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Abstract

Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is 

no cure for the disease, with current treatment strategies relying on blood pressure control through 

blockade of the renin angiotensin system and glycemic control. Such approaches only delay end 

stage kidney disease development, and can be associated with significant side effects. Recent 

identification of several novel mechanisms contributing to CKD development - including vascular 

changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and 

metabolic dysregulation – has revealed new potential therapeutic approaches for CKD. This 

review will assess emerging strategies and agents for CKD treatment, highlighting associated 

challenges in their clinical development.

Introduction

Approximately 20 million people in the United States are currently affected by CKD, with 

half a million of these presenting with the most severe form; end stage renal disease 

(ESRD). The only treatment for ESRD is dialysis or transplantation. However, the mortality 

of patients on dialysis can be as high as 20% per year1,2 and transplantation is limited by 

organ shortage.

The most common cause of chronic and ESRD in the United States is diabetes, which 

accounts for roughly 50% of all cases, followed by hypertension (25%), with other causes 

including glomerulonephritides and polycystic kidney disease1,3. Cardiovascular disease 

(CVD) remains the leading cause of mortality in patients with CKD4. Despite tremendous 

progress in reducing CVD death in the general population, this has not translated into CKD 

patients. The reduction in CVD in the general population correlates strongly with serum 

cholesterol, smoking status and blood pressure, but the mortality of CKD of subjects is much 

higher than non-CKD subjects when compared by traditional CVD risk calculations5,6. So 

called “non-traditional risk factors” may result from the build-up of different toxins and 

metabolites which likely contributes to this increased mortality of patients with CKD.
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The most commonly used definition for CKD is purely based on estimation of the 

glomerular filtration rate (eGFR)7, with a 40% decline to a GFR of less than 60ml/min/

1.73m2 for more than 3 months being used to diagnose CKD. Different stages of CKD have 

been proposed, based on GFR criteria. These include stage G1 when GFR>90 cc/min, stage 

G2 when GFR is 90-60cc/min, stage G3 when GFR is 60-30 cc/min, stage G4 when GFR is 

30–15 cc/min, while stage G5 is when GFR is below 15 cc/min. The stages were developed 

mostly for research purposes and at present we are not aware of any clear distinction 

between these stages, rather GFR decline represents a continuously increased risk for death. 

A broader definition of CKD is also in use, which takes structural, functional, pathological, 

laboratory or imaging abnormalities into consideration. Leakage of albumin or protein in the 

urine is one such functional abnormality that has gained more prominence in the new 

classification guidelines8,9. Most clinical studies use albuminuria and proteinuria 

interchangeably as albumin and its degradation products represent the overwhelming 

majority of urinary proteins. The presence of albuminuria correlates strongly with the 

development of ESRD, increased CVD and mortality, while reduction of albuminuria is 

usually associated with protection from functional decline10.

Sclerosis of the glomerulus and interstitial fibrosis are the common histopathological and 

structural features of CKD11. Glomerular changes are usually specific for disease etiology 

and as indicated above, are therefore used for diagnosis and disease classification12. 

Tubulointerstitial fibrosis strongly correlates with kidney function and represents a common 

complex architectural change in the kidney11,13, which includes matrix and collagen 

production by epithelial cells and activated myofibroblasts11. Mouse genetic studies have 

highlighted the key role of epithelial cells in the development of fibrosis1415,16. Indeed, 

genetic overexpression of Notch, Wnt, KIM and HIF in tubule epithelial cells was sufficient 

to induce epithelial damage, dedifferentiation and the full spectrum of fibrosis1415,16, while 

genetic deletion of these pathways protected from fibrosis development. Fibrosis is a 

reactive process that develops mostly in response to epithelial injury and is almost always 

accompanied by inflammation, manifested by increased cytokine expression and 

accumulation of macrophages and inflammatory cells17. Vascular injury and loss of 

capillaries exacerbates epithelial injury at later stages by limiting the nutrient availability to 

epithelial cells. Our understanding of fibrosis has significantly improved over the past 

several years, revealing new potential therapeutic targets.

At present there is no cure for most forms of chronic kidney disease. The list of conditions 

associated with reversible renal failure is short, comprising of decreased renal perfusion, 

nephrotoxic drugs and urinary obstruction. Although steroids and other immunosuppressive 

measurements can halt or reverse some diseases of the kidney, such as IgA neuropathy18, 

lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis, vasculitis 

and MCD, they have not shown benefit in kidney disease in patients with diabetes and 

hypertension19.

Hemodynamic changes play a critical role in CKD development and strategies to control 

high blood pressure have had a significant beneficial impact on disease20. An increase in 

systemic blood pressure can increase glomerular filtration, leading to hyperfiltration, an 

increase in glomerular size and glomerular cells must endure the increased stretch21. In 
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addition, as the vessels that supply the kidney with nutrients originate from the efferent 

portion of the glomerulus, these changes reduce the post-glomerular blood flow leading to 

ischemic changes in the kidney22, 23. Inhibiting the renin angiotensin system, which is 

involved in the regulation of blood pressure and fluid balance19, using either angiotensin 

convertase enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB), reduces 

glomerular hyperfiltration and albuminuria, and slows the decline in kidney function19. 

These agents have therefore become the mainstay of CKD treatment. However, this 

approach only slows the decline in kidney function and does not cure CKD. In addition these 

agents can be associated with significant side effects, such as an increase in serum potassium 

levels, which can limit their therapeutic use24.

There are several additional drugs in development that target hemodynamic changes in 

CKD. Smoking cessation also slows the rate of progression25. Many practitioners 

recommend protein restriction, statin therapy and the correction of metabolic acidosis, but at 

present the benefit of these measures have not been unequivocally demonstrated in large 

randomized trials26. As our understanding of CKD pathogenic mechanisms has improved, 

new therapeutic approaches, including targeting inflammation, fibrosis or podocytes, are 

emerging. In this Review, we will assess current and emerging strategies for the treatment of 

the major types of CKD - diabetic and hypertensive CKD -and address key challenges and 

considerations in the development of novel therapies and future clinical trial design.

Current treatments for CKD

Angiotensin converting enzyme inhibition (ACEi) and angiotensin receptor blockade (ARB) 

have been the mainstay of therapy for chronic kidney disease for over twenty years (Figure 

1). The initial rationale for testing ACEi therapy was based on preclinical studies showing a 

reduction in intraglomerular hemodynamic pressure accompanied by proteinuria reduction 

in hyper-filtering rat kidney disease models, including diabetic nephropathy and partial renal 

ablation2327. Clinical testing of the ACEi, captopril, in patients with type I diabetes and 

nephropathy revealed that captopril improved renal outcomes beyond that achieved with 

alternative methods of blood pressure reduction28, establishing captopril and ACEi as the 

standard of care for patients with diabetic nephropathy (DN). Subsequent studies extended 

the observed benefit to patients with other causes of kidney disease including those with late 

stage CKD29,30.

Similar beneficial effects of Angiotensin type 1 receptor blockade (ARB) were subsequently 

observed in patients with type 2 diabetes and nephropathy31–33, establishing the renin 

angiotensin pathway as a key target for the treatment of CKD. Notably, the therapeutic 

benefit of ACE/ARB therapy is closely associated with an early reduction in estimated 

GFR34, coupled with reduction in proteinuria (or albuminuria) (Figure 1)35,36, consistent 

with the capacity of these agents to reduce intra-glomerular filtration pressure as noted 

above27.

However, although ACEi/ARB therapy slows the progression of renal disease, it does not 

halt disease progression. In addition, such therapy has been associated with side effects - 

including cough for ACEi and serious hyperkalemia, that often limits their use37,38.
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Although the introduction of ACEi and ARB therapy has decreased the incidence of renal 

failure in the US1, the prevalence of CKD has increased, with more than 100,000 patients 

developing renal failure each year1,39. Furthermore, the dramatic decrease in adverse 

cardiovascular outcomes, stroke and amputations, seen over the past twenty years in diabetes 

patients has not been accompanied by a similar reduction in diabetic ESRD39. At present 

there are no therapies that reverse the loss of renal function in CKD, in stark contrast to 

more acute inflammatory glomerulonephritis, where immunosuppression can potentially 

even cure disease.

Nevertheless ACEi or ARB therapy is now considered the standard of care for chronic 

proteinuric kidney disease, therefore any novel therapy must prove added benefit on the 

background of ACEi or ARB therapy.

New approaches to modulate blood pressure, hemodynamics

Combination of ACEi and ARB

Given the evident role of the renin angiotensin system (RAS) in the progression of renal 

disease, it was hypothesized that continued disease progression could be prevented by more 

complete RAS blockade38,40. To investigate this, several trials investigating the combination 

of both an ACEi and an ARB have been performed (discussed below).

