
mic domain as is the case for ergodicity breaking of Kv2.1 channels in HEK cells16. Here we report for the first 
time ergodicity breaking on the neuronal surface. While in HEK cells ergodicity breaking is caused by binding 
immobilization events, in the complex landscape of the neuronal surface it is caused by transient confinement 
with a lateral motion of the order of 250 nm.

In terms of renewal theory, ergodicity breaking is attained when the sojourn times in one of the states are 
power-law distributed, as, e.g., in a continuous time random walk (CTRW)36 and in heterogeneous diffusion pro-
cesses31, 37. In the CTRW, a heavy-tail immobilization time distribution leads also to aging38. Such behaviour has 
been experimentally found in systems as diverse as live cells14–16, water molecules on cell membrane surfaces39, 
blinking nanocrystals40–42, and nanoelectrochemical systems43. Similarly non-ergodicity emerges in heteroge-
neous cell diffusion processes when the distribution of diffusion coefficients has a heavy tail17. Nevertheless, 
the diffusion process described in this work is not renewal and ergodicity breaking could take place without a 
heavy-tail sojourn-time distribution. Nav1.6 nanoclusters in the soma of hippocampal neurons are stable over 
long times. Therefore, after escaping from the confining domain, the particle will eventually return to the same 
domain. Further, the motion of the molecules in the non-confined state is antipersistent as shown by its TA MSD. 
This subdiffusive behaviour causes the random walk to be more compact than Brownian motion and the return 
to a domain takes place more readily.

Weak ergodicity breaking lies in the behaviour of individual molecules and not merely at the ensemble level. 
We have exploited this property and probed ergodicity on a trajectory-by-trajectory basis. It was found that most 
of the trajectories in the soma surface are non-ergodic. However, when we investigate the non-confined parts of 
the trajectories, ergodicity is recovered, pinpointing the mechanism behind ergodicity breaking. This behaviour, 
found for three vastly different membrane proteins emphasizes the neuronal surface complexity, where a classical 
simple fluid description fails at multiple scales.

Methods
Cell culture.  Rat hippocampal neurons were cultured and imaged in glass-bottom plates as previously 
described23, 44. Animals were used according to protocols approved by the Institutional Animal Care and Use 
Committee of Colorado State University (Animal Welfare Assurance Number A3572-01). Dissections were per-
formed after anesthesia with isoflurane followed by decapitation. Hippocampal tissue was dissected from the 
brains of E18 embryos and neurons were plated on glass-bottom 35-mm dishes with No. 1.5 coverslips (MatTek, 
Ashland, MA) that had been coated with poly-L-lysine (Sigma-Aldrich, St. Louis, MO) for 1 hr, rinsed with 

Figure 5.  Histograms of TA MSD exponents per trajectory for (a) Nav1.6, (b) Kv1.4, and (c) CD4. The 
anomalous exponents α are computed for whole trajectories. (d–f) Histograms of TA MSD exponents in 
Nav1.6, Kv1.4, and CD4, when the confined parts of the trajectories are removed.
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sterile water, then allowed to air dry for 15 min. Neurons were grown in Neurobasal Medium (Gibco/Thermo 
Fisher Scientific, Waltham, MA) with penicillin/streptomycin antibiotics (Cellgro/Mediatech, Manassas, 
VA), GlutaMAX (Gibco/Thermo Fisher Scientific), and NeuroCult SM1 Neuronal Supplement (STEMCELL 
Technologies, Vancouver, BC, Canada). For imaging, the media was replaced by neuronal imaging saline (NIS) 
consisting of 126 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 0.6 mM MgSO4, 0.15 mM NaH2PO4, 0.1 mM ascorbic 
acid, 8 mM glucose, and 20 mM HEPES (pH 7.4).

