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Abstract

Neuroimaging has made it possible to measure pathological brain changes associated with 

Alzheimer’s disease (AD) in vivo. Over the past decade, these measures have been increasingly 

integrated into imaging signatures of AD by means of classification frameworks, offering 

promising tools for individualized diagnosis and prognosis. We reviewed neuroimaging-based 

studies for AD classification and mild cognitive impairment, selected after online database 

searches in Google Scholar and PubMed (January, 1985 to June, 2016). We categorized these 

studies based on the following neuroimaging modalities (and sub-categorized based on features 

extracted as a post-processing step from these modalities): i) structural magnetic resonance 

imaging [MRI] (tissue density, cortical surface, and hippocampal measurements), ii) functional 

MRI (functional coherence of different brain regions, and the strength of the functional 

connectivity), iii) diffusion tensor imaging (patterns along the white matter fibers), iv) 

fluorodeoxyglucose positron emission tomography (metabolic rate of cerebral glucose), and v) 

amyloid-PET (amyloid burden). The studies reviewed indicate that the classification frameworks 

formulated on the basis of these features show promise for individualized diagnosis and prediction 

of clinical progression. Finally, we provided a detailed account of AD classification challenges and 

address some future research directions.
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1. Introduction

Alzheimer’s disease (AD), the most prevalent form of dementia, is expected to affect 1 out 

of 85 people in the world by the year 2050 (Brookmeyer et al., 2007). The pathophysiology 

of AD is increasingly becoming clearer. The brain of an AD patient accumulates abnormal 

proteins (Aβ and tau) in the form of amyloid plaques and neurofibrillary tangles, eventually 

resulting in loss of neurons (Frisoni et al., 2010; Jagust, 2013). Brain changes due to AD 

occur even before amnestic symptoms appear (Buckner, 2004), and occur in a pattern that 

typically includes the temporal lobe and hippocampus (Braak, Braak, 1991). It has been 

suggested that this inevitable atrophy can be a valuable marker of neurodegeneration 

(Frisoni et al., 2010), as measured with structural magnetic resonance imaging (sMRI). 

Further alterations in function, connectivity and metabolism can be detected using functional 

MRI (fMRI) (Agosta et al., 2012; Binnewijzend et al., 2012; Dennis, Thompson, 2014; Fan 

et al., 2011; Fox, Raichle, 2007), and fluorodeoxyglucose positron-emission tomography 

(FDG-PET) (Gray et al., 2012; Padilla et al., 2012; Pagani et al., 2015; Teipel et al., 2015; 

Toussaint et al., 2012). However, the subtleties of the changes in early AD stages make it 

difficult to distinguish patterns easily by conventional radiologic readings or even by 

quantitative analysis. Thus, it remains challenging to establish reliable markers for 

diagnosing and monitoring disease progression in the early stages and on an individual basis.

Numerous neuroimaging studies have used region of interest (ROI)-types of analyses to 

investigate subtle changes associated with AD (Chetelat, Baron, 2003; Lerch et al., 2008). 

Such studies rely solely on prior knowledge to guide the selection of ROIs and features, thus 

ignoring brain changes outside the studied region(s) and failing to discover new knowledge. 

Machine learning offers a systematic approach in developing sophisticated, automatic, and 

objective classification frameworks for analyzing high-dimensional data and can learn 

complex and subtle patterns of change across various imaging modalities (Sajda, 2006). 

Typically, a classification framework includes at-least feature extraction and classification 

algorithm to build predictive models that facilitate the automation of medical decision 

support (Chiang, Pao, 2016) and provide increased objectivity in these decisions. 

Furthermore, classification frameworks can be used to develop imaging markers or indices 

(Davatzikos et al., 2008) with high sensitivity and specificity in individuals (Sajda, 2006) 

that can summarize the imaging profile of a subject into a single meaningful value (Habes et 

al., 2016b). This creates a more individualized, patient-tailored approach (Ithapu et al., 

2015), which is imperative in the current age of personalized medicine because it allows 

further consideration of genetic or life-style risks, by utilizing advanced computational 

power (Habes et al., 2016a; Habes et al., 2016b; Habes et al., 2016c).