The ONTARGET trial compared the benefit of the ACEi Ramipril, the ARB telmisartan or 

their combination in 25,920 patients with vascular disease and/or high-risk diabetes 

investigators41. Notably, most of the subjects enrolled in ONTARGET did not have 

microalbuminuria or macroalbuminuria at baseline, so renal benefit in proteinuric patients 

afforded by combination ACEi/ARB therapy could not be established41. During the study, 

784 patients permanently discontinued randomized therapy because of hypotensive 

symptoms, with the majority of these being on combination therapy. The number of subjects 

achieving primary renal outcome of dialysis, doubling of serum creatinine, or death was 

significantly increased in the combination therapy group compared to those treated with 

monotherapy. Many of the dialysis events were due to acute renal failure, which was 

particularly increased in normotensive patients. These disappointing, but not entirely 

unpredictable results, underscore the safety risks associated with ACEi/ARB therapy.

Similarly, the VA-Nephron D trial studied whether the combination of an ACEi and ARB 

(Lisinopril and losartan, respectively) further improved renal outcomes in subjects with type 

2 diabetes mellitus, but only enrolled patients with significant residual proteinuria37. Upon 

enrollment, subjects were all placed on Losartan. During the initial up-titration of losartan, 

there was a statistically significant decline in the median urinary albumin-to-creatinine ratio. 

Subjects were then randomized to additionally receive either Lisinopril or placebo. In the 

year following randomization, a further decline in albuminuria was observed, which was 

significantly greater in the combination-therapy group compared to patients receiving 

monotherapy. While there was a trend towards reduced renal failure events using the 

ACEi/ARB combination, this was not statistically significant. Moreover, the combination 

was associated with doubling of the risk for hyperkalemia and acute kidney injury compared 

to monotherapy37. Based on these results, combination therapy of ACEi/ARB cannot be 
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widely recommended for use in clinical practice, although fastidious management of serum 

potassium might allow this combination to provide some benefit for select patients with 

residual proteinuria37.

Renin Inhibition

An alternative approach to RAS blockade is to inhibit the first step in the renin-angiotensin-

aldosterone cascade, renin mediated cleavage of angiotensinogen to angiotensin-1 (Figure 

1). The effect of the renin inhibitor, Aliskerin, on renal outcomes was tested in patients with 

diabetic nephropathy (ALTITUDE trial)42. Aliskerin added to either ACEi or ARB therapy 

resulted in greater albuminuria reduction than placebo, but did not decrease renal events or 

improve the rate of eGFR loss and was associated with increased hyperkalemia and stroke. 

The ALTITUDE trial was prematurely terminated due to increased adverse events and lack 

of benefit on renal function decline. Taken together these findings raise significant concerns 

regarding the safety of complete RAS inhibition as a strategy for treating progressive renal 

disease.

Mineralocorticoid receptor (MR) antagonists

The mineralocorticoid, aldosterone, is an important mediator of the effect of angiotensin, as 

angiotensin causes aldosterone to be released from the adrenal gland (Figure 1). Aldosterone 

increases tubule secretion of potassium and reabsorption of sodium and chloride, thereby 

expanding intravascular volume and increasing blood pressure43. Aldosterone also plays a 

role in directly regulating the expression of several profibrotic molecules; for example 

plasminogen activator inhibitor-144,4546. Despite the preceding findings for the combination 

of ACEi plus ARB, and the known risks of hyperkalemia following mineralocorticoid 

receptor blockade47, trials of mineralocorticoid receptor inhibitors for the treatment of 

diabetic nephropathy are underway. An open label study investigating the aldosterone 

receptor antagonist spironolactone plus ARB, versus ACEi plus ARB, suggested superior 

ACR reduction in subjects with microalbuminuria and diabetic nephropathy taking 

spironolactone48, although the interpretation was confounded by lower blood pressures in 

this group49. Additional studies of MR antagonists are ongoing and include efficacy studies 

of Finerenone (Bayer)50, CS-3150 (Diachii Sankyo) and MT-3995 (Mitsubishi Tanabe), to 

determine the effects of these agents on ACR in subjects with diabetic nephropathy51. 

Whether appropriate dosing regimens can be identified which will provide efficacy yet 

circumvent the risk of hyperkalemia remains to be seen. It seems however that approaches 

that target pathways orthogonal to the RAAS should have the advantage of non-overlapping 

safety profile concerns.

Targeting the vasculature

Diabetic kidney disease is grouped under the microvascular complications of diabetes. 

Endothelial cell dysfunction, including proliferation and abnormal angiogenesis, can be 

observed in both experimental diabetes and human disease52. Similar endothelial pathology 

has been reported in the retina, which likely underlies the strong association between renal 

disease and retinopathy in diabetes53,54. Early phases of experimental diabetes are 

characterized by an increase in glomerular size, which may be a consequence of cellular 
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endothelial hypertrophy and hyperplasia, as well as podocyte hypertrophy (Figure 2)55,56. 

Podocytes are a rich source of VEGF, angiopoetins and SDF, generating a bidirectional 

signaling pathway between endothelial and glomerular epithelial cells across the filtration 

barrier (Figure 2)57. This podocyte endothelial cross-talk plays a pivotal role in mediating 

filtration barrier perm-selectivity and albuminuria development58. The interaction between 

podocytes and endothelial cells has been the focus of robust preclinical experimentation, but 

most targets have not yet advanced into clinical development.

Restoring the endothelial glycocalyx

The glycocalyx is a glycoprotein-polysaccharide rich coat that covers mammalian cells 

(Figure 2). Glomerular endothelial glycocalyx protects from proteinuria by limiting the entry 

of plasma proteins into the filtration barrier59,60. Perturbation and loss of the endothelial 

glycocalyx has been proposed to be an early event in diabetes61,62. Sulodexide is a highly 

purified mixture of glycosaminoglycans composed of 80% fast moving heparin and 20% 

dermatan sulphate, which exhibits anti-thrombotic and profibrinolytic properties and may 

inhibit endothelial glycocalyx breakdown6364. However, while sulodexide reduced urine 

albumin excretion in patients with type 2 diabetic nephropathy, it failed to show benefit in a 

multicenter placebo-controlled double-blinded phase 3 study65. Although other approaches 

to restore the endothelial glycocalyx, such as the use of chemical heparanase inhibition, are 

being investigated, they have not yet been put into clinical development66.

Endothelin Receptor Antagonists

Preclinical studies of animal models with kidney disease have suggested that selective 

blockade of the endothelin A (ETA) receptor is associated with renal protection, when used 

in addition to existing therapies, such as RAS interventions (Figure 2)67. Several potential 

mechanisms for ETA receptor blockade providing renal protection have been proposed. ETA 

receptor blockade has vascular effects, which cause glomerular vasodilation68, and the ETA 

receptor antagonist atrasentan has been shown to reduce albuminuria (Table I)69. Second, 

endothelin has been associated with renal inflammation, which is reduced by ETA receptor 

blockade, perhaps by mitigating the inflammatory effects of albuminuria70–72. Finally, 

endothelin has been implicated in the deposition of collagen and fibrosis and, thus, ETA 

receptor antagonists may directly reduce fibrosis in the kidney72–74.

However, a renal outcomes study using the ETA antagonist Avosentan was prematurely 

terminated because of a three-fold increase in fluid retention and heart failure compared with 

placebo75, and therefore it was no determined whether Avosentan slowed the progression of 

eGFR decline. It has been hypothesized that fluid retention is driven by the endothelin B 

receptor blocking capacity of the drugs, although there are also reports of sodium retention 

induced by ETA receptor blockade69,76. Based on this hypothesis, a hard renal outcome trial 

(SONAR) using the more selective ETA receptor antagonist Atrasentan, has been initiated. 

In this trial 4100 patients will be treated for 48 months with a primary outcome of creatinine 

doubling, ESRD or death. Because of the previous association of these drugs with 

congestive heart failure (CHF), the trial will specifically exclude patients with a previous 

history of CHF, pedal edema or a current BNP level >200pg/ml. The anticipated completion 

is in 201777.
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Anti-inflammatory Therapy

An association between inflammation and diabetic renal failure has long been recognized 

(Figure 3)17,78. Bohle et. al. described the association of increased tubulointerstitial 

inflammatory cell infiltrate in diabetic nephropathy human kidney biopsies, with higher 

serum creatinine levels and longer duration of disease79. More recent mRNA profiling of 

renal biopsies from patients with diabetic nephropathy confirmed that inflammatory 

pathways are significantly increased in glomeruli and tubules17,78 and have provided 

evidence for stimulation of macrophage and dendritic cell maturation pathways and 

cytotoxic T lymphocyte mediated apoptosis, in glomeruli as well as in the tubulo-interstitial 

compartments. In later stages of kidney disease, leukocyte migration and complement 

system signatures were identified in glomeruli17. However, even patients with early stages of 

disease had evidence of activation of inflammatory pathways including the JAK/STAT and 

NFKB pathways78,80.