Transfection.  Nav1.6 and Kv1.4 constructs were each modified to contain an extracellular biotin acceptor 
domain (BAD) in an extracellular loop. These constructs (Nav1.6-BAD and Kv1.4-BAD) were previously func-
tionally validated as described44. Neuronal transfections were performed after days in vitro (DIV) 4–6 in cul-
ture using Lipofectamine 2000 (LifeTechnologies, Grand Island, NY) and either Nav1.6-BAD (1 μg), Kv1.4-BAD 
(1 μg), or CD4 (100 ng), as indicated. For the Nav1.6-BAD and Kv1.4-BAD constructs, pSec-BirA (1 μg) (bacterial 
biotin ligase) was cotransfected to biotinylate the channel.

Live-cell surface labelling.  Labelling of the surface channel was performed before imaging. Neurons were 
rinsed with NIS, to remove the Neurobasal media. For experiments with CD4, cells were incubated for 10 min at 
37 °C with a monoclonal antibody against CD4 (MABF573, Millipore, Billerica, MA), which we had previously 
directly conjugated with a CF640R fluorophore (antibody labelling kit Mix-n-stain CF640R, Biotium, Hayward, 
CA), diluted 1:1000 in NIS. For experiments using the Nav1.6 and Kv1.4 constructs containing the extracellular 
BAD, cells were incubated for 10 min with streptavidin-conjugated CF640R (Biotium, Hayward, CA) diluted 
1:1000 in NIS. Both streptavidin-CF64R and Anti-CD4 labelling was done at 37 °C in the presence of bovine 
serum albumin (cat. A0281, Sigma, St Louis, MO). Excess label was removed by rinsing with neuronal imaging 
saline.

TIRF microscopy.  Total internal reflection fluorescence (TIRF) images were acquired using a Nikon 
Eclipse Ti fluorescence microscope equipped with a Perfect-Focus system, acousto-optic-tunable-filter 
(AOTF)-controlled 647 nm diode laser, an Andor iXon EMCCD DU-897 camera, and a Plan Apo TIRF 100, 
NA 1.49 objective. Emission was collected through a filter wheel containing the appropriate bandpass filter. 
For excitation, an incident angle of 63° was used. Before TIRF imaging, differential interference contrast (DIC) 
and wide- field fluorescence imaging were used to distinguish transfected neurons from the relatively flat glia. 
Neurons were readily identified based on the characteristic soma morphology and localization of Nav1.6 to the 
axon initial segment. All imaging was performed at 37 °C using objective and stage heaters.

Single-molecule tracking.  Rat hippocampal neurons expressing Nav1.6, Kv1.4, or CD4, surface-labelled 
with CF640R were imaged at 20 frames/s using TIRF microscopy as described above. Images were background 
subtracted and filtered using a Gaussian kernel with a standard deviation of 0.7 pixels in ImageJ. Tracking of indi-
vidual fluorophores was then performed in MATLAB using the U-track automated algorithm24. Manual inspec-
tion confirmed accurate single-molecule detection and tracking.

Sliding-window MSD.  The instantaneous TA MSD at time t was found from the detected locations within 
the trajectories using a sliding-time window averaging method7,
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1
[ ( ) ( )] ,

(8)k t

t n
2

where Δ is the lag time, n + 1 is the number of data points in the time series used to calculate the instantaneous 
TA MSD. The length of the sliding window was set to 23 frames (n = 22). Note that the first window contains 
observations from 1 to n + 1, the second from 2 to n + 2, etc.

Algorithm for determination of optimal α threshold.  For each sliding window we obtain the TA MSD 
as described above and calculate α with Eq. 2. We repeat this procedure for all available trajectories and the new 
time series α(t) are classified by using a k-means algorithm. The k-means method provides the minimum value of 
α in each class and the optimal threshold αth is the minimum of the second class. We have checked the results for 
values of n between 14 and 22 and found the k-means algorithm is robust in terms of window size.

The k-means clustering is a method of vector quantization, originally from signal processing, that is popular 
for cluster analysis in data mining. The k-means clustering aims to partition N observations into k clusters in 
which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This 
method yields a partitioning of the data space into Voronoi cells26. The k-means algorithm is the standard proce-
dure implemented in various numerical packages, including MATLAB.
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