In recent years, a large body of research has been published on neuroimaging-based 

computer-aided classification of AD and its prodromal stage, mild cognitive impairment 

(MCI). Motivated by this rapid proliferation of AD/MCI classification studies and the lack 

of literature summarizing different AD-related features as extracted from neuroimaging data 

and classification algorithms, we present an overview of pertinent advances in this field. We 

summarize key representative studies on neuroimaging-based classification of AD/MCI and 

provide a brief account of the main aspects of these studies, such as study population, type 

of features, the adopted classification algorithm, and the reported classification success rates. 
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Furthermore, we highlight several bottlenecks (i.e. limited sample size and variability in data 

settings across the different studies) and discuss the generalizability and reproducibility of 

existing AD classification studies, as well as the important and largely unexplored issue of 

heterogeneity in AD.

Recent review papers (Arbabshirani et al., 2017; Falahati et al., 2014) reported studies on 

MRI-based classification of AD and MCI, limiting AD classification to MRI only. 

Pathological brain changes related to AD can be captured via various imaging modalities, 

such as FDG-PET and amyloid-PET, therefore, a comprehensive review on AD 

classification should not be limited to MRI only. This review is further unique in that it 

focuses exclusively on those studies that have extensively leveraged cross-validation 

strategies to estimate the performance of their classification frameworks. Cross-validation is 

generally designed to achieve independent training and test data for a classification 

algorithm and defined as split the data once (split-in-train-test) or several times (k-fold 

cross-validation) to obtain an unbiased estimate of the classification performance of the 

algorithm and avoid over fitting (Arlot, Celisse, 2010; Kohavi, 1995). In the split-in-train-

test, data is randomly divided into independent training and test subsets, optimally with 

matched demographic characteristics. The training subset is used solely for the learning 

procedure of the classification algorithm and the test subset is used to estimate the 

performance of the trained classification algorithm. In k-fold, data is divided into k-folds and 

a classification algorithm is tested on kth fold after being trained on k-1 folds in kth iteration. 

Furthermore, we provide in-depth detail about AD-related feature extraction methods from 

various neuroimaging modalities, important information that is mostly lacking in existing 

review papers.

2. Selection criteria

We searched in PubMed and Google Scholar, from January 1985 to June 2016, and 

identified 409 studies based on the given search criteria. We included original peer-reviewed 

research studies that exclusively used cross-validation strategies to estimate the performance 

of their classification frameworks. In addition, studies conducted for method comparisons 

and studies not focusing primarily on AD classification were excluded from this review. 

Finally, this criterion resulted in 81 studies that were reviewed and presented here. A more 

thorough explanation of the search and screening process, and databases generated from the 

search in Google Scholar and PubMed are provided in the Supplementary Material.

3. Classification frameworks for Alzheimer’s disease and its prodromal 

stages

Over the past decade, classification frameworks have been used successfully to analyze 

complex patterns in neuroimaging data with a view to the classification of AD and MCI 

subjects. A classification framework is comprised of four major components: feature 

extraction, feature selection, dimensionality reduction, and feature-based classification 

algorithm. Feature extraction and classification algorithm are the minimally required 

components, as shown in Figure 1, whereas other components can be applied as needed. The 

studies having minimal required components of classification framework were considered 
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potential candidates for inclusion in the paper provided meeting other criteria. In the feature-

extraction process, AD-related features from various neuroimaging modalities, such as 

structural MRI, functional MRI, diffusion tensor imaging (DTI), amyloid-PET, and FDG-

PET, are extracted from the training subjects. The term ‘features’ refers to the post-

processing applied on raw medical imaging data to derive more informative measures. The 

examples of such derived measures include regional tissue densities, regional cortical 

thickness, etc. These derived measures can vary from millions (when all the voxels are used 

as features) to a few (when a few representative measures are extracted from the brain). The 

features extracted from various modalities can be used in isolation or combined to make use 

of the complementary information provided by several modalities. A classification algorithm 

(predictive model) is then trained on the extracted features to provide diagnostic support in 

predicting cognitively normal (CN) and diseased subjects.

In the aforementioned classification framework, the selection of an appropriate modality for 

obtaining imaging data and accurate feature extraction for AD classification is often more 

important than the selection of the underlying classification algorithms in order to achieve 

higher prediction rates (Sabuncu, Konukoglu, 2015). Therefore, we provided more details on 

feature extraction for the included studies in this review. Overall, the paper is divided into 

various sections, where each section focuses on features extracted from one particular 

imaging modality, such as structural MRI, functional MRI, DTI, and PET. A section on 

multimodal AD/MCI classification studies, which describes how features extracted from 

various imaging modalities are combined to utilize their complementary information, is 

included at the end.