Tumor Necrosis Factor inhibition

The findings above are congruent with earlier studies suggesting hyperglycemia associated 

advanced glycosylation end-products (AGEs) activate TNFα production by macrophages in 

diabetes (Figure 3)81. Increased macrophage TNF and IL1 production were shown to be 

induced by glomerular basement membrane (GBM) from streptozotocin treated rats, 

compared to control GBM82,83. These findings are of particular note, since it has recently 

been demonstrated that circulating levels of soluble TNFR1 and TNFR2 (sTNFR1, sTNFR2) 

predict a higher rate of progression to ESRD over the following decade in patients with 

either type 1 or type 2 diabetes and nephropathy84,85. Membrane associated TNFR1 and 

TNFR2 play important roles in activating chemokine and cytokine release86. Interestingly, 

baseline circulating TNFα levels were only moderately increased in subjects who later 

developed ESRD, consistent with the possibility that membrane-associated TNF could serve 

as the activating ligand87,88. It is notable that both forms of the circulating sTNFRs are 

increased and predictive of progression89–91. TNFR2 appears to be selectively expressed in 

endothelium and leukocytes, whereas TNFR1 is widely expressed89,91. In addition TNFR1 

and TNFR2 can be associated with different functions. A Renal protective role for TNFR1 is 

postulated, since deletion of this receptor is associated with higher systolic pressure and 

urinary albumin excretion, as well as an altered GFR9293. TNFR2 has been shown to exert 

positive inotropic effects in cardiac myocytes via enhanced calcium handling94. Moreover, 

TNFR2 may play a role in increased susceptibility to albuminuria89

Whether TNF or its receptors play pathogenic roles in CKD progression or diabetic 

nephropathy remains uncertain. TNF neutralizing antibodies or TNF receptor knockouts 

have reduced severity in preclinical rodent models of kidney disease92,95. Nevertheless, 

despite anti-TNF agents having been utilized clinically for more than two decades, there 

have been few studies examining their clinical activity in kidney disease. Any studies have 

been relatively small and have mainly focused on lupus nephritis and FSGS, leaving their 

potential activity in other forms of CKD progression unaddressed89,92.
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MCP1/CCR2 inhibition

Monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (C-C motif) ligand 

2 (CCL2), is a 99 amino acid residue secreted protein that interacts with the CCR2 receptor 

on T-cells and macrophages, recruiting these cells to sites of tissue injury (Figure 3)96,97. 

Renal expression of MCP1 is increased in patients with proteinuric diabetic nephropathy, 

being predominantly expressed in the tubulo-interstitium rather than the glomerulus98,99100. 

Urinary excretion of MCP1 is also increased in patients with diabetic nephropathy and 

higher urine MCP1 appears to be predictive of worse renal outcomes101. Similarly, in animal 

models, blockade of CCR2, the receptor for MCP1, ameliorated progression of diabetic 

nephropathy in db/db mice as well as diabetic Ins2C96Y Akita mice102,103.

Several companies have established clinical programs to test the efficacy of CCR2 inhibitors 

in human diabetic nephropathy. Chemocentryx and Pfizer have ongoing clinical 

development programs of oral receptor antagonists for MCP1/CCR2 (CCX140) and CCR2/

CCR5 (PF489791), respectively, and are testing them for their ability to reduce proteinuria 

in patients with diabetic nephropathy (Table I)104105.

A 52-week phase II clinical trial of CCX140 in 332 patients with diabetic 

nephropathy106,107 met its primary endpoint, demonstrating that treatment with CCX140 

added to an ACEi or ARB statistically significantly reduced the urinary albumin creatinine 

ratio (UACR), beyond that achieved with standard of care. The maximum treatment effect, 

an 18 percent reduction in UACR, was seen in the 5mg dose group at 12 weeks, and 

sustained reduction in albuminuria induced by CCX140 relative to SOC alone was observed 

over the full year106. Whether the reported reduction in albuminuria will translate into long 

term improvements in patient outcomes and reduce the rate of renal function deterioration 

remains to be tested. At the time of writing this review, results from Pfizer’s Phase II trial of 

the CCR2/5 antagonist PF489791 were not publically available (Table I).

JAK/STAT inhibition

Janus Kinase (JAK) and signal transducer and activators of transcription (STAT) are 

important intracellular mediators of receptors for erythopoetin, growth hormone, EGF, as 

well as inflammatory signaling interferons alpha, IL6, IL12, and IL23 (Figure 3)108,109. 

Ligand binding to their receptors leads to multimer or homodimer assembly, activating the 

auto-phosphorylation activity of JAK and subsequent STAT phosphorylation and its 

translocation to the nucleus110, resulting in the transcription of additional proinflammatory 

target genes including MCP1, as well as GATA3, IL24, LTB, and SOCS1111,112113114. 

Increased expression of these genes comprise a major genetic signature in diabetic 

nephropathy and lupus nephritis78,80,115,116. Evidence of JAK/STAT activation in 

experimental models of kidney disease, including diabetic mice and rats, has also been 

observed17,78,80 and the use of a non-selective JAK inhibitor (AG-490) significantly reduced 

urinary protein excretion in diabetic rats117.

Recently, JAK inhibitors including tofacitinib and baricitinib have been tested in the clinic 

and found to be efficacious in autoimmune inflammatory diseases, including rheumatoid 

arthritis and ulcerative colitis113,118116,119,120. The documented clinical anti-inflammatory 
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efficacy of JAK inhibitors, together with the gene pathway signature in diabetic nephropathy 

have prompted a phase 2 exploration to test the clinical efficacy of these JAK inhibitors in 

kidney disease96,121. The effects of 24 week treatment of the JAK1 and JAK2 inhibitor 

baricitinib (Eli Lilly/Incyte) on albuminuria has been investigated in 129 subjects with 

proteinuric diabetic nephropathy already taking ACEi or ARB121. Baricitinib treatment was 

associated with a 30–40% dose-dependent reduction in albuminuria. However, the side 

effect of reduced hemoglobin associated with this class of drugs was observed121. It will be 

necessary to determine whether or not these effects on albuminuria reduction translate into 

long-term benefit on kidney function and mortality.

Complement inhibition

Complement activation plays a well-established role in the pathogenesis of diverse renal 

disease, including membranoproliferative glomerulonephritis (MPGN), post-infectious 

glomerulonephritis, hemolytic uremic syndrome and IgA nephropathy107,122. Eculizumab 

(Alexion Pharmaceuticals) is a monoclonal antibody to C5, which blocks the cleavage of the 

C5 complement protein to C5a and C5b, thereby preventing the generation of the pro-

inflammatory peptide C5a and the membrane-attack complex C5b-9 (Figure 3)123. 

Eculizumab treatment improved eGFR in patients with atypical hemolytic uremic syndrome 

and the associated thrombotic microangiopathy123124. Although these were small phase two 

trials, the effects were sufficiently profound to support registration of eculizumab, for which 

it is now approved.

In addition to immune glomerulonephritides, complement activation has been proposed to 

contribute to the pathogenesis of diabetic nephropathy, possibly through glucose-associated 

production of neoepitopes activating the lectin complement pathway125,126. This hypothesis 

has received additional support from molecular profiling studies of human diabetic 

nephropathy kidney biopsies and plasma, which show complement to be among the most 

activated pathways17,127. C3 is robustly expressed in kidney biopsies from patients with 

diabetic nephropathy17. Although complement inhibition has not been clinically tested in 

diabetic nephropathy, inhibition of complement in animal models of the disease support 

potential therapeutic benefit128. However, the potential risk of increased infections with this 

approach must be considered124.