3.1. Structural MRI-based studies

Cerebral neurodegeneration is characterized by early damage to synapses, followed by 

degeneration of axons and ultimately, atrophy of the dendritic tree and perikaryon (Serrano-

Pozo et al., 1101). This neurodegeneration process is more severe in certain parts of the 

brain, such as the right and left hippocampus, temporal and cingulate gyri, and precuneus 

(Baron et al., 2001; Busatto et al., 2003; Frisoni et al., 2002; Ishii et al., 2005). The 

inevitable atrophy, caused by neurodegeneration, is generally measured using structural 

MRI, and serves as a valuable marker of the stage and aggressiveness of the 

neurodegenerative aspect of the AD pathology in the individual (Frisoni et al., 2010; Vemuri, 

Jack, 2010). The atrophic process in these regions leads to profound structural changes in the 

brain, such as thinning of the cortical surface, structural variation in several brain regions 

and variation in the regional tissue densities, and have been demonstrated in several 

neuroimaging-based studies of AD classification. A top-level breakdown of these studies is 

shown in Figure 2. Three main feature extraction methods for assessing structural variation 

are considered: i) density maps, ii) cortical surface, and iii) pre-defined regions-based 

methods.

3.1.1. Density map-based methods—Density map-based methods quantify patterns of 

atrophy by utilizing density maps of white matter (WM), grey matter (GM), and 

cerebrospinal fluid (CSF), which are generated by methods such as voxel-based 

morphometry (VBM) (Ashburner, Friston, 2000) or regional analysis of volumes examined 
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in normalized space (RAVENS) maps (Davatzikos et al., 2001). Depending on how the 

density maps are used, these methods can be further divided into two categories: i) whole 

density maps as features (DMAF), and ii) reduced density map features. The studies that fall 

within these categories are listed in Table 1.

3.1.1.1. Whole density maps as features (DMAF)-based methods: This method is 

centered on the construction of a feature vector by utilizing the density maps for WM, GM, 

or both for classification.

In an earlier study, the GM density map of the entire brain together with a support vector 

machine (SVM) achieved promising AD classification (Kloppel et al., 2008). In that study, 

relatively lower GM density was found in the hippocampus of AD subjects, which was a 

strong indicator of hippocampal atrophy, consistent with previous research (Frisoni et al., 

2002). In addition, GM maps have been used for AD classification, by employing a large-

scale regularization approach (Casanova et al., 2011) and spatially augmented linear 

programming boosting method (LPBM) (Hinrichs et al., 2009), and to predict conversion 

from MCI to AD, by using SVM (Adaszewski et al., 2013). Termenon et al., used GM 

density maps to develop feature vectors for AD classification (Termenon, Graña, 2012) by 

employing a two-stage classification framework, wherein a relevance vector machine 

classifier (Tipping, 2001) was used in the first stage. The subjects that fell into the low 

confidence interval of the classifier were used as the input for the second classifier in the 

prediction. SVM, nearest neighbor, relevance vector machine, and learning vector 

quantization were used as second-stage classifiers, however, SVM was better. Recently, 

Moller et al. also used GM density map for SVM-based AD classification (Moller et al., 

2016).

Furthermore, the Jacobian determinants, calculated from these density maps, have been used 

as features for predicting conversion from MCI to AD by using SVM, Bayes statistics, and 

voting feature interval classifiers (Plant et al., 2010).

These methods achieved a ≥ 81% accuracy in AD classification, and a ≥ 62% accuracy in 

prediction of AD conversion. Furthermore, the two-stage framework proposed by Termenon 

et al. demonstrated superior classification accuracy (from 77% to 87%) than its single-stage-

based counterpart (Termenon, Graña, 2012).

3.1.1.2. Reduced density map feature-based methods: DMAF-based methods suffer the 

drawback of dimensionality, as the numbers of features are typically larger than, or 

comparable to, the number of the available subjects. When the number of features is high 

relative to the number of subjects in the training set, it is possible that classification rules 

yielding high accuracy on the training set were originated only by chance. This can lead 

many classification algorithms to select classification rules that could fail to generalize to 

new data (Vapnik, 1999). Consequently, features have been reduced using supervised or 

unsupervised feature-reduction methods, or they have been extracted from pre-defined 

atlases and adaptive regions in order to reduce dimensionality.
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• Supervised/unsupervised feature-reduction-based methods: These methods essentially 

focus on distilling large-sized density maps to fewer, meaningful features in a supervised or 

unsupervised fashion. Among the unsupervised methods, Salvatore et al. used principal 

component analysis (PCA) to reduce the dimensions of WM and GM density maps. The 

reduced density maps were used for SVM-based AD classification and prediction of 

conversion from MCI to AD (Salvatore et al., 2015). In addition, Liu et al. used local linear 

embedding method to transform multivariate regional brain volume and cortical thickness 

MRI data to a locally linear space, with fewer dimensions, while also utilizing the global 

nonlinear data structure (Liu et al., 2013). The embedded brain features were then used to 

train classification algorithms such as regularized logistic regression (RLR), SVM, and 

linear discriminant analysis (LDA).