Apoptosis signaling kinase 1 (ASK1)

ASK1 is a mitogen activated protein kinase kinase kinase (MAPK3K) stress responsive 

kinase, that can be activated by multiple stimuli including reactive oxygen species (ROS) 

and TNFα activation of TNFR1129,130. ASK1 signals through a cascade of downstream 

kinases including p38 and c-Jun N-terminal kinase (JNK), leading to target gene expression 

including inflammatory cytokines131132. A preliminary report suggests that ASK1 inhibition 

substantially improves glomerulosclerosis in a diabetic animal model133. Gilead Sciences 

has initiated a 300 patient phase 2 program to test the efficacy of the selective ASK1 

inhibitor GS-4997 in diabetic nephropathy. The primary outcome is the change in eGFR 

following 48 weeks of treatment. A secondary outcome will determine the proportion of 

participants achieving at least a 30% reduction in albuminuria at week 48 from 

baseline134,135 .
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Vascular adhesion protein 1 (VAP1) inhibition

Accumulating evidence pointing to renal inflammation in the pathogenesis of progressive 

kidney disease136 has generated interest in strategies to impede trans-capillary migration of 

inflammatory cells into the diseased kidney. Vascular adhesion protein 1 (VAP-1) is an 

endothelial sialoglycoprotein, whose cell surface expression is induced under inflammatory 

conditions137,138. VAP-1, also known as amine oxidase, copper containing 3 (AOC3), 

possesses mono-amine oxidase activity and also interacts with leukocyte adhesion molecules 

including Siglec-9 and 10139. Both these functions are important in facilitating leukocyte 

egress into inflamed tissue137. Based on these findings, Astellas has initiated a phase 2 study 

of ASP8232 - a small molecule inhibitor of AOC3 activity, in 110 patients with diabetic 

nephropathy140. The trial will explore urine ACR reduction following twelve weeks of 

treatment and is anticipated to read-out in June 2016 (Table I).

Targeting fibrosis

Tubulointerstitial fibrosis is the common histological manifestation of CKD, almost 

regardless of disease etiology (Figure 3). The degree of fibrosis is a strong predictor of 

future GFR decline and often an important reason why biopsies are performed79. 

Tubulointerstitial fibrosis shows similarities to other fibrotic conditions including lung 

fibrosis and liver cirrhosis141. Common mechanisms identified in fibrosis include: epithelial 

injury, fibroblast activation, matrix deposition and inflammation, which each provide 

potential therapeutic targets142.

TGFB1 inhibition

Cell culture and mouse model data strongly supporttransforming growth factor beta 

(TGFB1) as the key driver of collagen and activated myofibroblast accumulation, which is 

characteristic of fibrosis143. Inhibiting TGFB signaling therefore represents a promising 

antifibrotic therapeutic approach (Figure 3). However, clinical trials with CAT-192 

(Genzyme), a recombinant human antibody that neutralizes TGFB1 in the treatment of 

early-stage diffuse cutaneous systemic sclerosis, failed to show benefit in diabetic kidney 

disease (Figure 3). Similarly, Phase II trials with a TGFB1 neutralizing antibody (Lilly, 

LY2382770) did not show clinically significant improvement in patients with diabetic 

kidney disease144. Systemic toxicity associated with TGFB inhibition may limit the maximal 

tolerated dose145. Further studies are needed to understand the complex role of TGFB in 

fibrosis and identify approaches that would avoid systemic inhibition.

One such approach that has recently emerged involves targeting the alpha(v)beta (6) 

integrin. αvβ6 is an epithelial restricted integrin that binds and activates latent TGFbeta146. 

An anti-αvβ6 neutralizing antibody developed by Biogen (STX100) has shown benefit in 

multiple fibrosis models146,147 and is currently undergoing Phase II trials in idiopathic 

pulmonary fibrosis (IPF) (Figure 3).

Pirfenidone

Pirfenidone has recently been approved for the treatment of IPF as it has shown statistically 

significant benefit in reducing pulmonary function decline in Phase III Trials148. The 

Breyer and Susztak Page 10

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanism of action of pirfenidone is not fully understood. In cell culture studies it 

suppresses collagen expression and has an anti-inflammatory effect149,150,. It showed 

modest clinical benefit in a randomized, double-blinded, placebo-controlled Phase II study 

in 77 subjects with diabetic nephropathy who had elevated albuminuria and reduced eGFR. 

Among the 52 subjects who completed the study, a significant increase in the mean eGFR in 

the pirfenidone group compared to the placebo group was reported151.

Galectin-3

Galectin-3 is a member of the lectin family, with antimicrobial activity against bacteria and 

fungi. It has been shown to be involved in an array of biological processes including cell 

adhesion, growth, differentiation, fibrosis, heart disease, cancer and stroke (Figure 3)152. 

Human studies indicate a correlation between galectin 3 levels and ESRD, pulmonary 

fibrosis, heart disease and cancer153. Galecto Biotech is currently developing galectin-3 

inhibitors for the treatment of fibrosis, specifically IPF154. It will be interesting to also 

investigate their effects on kidney disease progression.

Lysophosphatidic acid receptor (LPAR) antagonists

Fibrosis is associated with both increased lysophosphatidic (LPA) production as well as with 

increased expression of its receptor (mainly LPAR1) in a number of organs (Figure 3)155. 

LPA is a bioactive mediator which acts via specific G-protein coupled receptors156. Genetic 

(using knock-out mice) and pharmacological approaches demonstrated the contribution of 

the LPA1R subtype to the development of kidney, lung, vascular and dermal fibrosis157. To 

date, LPA1R antagonists have passed Phase I and Phase II clinical trials for IPF and 

systemic sclerosis158, and therefore may be tested in kidney disease in the future.

Tranilast

Tranilast (Kissei Pharmaceutical Co. Ltd.) has been marketed in Japan for the treatment of 

allergic diseases since 1982 and more recently for the treatment of keloid/hypertrophic scars 

(Figure 3)159,160. In pilot studies, one of its derivatives, 3- methoxy-4-

propargyloxycinnamoyl anthranilate (FT011, Fibrotech Therapeutics) was shown to reduce 

albuminuria in a rat model of diabetic nephropathy161. In cell culture studies, FT011 inhibits 

both TGFB- and PDGF-induced collagen production162. At present we are not aware of an 

active development program for tranilast/FT011 in DKD.

Lysyl oxidase inhibition

Lysyl oxidase (LOX) is an extracellular copper-dependent amine oxidase that catalyzes the 

first step in the formation of crosslinks in collagens and elastin163,164. Collagen cross-

linking is critical for fibrosis development (Figure 3). Gilead pharmaceuticals have 

developed a new humanized monoclonal antibody (simtuzumab) that binds and inhibits 

LOXL2, which is currently in clinical trials for lung and liver fibrosis. Based on its 

mechanism of action, it may also show benefit in kidney fibrosis165.
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Targeting microRNAs

Mouse models of IPF have indicated decreased expression of microRNA-29 (miR29) in 

bleomycin-induced fibrosis166. Additional studies have indicated that miR-29 is an 

important regulator of TGFβ expression166. miRagen Therapeutics have developed miR-29 

mimics that are now being tested for the treatment of IPF. Notably, miR29 has showed 

similar expression patterns in mouse models of kidney fibrosis167, indicating that this could 

be a potential therapeutic target. Another microRNA - miR-21 - might represent another 

important target in the kidney168 (see below).

Developmental pathways

Unbiased transcriptome analyses studies have highlighted the reactivation of multiple 

developmental pathways including Wnt/Notch and Hedgehog pathways (which play critical 

roles in kidney development) in patient samples and animal models of CKD (Figure 

3)1714,169170. . While transient activation of any of these pathways is likely to be important 

in regeneration and repair after an acute injury, sustained activation of these pathways have 

been shown to induce fibrosis development in mouse models171. Increased chronic 

expression of Notch in tubule epithelial cells induced fibrosis development in mouse models, 

while genetic deletion of Notch from tubule cells or pharmacological inhibition of Notch 

ameliorated kidney disease development14. Notch seems to play an important role in 

mediating epithelial dedifferentiation, which is a key aspect of fibrosis. The Gli Hedgehog 

pathway on the other hand seems to play an important role in myofibroblast proliferation 

and transdifferentiation170. Genetic or pharmacological inhibition of Hedgehog signaling in 

fibroblasts was not only able to halt, but also to reverse fibrosis in a mouse model14,170,172. 

While these pathways may therefore represent new and potentially attractive therapeutic 

targets, at present, further studies are needed to better differentiate the profibrotic and 

regenerative activities.

Metabolic dysregulation in diabetes and CKD

Metabolic dysregulation, particularly poor glucose control, is associated with an increased 

rate of development of complications, including kidney disease, in patients with type 1 and 

type2 diabetes173,174. Indeed, cells incubated in high glucose or increased fatty acids show 

significant changes in their metabolic profiles175. Increased generation of reactive oxygen 

species from mitochondrial or plasma membrane oxidase has been proposed to be the 

unifying theme leading to cell damage (Figure 4)176.

However, recent studies exploring the effects of glucose normalization on diabetic kidney 

disease have presented unexpected observations. Findings from the Diabetes Complication 

Cohort Trial (DCCT) and United Kingdom Prospective Diabetes Study (UKPDS) indicate 

that subjects with initial poor glycemic control continue to develop a higher rate of kidney 

and cardiovascular disease despite several decades of improved glycemia173. Furthermore, 

we have also learned that in most patients with type2 diabetes and existing kidney disease, 

targeting a glycated hemoglobin level below 6.0% - almost to the degree of “normalization” 

of glucose levels - does not translate into reduced development of complications177,178. The 

term “metabolic memory” has been proposed to explain these results, indicating that cells 
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are reprogrammed by prior episodes of metabolic derangements and continue to respond 

differently179. Epigenetic changes might provide the mechanistic basis for this metabolic 

memory effect180. Epigenetic enzymes require substrates of intermediate metabolism such 

as methyl and acetyl groups, which is the likely molecular mechanism by which 

environmental changes and nutrient availability can have a long-term influence on cellular 

behavior even after the insult is removed181. Animal model studies and some human 

observations indicate epigenetic differences in patients with DKD and CKD179,182. 

Targeting metabolism therefore represents a promising therapeutic strategy as: a) metabolic 

dysregulation is likely one of the most proximal mechanisms in diabetes and known to play 

a role in kidney disease development b) acute metabolic derangements likely have a long-

term impact on the development of complications by epigenetic reprogramming and c) at 

later stages, insufficient energy availability is an important mechanism contributing to CKD 

development180,183.

SGLT2 inhibition

The sodium/glucose cotransporter 2 (SGLT2) is the major glucose renal re-uptake 

mechanism in the apical membrane of the proximal tubule (Figure 4)184. SGLT2 inhibitors 

have entered clinical practice as glucose control agents for diabetics, through their activity to 

inhibit renal glucose absorption and reduce hyperglycemia185,186. Studies in type 1 and type 

2 diabetic mice show that SGLT2 inhibition not only reduces hyperglycemia but also has 

beneficial effects in DKD, including reduced glomerular hyperfiltration, renal hypertrophy 

and albuminuria, as well as decreased systolic blood pressure187,188. These findings were 

interpreted as being consistent with a critical role for suppression of tubulo-glomerular 

feedback in hyperfiltration in diabetes. By blocking glucose-coupled Na+ reabsorption, 

SGLT2 inhibition is thought to increase Na+ delivery to the macula densa, activating 

constrictor signals to the afferent arteriole, thereby reducing glomerular filtration 

pressure189. This proposed effect of SGLT2 inhibitors to reduce glomerular filtration 

pressure therefore overlaps with the mechanisms attributed to ACEi/ARB, although SGLT2 

inhibition may target the afferent arteriole more selectively.

Like ACEi/ARB, a phase 2 trial of the SGLT2 inhibitor canagliflozin in type 2 diabetics with 

CKD showed an acute reduction in eGFR, followed by eGFR stabilization190. This was 

accompanied by a significant and dose-dependent reduction in albuminuria. To determine 

whether the observed decrease in albuminuria translates to improved outcomes in subjects 

with diabetic nephropathy, Janssen has initiated a phase 3 study of canagliflozin. The 

CREDENCE trial will enroll 3700 subjects at 531 sites globally191. The primary composite 

endpoint of the study includes end-stage kidney disease, doubling of serum creatinine, and 

renal or cardiovascular death. Results from this trial are expected in early 2020 (Table I).

Lipid metabolism

Renal tubular and glomerular epithelial cells are high energy demanding cells with dense 

mitochondria. Their primary source of energy comes from fatty acid oxidation. Genetic 

mutations in mitochondrial enzymes have been shown to result in severe tubulointerstitial 

fibrosis and glomerulosclerosis (Figure 4)192,193. As non-transformed cells do not use 

glucose in high amounts, decreased fatty acid oxidation induces accelerated cell death and 
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dedifferentiation of the cells183. Nuclear receptors, including PPARA, PPARGC1A and LXR 

pathways have been shown to be key regulators of fatty acid metabolism in tubule cells194. 

Indeed, transgenic expression of PPARA was able to ameliorate CKD development in 

animal models195. Pharmacological activators of PPARA (mostly fibrates) have been in 

clinical use for treatment of serum lipid abnomalities for many years. Two clinical trials - 

FIELD and ACCORD - have examined the effectiveness of a PPARA agonist (fibrates) on 

kidney disease development, both reporting a statistically significant reduction in 

albuminuria development in diabetic patients (Figure 4)196,197. Unfortunately, fibrates raise 

serum creatinine levels, possibly by interfering with creatinine secretion, therefore 

determining their effectiveness in GFR decline based on serum creatinine levels cannot be 

directly studied. The follow-up wash-out study indicates that the GFR decline was 

statistically slower in the fibrate treated group198,199. Upstream targeting of the pathway at 

the level of AMPK or liver kinase B1 (LKB1), which is an important regulator of AMPK 

and downstream metabolism, might also offer therapeutic benefits (Figure 4)200. An AMP 

kinase agonist has shown significant benefit in mouse models of diabetic kidney disease and 

other forms of CKD201.

miR-21 antagonism

miR-21 is one of the first discovered and fairly abundant microRNAs, which like many other 

mRNAs, has pleotropic functions associated with PTEN, TGFβ and tumor suppression202. 

Mouse model studies have reported a protective role for miR21 antagonism in heart fibrosis 

development (Figure 4)203204. Moreover, small molecule antagonism of miR21205 has 

shown a marked protective effect in several mouse fibrosis models168. MiR-21 in the kidney 

affects multiple metabolic pathways converging on PPARA and ultimately improving 

mitochondrial function and metabolism205. However, it is interesting to note that genetic 

deletion of miR-21 does not seem to recapitulate the effect of pharmacological inhibition206. 

Further studies are therefore needed to determine whether miR-21 could potentially be 

modulated in the treatment of kidney disease.

Reactive oxygen species: NADPH oxidase inhibition

Increased generation of reactive oxygen species from mitochondrial sources has been 

proposed as a unifying hypothesis for the development of diabetic complications207. Both 

mitochondrial and plasma membrane NADPH oxidase contribute to ROS increase in 

diabetes175. In addition, inhibition of the plasma membrane NADPH oxidase has shown 

significant benefit in different rodent models of fibrosis175. The kidney specific NADPH 

isoform, NOX4, has recently received significant attention as specific NOX4 inhibitors 

appear to show benefit in mouse models of diabetic kidney disease (Figure 4)208. NOX4 

inhibitors seem to be broadly effective in fibrosis as recent studies have also indicated 

beneficial effects in models of pulmonary and liver fibrosis209–211. In 2012, Genkyotex 

announced the successful completion of a Phase Ia study with GKT137831, a first in class 

inhibitor targeting NOX1 and NOX4 enzymes (Table 1)208. GKT137831 appears to be safe 

and well tolerated following oral administration. Phase II studies for diabetic kidney disease 

with GTK-137831 have been completed but results remain to be reported. Pyridorin 

(pyridoxamine) (NephroGenex) is a novel compound that is a derivative of vitamin B6, 

shown to target and reduce pathogenic oxidative chemistries212. However, a phase 2 efficacy 
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study failed to show a robust effect in subjects with diabetic nephropathy213. A Phase 3 trial 

(PIONEER) of pyridorin in patients with earlier stage diabetic nephropathy is ongoing 

(Table 1).

Epigenetic targets/HDAC and cytosine methylation

The effect of acute metabolic changes often may not be detected until later stages of disease, 

as they can result in long-term epigenetic modifications (Figure 4). Several groups have 

reported differences in cytosine methylation levels between control and disease human 

kidney samples214. Increased methylation of the RASAL1 gene, which encodes an inhibitor 

of the Ras oncoprotein, has been associated with fibroblast activation and fibrogenesis in the 

kidney214. RASAL1 hypermethylation is mediated by the methyltransferase Dnmt1 and in 

mouse models of kidney fibrosis, genetic deletion of the Dnmt1 or pharmacological 

inhibition of the enzyme protected animals from kidney fibrosis development214. Studies 

from our laboratory have also shown that methylation differences target key profibrotic 

pathways, indicating that they are functionally important182.

Histone modifications represent another important epigenetic regulator of gene transcription. 

Inhibitors of histone deacetylases (HDACs) have been reproducibly shown to ameliorate 

fibrosis development in different models (Figure 4)215,216. However, as these drugs broadly 

interfere with transcription, extended safety studies are needed to understand their side effect 

profiles.

Targeting podocytes and albuminuria

The presence of albuminuria in a patient with diabetes and CKD currently fulfills the 

diagnostic criteria for diabetic CKD (Figure 2). Albuminuria used in conjunction with 

gender, GFR and serum phosphorus level is an excellent predictor of future glomerular 

function decline, therefore most Phase 2 studies use albuminuria as an intermediate 

outcome7. Human genetic studies of patients with rare monogenic diseases, Focal Segmental 

Glomerulosclerosis (FSGS) and Minimal Change Disease (MCD)193 indicate that podocytes 

play a critical role in albuminuria and glomerulosclerosis, as almost all monogenic 

mutations are podocyte specific proteins193. Mouse genetic models have further 

substantiated the role of podocytes in proteinuria169,217. Furthermore, podocytes are unable 

to divide and they have limited (if any) capacity to be replaced218. The slit diaphragm which 

is a junction between podocyte foot processes, the glomerular basement membrane and the 

fenestrated endothelial cells, represent the key barriers to albumin leakage into the urine 

(Figure 2)219. Over the years, we have learned that the slit diaphragm acts as a signaling 

platform220. Proteinuric disease conditions are almost uniformly associated with foot 

process simplification of podocytes, caused by reorganization of the actin cytoskeleton193. 