On the other hand, Beheshti et al. proposed reduction of the dimensions of GM maps in a 

supervised fashion (Beheshti, Demirel, 2015). They used the intensity distribution of voxels 

of GM maps, rather than using the intensities of all the voxels of GM maps, as features. The 

optimal number of bins in the intensity distribution was selected based on the Fisher 

criterion maximization between AD and CN subjects, and the resultant intensity distribution-

based features were used for SVM-based AD classification.

• Atlas-based methods: These methods rely on parcellation of brain image into several 

anatomical regions based on pre-defined anatomically labeled atlases (such as automated 

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and laboratory of 

neuroimaging (LONI) atlas (Shattuck et al., 2008)), followed by extraction of features from 

those particular regions. For example, Magnin et al., used AAL to parcellate the brain image 

into 116 regions, and then used the relative weight of the GM, compared to that of the WM 

and CSF, for each parcellated region to develop a feature vector for SVM-based AD 

classification (Magnin et al., 2009).

• Adaptive-ROI-based methods: Traditionally, atlas-based methods are used to obtain 

regional measurement of anatomical features and to investigate abnormal tissue structures in 

disease conditions. However, in practice, prior knowledge of abnormal regions is not always 

available. Even when a prior hypothesis can be made about specific ROIs, a region 

demonstrating abnormality might be part of a single ROI, or span multiple ROIs, thereby 

potentially reducing the significance of further analysis. Therefore, adaptive ROIs have been 

calculated to reduce the dimensions of density maps and to resolve this issue. Furthermore, 

depending on the number of sets of adaptive ROIs that are calculated, these methods can be 

divided into two categories: i) single-set adaptive ROIs, and ii) multiple-set adaptive ROIs.

1. Single-set adaptive ROIs: In this method, subjects are registered to one particular atlas, 

and adaptive ROIs and corresponding regional volumetric measures are calculated in that 

atlas space. In earlier work, Davatzikos et al. calculated RAVENS density maps and used a 

watershed clustering algorithm-based method (Fan et al., 2007) to calculate an adaptive set 

of ROIs for SVM-based AD classification, using the multi-centric ADNI (Alzheimer’s 

disease neuroimaging initiative (Weiner et al., 2015)) dataset. They reported a high cross-

validated classification accuracy of 94.30%, with a pattern involving many temporal lobe 

GM regions, peri-hippocampal WM, and CSF (Fan et al., 2008a). The trained SVM in this 

Rathore et al. Page 6

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



study was used to determine the spatial pattern of abnormality for recognition of early AD 

(SPARE-AD) index, which was later tested independently in CN and MCI subjects of the 

Baltimore longitudinal study of aging (BLSA) (Davatzikos et al., 2011) dataset. In 

subsequent studies, the same classification framework was used for MCI classification 

(Davatzikos et al., 2008) and prediction of conversion from MCI to AD (Misra et al., 2009).

2. Multiple-set adaptive ROIs: In this method, subjects are registered to multiple atlases, 

and adaptive ROIs and corresponding regional volumetric measures are calculated in each 

atlas space to overcome the inherent bias associated with one atlas. For example, Min et al. 

derived multiple atlases from the non-overlapping clusters of subjects (Min et al., 2014), 

obtained using affinity propagation (Frey, Dueck, 2007). They registered subjects to the 

atlases and adaptively calculated a set of ROIs and volumetric features in each atlas space. 

The top-most K discriminating features calculated from each atlas space were combined for 

SVM-based classification. Subsequently, Liu et al. argued that the features extracted from K 

sets of adaptive ROIs are different representations of the same subject (Liu et al., 2015), and 

should not be concatenated, as in a previous study (Min et al., 2014). To resolve this, Liu et 

al. registered subjects to different selected atlases and extracted features from adaptive 

regions of each atlas-registered image, viewing that image as the main source, and all other 

atlas registered-images as adjunctive sources (Liu et al., 2015). SVM was separately trained 

on features extracted from each set and the results of multiple sets were combined using 

majority voting.