These changes are identified as foot process effacement by histopathological examination. 

Nephrin clustering and endocytosis is associated with changes in the actin cytoskeleton, cell 

adhesion and endocytosis221–223, playing a key role in proteinuria development. Although 

proteinuria and foot process effacement are reversible conditions, the critical point of no 

return is reached upon 20% podocyte loss, due to apoptosis, detachment or 
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dedifferentiation224,225. At this point glomerulosclerosis develops leading to a decrease in 

GFR.

Abatacept

B7 is a membrane protein found on activated antigen presenting cells that can produce a 

costimulatory signal to enhance the activity of the T cell226. Interestingly, B7 expression is 

increased in podocytes in a subset of patients with FSGS, a relatively rare glomerular disease 

(Figure 2)227. Abatacept is a clinically approved inhibitor of B7 signaling for the treatment 

of rheumatoid arthritis, which acts by blocking its interaction with its receptors228. 

Abatacept treatment of 5 subjects with B7-positive FSGS resulted in a significant reduction 

of proteinuria, but the results were not replicated in other cohort229. Mouse model studies 

indicate that a similar mechanism might be present in models of diabetic kidney disease230. 

Larger clinical studies will be needed to determine the clinical benefit in these disease 

conditions, which are currently hindered by difficulties of reliable detection of B7 

expression in kidney tissue samples229.

Actin-cytoskeleton

Recent reports indicate that Bis-T-23, a compound that promotes actin-dependent dynamin 

oligomerization and thus increases actin polymerization in injured podocytes, improves renal 

health both in transient and CKD models (Figure 2)231. Bis-T-23 has been reported to 

interact with the GTPase dynamin222, which has been implicated in the maintenance of 

cellular architecture in podocytes, through its direct interaction with actin. Dynamin 

oligomerization appears to play an important role in actin polymerization and global 

organization of the actin cytoskeleton in the cell231. Further studies into the potential of this 

approach for the treatment of kidney disease are therefore warranted.

Integrin inhibition

VPI-2690B (Vascular Pharmaceuticals) is a monoclonal antibody which binds to the C-loop 

domain sequence of integrin αVβ3232. This antibody has been shown to reduce albuminuria 

in diabetic rats and atherosclerosis in diabetic pigs233,234. It has been proposed that these 

effects are mediated by blocking the action of integrin αVβ3 to stimulate insulin-like growth 

factor-I (IGF-I) signaling in vascular smooth muscle cells and mesangial cells232–234. αVβ3 

might also play role in podocyte and matrix interaction. VPI-2690B is currently in phase 2 

clinical testing for the treatment of diabetic nephropathy235. This placebo-controlled trial 

will enroll 300 diabetic subjects and is projected to complete in August 2017 (Table 1).

Additional agents in development

There are several other agents, which do not fall into the classes discussed above, that are 

also being clinically investigated for the treatment of chronic kidney disease.

Phosphodiesterase inhibitors

Pentoxifylline, a methylxanthine derivative and non-specific phosphodiesterase inhibitor, has 

long been proposed as a therapy for diabetic nephropathy236. The recently completed 

PREDIAN study tested the effects of 24 months of pentoxyfylline treatment on proteinuria 

Breyer and Susztak Page 16

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and eGFR decline in 160 subjects with type 2 diabetes and nephropathy237. Subjects 

randomized to pentoxifylline experienced a marked reduction in albuminuria, but only a 

relatively small effect on eGFR. Similarly, in a preliminary report, Pfizer carried out a Phase 

2 trial of the PDE4/5 inhibitor, PF-00489781, in 256 subjects with diabetic nephropathy238. 

Following 12 weeks of treatment, the urine albumin to creatinine ratio was significantly 

reduced compared to placebo. In addition, phase 2 testing of phosphodiesterase inhibition 

with CTP-499, a deuterated analog of 1-(S)-5-hydroxyhexyl-3,7-dimethylxanthine (an active 

metabolite of pentoxifylline), in patients with type 2 diabetes mellitus and nephropathy has 

been undertaken by CoNCERT pharma (Table 1). Although this trial has been completed, 

the full results have not yet been reported. Thus, while phosphodiesterase inhibition appears 

to have beneficial effects on albuminuria in ACEi/ARB treated patients, it remains to be 

determined whether these observations will translate into a benefit in renal outcomes and 

slowing of dialysis progression.

Allopurinol

Clinical observational studies indicate a strong correlation between serum uric acid levels 

and the loss of kidney function in diabetic patients239. However, whether high uric acid 

levels actually cause renal function decline remains unclear. Two small clinical trials have 

provided proof of concept for using allopurinol to lower the risk of kidney function decline. 

One of the studies included only 51 subjects with high serum urate levels and although the 

other study had more than 100 participants, the average age in that cohort was unusually 

high240–242. It is therefore not yet clear whether these results can be generalized to all 

patients with DKD. A large NIH-funded clinical trial - Preventing Early Renal Function 

Loss (PERL) Consortium - has been formed to test this hypothesis243. This study 

specifically targets patients with type 1 diabetes and relatively preserved kidney function, 

who are at high risk for progression (Table 1).

Sodium bicarbonate

One key function of the kidney is to excrete acids that are generated after burning proteins. 

In the urine, most protons are excreted as ammonia. Ammonia-genesis is decreased in early 

stages of CKD and many patients with CKD develop metabolic acidosis26. As most enzymes 

operate within a narrow pH range, even small changes could have a significant effect. 

Metabolic acidosis can activate the complement pathway, leading to low-grade persistent 

complement activation and inflammation244. Small clinical trials aiming to correct acidosis 

have indicated a benefit of treating patients with sodium bicarbonate245. Larger double 

blinded placebo controlled trials are currently being conducted to determine whether sodium 

bicarbonate treatment may slow progression of renal disease.

Challenges in the development of novel therapies for chronic kidney 

disease

There are a number of challenges facing the development of new treatments for CKD. In 

particular, several factors must be considered in the design of future clinical trials, including 

issues regarding patient recruitment and selection, as well as the identification of appropriate 

endpoints and efficacy biomarkers. It must be noted that testing of novel therapies aimed at 
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slowing progression of proteinuric CKD must be performed in subjects already receiving the 

standard of care, including angiotensin converting enzyme inhibition or angiotensin receptor 

blockers.

Disease awareness and clinical trial recruitment

The number of randomized controlled trials in nephrology is lower than that for almost any 

other medical sub-specialty246. The specific factors contributing to this gap are complex, but 

certainly7,9 include lack of patient disease awareness and self-advocacy247. Research has 

shown that disease awareness in patients with CKD stages 1–3 is as low as 5% even in 

patients that have seen a physician within the last year247–250. Physicians may neglect 

mentioning to patients the fact that they have kidney disease, perhaps in part because they 

don’t believe they can offer effective therapeutic options.

These issues undoubtedly contribute to major operational difficulties in executing trials 

designed to slow the progression of kidney disease to dialysis - especially low recruitment 

rates251,252. Overall recruitment rates for diabetic kidney disease trials approximate ~0.20 

patients per site per month which is about a quarter of the number of patients enrolled per 

month for a diabetes trial. While the size of clinical trials may be similar to diabetes mellitus 

studies, the rate at which patients enroll into diabetic kidney disease trials significantly 

delays timelines, increases cost, and negatively impacts the willingness of major 

pharmaceutical companies to invest in these trials. Clinical trial networks and patient 

registries can significantly facilitate patient identification and recruitment rate in clinical 

trials for testing therapies. Although clinical trial networks for acute kidney injury have been 

established, chronic kidney disease trial networks including the two major causes of CKD 

(diabetic nephropathy and hypertension) are just now being initiated in Canada and Italy but 

have not included the US, the rest of Europe or Asia248,253.

Patient selection

Pre-screening of patients and clear inclusion and exclusion criteria, should balance the desire 

to eliminate likely biological non-responders that decrease trial efficiency with the need to 

rapidly accrue patients who are representative of the disease population. These design 

choices require a sophisticated understanding of the pathophysiology of the disease process. 

In some circumstances, biomarker-based target engagement can help drive such study 

enrichment, as exemplified by the significant impact of precision medicine approaches being 

implemented in the oncology field.

There is a growing appreciation of patient heterogeneity with respect to the rate of loss of 

renal function. Accordingly, efficient identification and enrollment of patients who are most 

likely to progress and benefit from the candidate therapeutic intervention remains a 

significant challenge. Recent results of the large Chronic Renal Insufficiency Cohort (CRIC) 

have indicated that when using a general patient population, it could take more than a decade 

to achieve hard end-points used in clinical trials48. This has raised the question as to whether 

trials should be focused on a subset of patients who follow a more rapid kidney function 

decline, considered “rapid progressors” (Box 1).
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One key inclusion criteria used to enrich for CKD patients at high risk for progression has 

been a high level of proteinuria. Baseline proteinuria is a strong predictor of poor renal 

outcomes254–256. Furthermore the extent of treatment associated proteinuria reduction in 

Phase 2 studies was highly predictive of a favorable outcome257258. These observations have 

driven trials of new therapeutics to recruit patients with high baseline levels of proteinuria. 

However, with more widespread use of ACEi/ARB therapy, proteinuria levels are already 

decreased in many patients, and recruiting subjects with overt proteinuria is increasingly 

challenging in the implementation of renal trials.

Furthermore, clinical experience working with patients with minimal change disease 

indicates that proteinuria can be reversible and is not always associated with progressive 

kidney function decline259. There are increasing numbers of DKD patients who progress 

without developing overt albuminuria – perhaps due to ACEi/ARB induced proteinuria 

reduction. More than a decade ago, a study showed that close to 25% of subjects do not 

follow the “classic” paradigm for DKD progression, where micro albuminuria is followed by 

macroalbuminuria and progressive GFR decline260.

The development of novel biomarkers that supplement proteinuria in predicting progression 

of renal disease in patients already taking ACEi/ARB comprises a new challenge for the 

renal research community. Recent studies indicate that levels of plasma inflammatory 

markers may have some predictive value72, 73, 76 (Box 1).

Clinical Trial Endpoints

Traditional drug registration trial endpoints in kidney disease include doubling of the serum 

creatinine, initiation of renal replacement therapy (dialysis, transplant) or death. Using the 

CDK-EPI equation, doubling of serum creatinine level is equivalent to a 57% decline in 

estimated glomerular filtration rate (eGFR) (Box 2)261. Several recent studies have explored 

the predictive validity of using lesser eGFR decrements (i.e. −30% or −40%) of ESRD 

events in CKD trials7262–264. These analyses support the strong predictive value of these 

intermediate eGFR decrements as surrogates of the currently accepted endpoints. Because 

there are greater numbers of these intermediate events, use of these surrogate endpoints 

could enable smaller and/or shorter trials265. However, adopting this design would have to 

match with the appropriate mechanism of action as many drugs (ACE and ARB) acutely 

reduce GFR while providing protection from ESRD after a longer-term follow-up32.

While the data supporting the use of these intermediate surrogates is clear, the acceptability 

of these endpoints to regulatory agencies and payers has not yet been tested. Ultimately 

payers shoulder the disproportionate economic burden of CKD patients as they transition 

onto dialysis, however simply shifting the costs from dialysis (ESRD) to pre-dialysis care is 

not an attractive proposition. New therapies will not only need to demonstrate reduced 

ESRD events in the treated population, but that the patient number-needed-to-treat (NNT) to 

prevent one patient per year from going on to dialysis justifies the cost of that therapy. 

Perhaps the medical community has grown accustomed to accepting the wrong type of CKD 

therapeutic –one that slows disease, but does not remit disease.
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Conclusions and future directions

The need for development of novel therapeutics for CKD development has never been 

greater. While mortality has been dropping from most disease conditions, it has actually 

increased for patients with chronic kidney disease. No new drug has been registered for the 

treatment of chronic kidney disease since 2001. However, recent research has identified 

several potential novel therapeutic targets, including inflammation, fibrosis, cellular 

metabolism, vascular and podocyte alterations, with some related agents already undergoing 

Phase II and III clinical trials.

At present, most renal clinical trials continue to enroll subjects with stage 3 CKD and a 

relatively high level of albuminuria, as these are subjects who will likely reach trial end-

point (death, dialysis or doubling of serum creatinine) the fastest. The SONAR study is the 

only study that uses a more individualized approach and enriches for subjects that are more 

likely to respond to treatment and less likely to develop side effects77,266. The targeted 

approach is only slowly gaining popularity. For example, drugs that target metabolism would 

likely need to be introduced early, which is a difficult issue as these trials require large 

cohorts studied for long durations.188. Other strategies, such as targeting inflammation, are 

likely to be effective even in later stages of the disease267. Therapeutics that specifically 

target fibrosis but not albuminuria are especially challenging as clinically validated 

biomarkers linked to decreased fibrosis are not available to assess efficacy in short phase II 

studies

Once an individual drug exhibits clinical benefit by delaying the progression of functional 

decline, it will be critical to determine whether drug combination strategies could achieve 

not only prevention but remission. In this regard combining hemodynamic targeting with, 

metabolic targets, podocyte specific targets and an anti-inflammatory might provide benefits 

above and beyond single drug treatments.

Opportunities in the field of “genetic medicine” are also emerging in the treatment of kidney 

disease. Two genetic diseases for which this represents a promising approach are polycystic 

kidney disease (PKD) and kidney disease associated with a mutation in Apolipoprotein L1 

(APOL1) (Box 3). Tailoring of specific therapy combinations towards these genetically 

defined diseases may help optimize efficacy and reduce the number of patients needed to 

treat.

Cost remains a key limitation in the development of novel CKD therapies. Foremost among 

the development costs is the barriers to rapidly identifying and enrolling the appropriate 

patients into these trials. Patient registries and new trial designs may help address some of 

the issues discussed above, as well as validation of novel trial end-points. Adaptive clinical 

trial design - which evaluates patients' reactions to a drug beginning early in a clinical trial 

and modifies the trial in accord with those findings - might also be beneficial in CKD. 

Indeed, according to industry estimation this design can reduce the cost of entering a drug to 

the market to one third.

In summary, care of patients with CKD is emerging as one of most costly and rapidly 

increasing disease burdens facing society. Although drug development for CKD has lagged 
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behind other therapeutic areas, recent activity in this area has increased, due in part to 

recognition of this unmet medical need. Nevertheless systemic engagement of the 

pharmaceutical industry has been lacking, partly due to lack of success, operational 

difficulties (e.g. slow patient enrollment) and long duration outcomes trials. Early patient 

centric discovery approaches and broad academic, industry and patient advocacy 

partnerships can provide avenues to enhance patient therapeutic response, patient/physician 

disease awareness, and improve clinical trial efficiencies. Integrated engagement of 

scientists and stakeholders across the spectrum of medical delivery and payer systems is 

achievable but critical to stem the tide of kidney disease in the twenty first century.
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Box 1: Should clinical studies focus on rapid progressors?

Kidney function decline in patients follows a highly heterogeneous pattern. Recent 

results of the large Chronic Renal Insufficiency Cohort (CRIC) Indicates that the mean 

GFR decline in patients with stage 3 diabetic CKD is around 1.5-3 cc/year268. However, a 

subset of patients follows a more rapid kidney function decline and can be considered 

“rapid progressors”. Unfortunately, at present there is no consensus definition for “rapid 

progression”. Expert consensus suggested the use of >5 cc/min/1.73m2/year decline269. 

Results from the CRIC cohort indicate that >3cc/min/1.73m2 is already 2 standard 

deviations above the mean GFR decline, therefore can be used to identify patients with 

rapid functional decline268.

Multiple studies have been undertaken to identify clinical, biochemical and genetic 

markers that can detect rapid progressors. Recent studies indicate that in the stage 3–5 

CKD group, the 4 variables: creatinine, proteinuria, phosphate and sex have C-statistics 

of 0.91 to predict ESRD270,271. This means that while it is interesting to identify new 

biomarkers, it will be challenging to meaningfully add to the identification of people who 

progress to ESRD especially in disease conditions associated with proteinuria.

Levels of plasma soluble TNFR1 and TNFR2 may potentially be used as predictors of 

renal failure in patients with either type 1 or type 2 diabetes84,85,272. An association 

between increased circulating TNFR levels and poor renal disease prognosis has also 

been observed in both IgA nephropathy and idiopathic membranous nephropathy273,274. 

Data suggests that circulating sTNFR could derive from exosomes shed into plasma86, 

however the precise tissue and cells responsible for the increased circulating levels 

remain unclear. Increased urinary excretion and blood levels of kidney injury molecule-1 

(KIM-1), also known as TIM1 and hepatitis A virus cellular receptor 1 (HAVCR1), have 

been associated with acute kidney injury, IgA nephropathy and diabetic 

nephropathy275,77,78. KIM-1 is relatively selectively expressed in liver and renal proximal 

tubule cells, and appears to play a role in modulating T cell immunity276277,278. 

Interestingly, treatment with the angiotensin receptor antagonist irbesartan reduces u-

KIM-1 in patients with diabetic nephropathy279. Notably, recent studies have 

demonstrated that plasma KIM-1 also increases with AKI and importantly, plasma 

KIM-1 levels are predictive of progression of CKD in patients with type 1 diabetes 

mellitus275. The predictive value of these plasma inflammatory markers supports 

potential involvement of specific inflammatory pathways in the pathogenesis of diabetic 

nephropathy.

While identification of rapid progressors is an important endeavor, some critically 

important questions remain to be addressed. First, and most importantly, what drives 

rapid progression in these subjects? Are the pathways that drive rapid progression the 

same as those that drive moderate or slow progression, just with an increased magnitude 

or activation of different pathways that are responsible for rapid progression? Will trials 

actually benefit from enrichment strategies or will we be simply selecting for resistant, 

potentially less compliant subjects, where intervention will make less of an impact.
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Box 2: Trial Efficacy: measured versus estimated GFR

Although almost all-current treatment trials have used serum creatinine based estimated 

GFR (eGFR) to evaluate the beneficial effect of drugs32, several studies have shown that 

estimated GFR does not correlate perfectly with tracer based measured GFR (mGFR)280. 

This correlation is thought to be particularly insufficient at higher GFR ranges, where 

creatinine based estimations performs very poorly. Several researchers therefore advocate 

for mGFR in clinical trials as a way to improve precision and thereby reduce cost281. 

While small single center studies reported variable results282,283, investigation of the 

Chronic Renal Insufficiency Cohort (CRIC) cohort –a large multi-center trial that 

resembles most Phase 3 treatment studies282,284,285 - showed that one-time measures of 

mGFR do not have stronger cross–sectional associations with concurrent metabolic 

consequences of decreased renal function (such as hyperphosphatemia or hyperkalemia) 

than eGFR284, indicating that in this population mGFR is not a superior surrogate for 

CKD. Longitudinal measures of mGFR were also not more strongly associated with 

future clinical sequelae of decreased renal function than repeated measures of eGFR285. 

Considering the cost, the laborious nature of measuring GFR and the invasiveness of such 

techniques, mGFR should ideally provide superior prediction of clinically relevant CKD 

outcomes compared with estimated measures of renal function. However, iGFR did not 

outperform eGFR in this study or others. These results therefore do not appear to support 

the use of mGFR in order to improve kidney function change estimation, at GFR levels 

below 60 cc/min/1.73m2. Future studies might be needed to study this at higher GFR 

levels, however high GFR groups are not typically targeted for intervention trials.
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Box 3: Genetic stratification or precision medicine: are the nephrons 
ready?

The “genetic revolution” has transformed several areas of medicine, of which oncology 

has been the most prominent. Large collaborative efforts such as The Cancer Genome 

Atlas (TCGA), is enabling the systematic analysis of the genetics, genomics, epigenetics 

and proteomics of all cancer types, collecting hundreds of patient samples and associated 

clinical information286.

Implementing such a collaborative team approach could be highly relevant for CKD, 

which is unlikely to be a homogenous disease and diagnosis is almost exclusively based 

on clinical description. Although kidney biopsy is not performed on everyone with CKD, 

the procedure appears to be increasingly safe and tissue samples are reasonably 

accessible.

Even though the genetic effect size is expected to be small in CKD, this does not mean 

that they do not highlight critically important and potentially targetable pathways. Two 

genetic diseases offer an important potential therapeutic opportunity in nephrology. The 

first is polycystic kidney disease (PKD), which is caused by a relatively common 

dominant mutation287. The mutation leads to epithelial cell proliferation and fluid 

secretion causing a cystic appearance of the kidney. Arginine vasopressin and its second 

messenger cAMP act as important promoters of cyst cell proliferation and fluid secretion 

into cysts288.Recent clinical studies indicate that treatment with tolvaptan, which is a 

vasopressin antagonist, shows some clinical benefit in patients with PKD289. The second 

is kidney disease associated with a mutation in Apolipoprotein L1 (APOL1). APOL1 

mutation has a high allele frequency in West African population and its diaspora, 

including African Americans. People with 2 risk alleles have 3–100 times increased risk 

of developing CKD, indicating a strong effect size, further highlighting its clinical 

significance290. As of yet, studies were unable to demonstrate increased disease risk in 

patients with only single APOL1 risk allele, indicating a recessive mode of 

inheritance268,290. Although most recessive mutations are loss of function variants, 

people who have APOL1 null mutations are phenotypically normal and do present with 

kidney disease291, suggesting a recessive gain of function variant. While the mechanism 

of APOL1 induced cytotoxicity remains to be explored, we are presented with a unique 

therapeutic opportunity, whereby simply reducing APOL1 levels would likely be 

associated with therapeutic benefit. In this aspect it is important to understand the 

transcriptional regulation of APOL1. APOL1 appears to be part of the innate immune 

system and transcriptionally regulated by bacterial toxins and interferon292. As 

compounds that target those pathways are already in clinical development, some of these 

could potentially be repurposed for APOL1 associated kidney disease.
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Figure 1. Targeting the renin angiotensin aldosterone system
Schematic representation of the renin angiotensin aldosterone system. Renin converts 

angiotensinogen to Angiotensin I and the angiotensin converting enzyme converts 

angiotensin I to angiotensin II. Renin inhibitors block renin, ACEI block ACE, AT1R block 

angiotensin action on the receptor while mineralocorticoid antagonists inhibit aldosterone.
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Figure 2. Targeting the glomerulus in the treatment of CKD
A. The left of the figure depicts the normal glomerulus with endothelial cells, glycocalyx, 

basement membrane and podocytes shown. The boxes illustrate the different abnormalities 

observed in CKD and potential therapeutic strategies and agents to target them. For 

endothelial cells, these include: loss of glycocalyx targeted by sulodexide, increased 

endothelin 1A signaling blocked by Atrasertan, decreased VEGF expression and increased 

B7-1 expression targeted by Abatacept. For podocytes, these include podocyte loss by 

detachment and apoptosis targeted by ROS inhibitors, FAK inhibitors or integrin inhibitors, 

increased dynamin oligomerization and cytoskeletal changes targeted by BisT23, Podocyte 

hypertrophy by increased mTOR and LKB1 targeted by rapamycin, and podocyte 

dedifferentiation by increased Wnt and Notch signaling targeted by lithium and gamma 

secretase inhibitors. B. PAS stained kidney sections from a patient with diabetic 

Breyer and Susztak Page 41

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glomerulosclerosis. Note the increased pink matrix materials, indicative of 

glomerulosclerosis and the obliterated glomerular capillaries.
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Figure 3. Targeting tubulointerstitial fibrosis in the treatment of CKD
A. Normal (healthy) renal tubule cross-section versus B. tubulointerstitium in CKD. Several 

therapeutic targets are shown including: increased TGFb signaling blocked by neutralizing 

antibody CAT-192, blocking latent TGFb by inhibiting alphavbeta6 with STX 100 antibody, 

tubule dedifferentiation and proinflammatory phenotype by increasing JAK and Notch 

signaling (blocked by gamma secretase inhibitor or baricitinib), increased TNFa and MCP1 

levels, increased complement activation, collagen cross-linking by LoxL2, and increased 

GLi2 and Wnt signaling in fibroblasts leading to activated myofibroblast accumulation. B. 
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PAS stained human kidney section from a patient with diabetic kidney disease. Note the 

increased interstitial matrix, the increase in myofibroblasts and inflammatory cells and 

tubule cell dedifferentiation.
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Figure 4. Metabolic alterations in CKD
Metabolic dysregulation, particularly poor glucose control, is associated with the 

development of diabetic nephropathy. Key factors contributing to disease development 

include increased SGLT2 mediated glucose uptake and increased mitochondrial and plasma 

membrane ROS generation . In addition, fatty acid oxidation is decreased due to loss of 

nuclear receptor activity of PPARA, RXR, PPARGC1A, LXR/FXR and their upstream 

regulator AMPK, LKB1 and miR 21. Effects of metabolic fluctuations are long lasting as 

they can influence the epigenome; cytosine methylation and histone acetylation. Agents 

being investigated, which target many of these alterations, including: empagliflozin, 

dapaglifozin and canagliflozin that block SGLT1, GTK137831 that blocks NOX4, 5Aza that 

blocks cytosine methylation, HDAC inhibitors that block histone acyltransferases, miR21 

and fibrates that activate PPARA, and GW3965 that blocks LXR/FXR, are shown in the red 

and green boxes.
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