The multiple-set adaptive ROIs-based methods were quite effective, and improved AD/CN 

classification from 84.18% to 92.51% (Liu et al., 2015) and progressive MCI (pMCI)/stable 

MCI (sMCI) classification from 70.06% to 78.88% (Liu et al., 2015) compared to single-set 

adaptive ROIs-based methods.

3.1.2. Surface-based methods—AD patients generally show changes in temporal and 

parietal regions of the cortical surface (Bakkour et al., 2009; Dickerson et al., 2009; 

Dickerson et al., 2011). Although these changes are not easily visible or measureable in the 

early stages of AD, classification frameworks have been able to detect subtle changes in the 

cortical surface by analysis of complex cortical surface data, in a way that is complementary 

to regional volumetric maps extracted in a voxel-wise manner. Cortical surface measures are 

extracted from all the vertices of a surface. These measures are either used directly or are 

reduced by applying feature reduction methods, thereby leading to two main categories: i) 

vertices as features-based methods, and ii) reduced vertices as features-based methods. The 

studies of AD diagnosis support employing cortical surface-based features are listed in Table 

2.

3.1.2.1. Vertices as features-based methods: This family of AD classification frameworks 

solely relies on the features calculated from all the vertices of a cortical surface. For 

instance, Li et al. calculated a variety of morphological features, including volumetric 

(cortical thickness, surface area, and GM volume) and geometric (sulcal depth, metric 

distortion, and mean curvature) measures, at each vertex on the pial surface (Li et al., 

2014b), which were used for SVM-based MCI classification.
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3.1.2.2. Reduced vertices as features-based methods: The use of cortical surface features 

of all the vertices suffers from the same dimensionality drawback, for reasons similar to 

those mentioned in Section 3.1.1.2. Consequently, these features have either been reduced by 

means of feature-reduction methods, or extracted from regions of pre-defined atlases.

• Supervised/unsupervised feature-reduction-based methods: In these methods, the 

dimensions of long feature vector comprising features of all the vertices of the brain are 

reduced by applying supervised or unsupervised feature reduction methods. For example, 

Cho et al. converted thickness data to a frequency domain and achieved lower 

dimensionality by filtering out high-frequency (noise) components (Cho et al., 2012). They 

employed an incremental learning-based LDA for reduced dataset-based AD classification. 

Park et al. addressed this issue by modeling the cortical surface using three-dimensional 

(3D) meshes and extracted cortical thickness parameterized by these meshes (Park et al., 

2012) for SVM-based AD and MCI classification. Later, Park et al. applied this 

classification framework to longitudinal data for the early detection of AD (Park et al., 

2013). They trained SVM on MCI and CN subjects, and tested it on the subjects who 

converted to AD, using the images of the subjects taken one time-point before the actual 

conversion. They achieved promising early prediction of conversion (83%) from MCI to 

AD.

• Atlas-based methods: In these methods, the original brain images are registered to certain 

standardized stereotaxic spaces (Fischl et al., 1999), and cortical maps/features are 

computed (Fischl, Dale, 2000; Jones et al., 2000; MacDonald et al., 2000) and tessellated 

into various regions using existing atlas templates (Desikan et al., 2006). Unlike the 

structural templates discussed in Section 3.1.1.2, which are used in the volume space, these 

atlas templates are used in the surface space. The features of the tessellated regions are used 

in feature vector development, which then is used in classification.

Desikan et al. used average cortical thickness of all the tessellated regions for MCI and AD 

classification (Desikan et al., 2009) using logistic regression (LR). The cortical thickness in 

the entorhinal cortex and supramarginal gyrus proved to be a better predictor of MCI than 

the cortical thickness of other regions. Similarly, Oliveira et al. used regional thickness 

measures and the average thickness of the entire brain for AD classification by means of 

SVM (Oliveira et al., 2010). They found that the average cortical thickness of the entire 

brain was a better predictor of AD than the regional thickness features. Wee et al. used 

regional thickness measures, cerebral cortical GM and associated WM volumes, and 

correlative features, which were obtained based on the similarity of cortical thickness 

between pairs of brain regions (Wee et al., 2013). Features were first selected using t-tests, 

and later using minimum-redundancy and maximum-relevance (mRMR) (Peng et al., 2005) 

in conjunction with SVM recursive-feature elimination (SVM-RFE). Multi-kernel SVM was 

used for classification. McEvoy et al. also used average regional cortical thickness and 

volumetric measures for LDA-based AD classification and prediction of conversion from 

MCI to AD (McEvoy et al., 2009). Lillemark et al. used the proximity between the center of 

mass and percentage surface connectivity of different brain regions as features for LDA-

based AD and MCI classification (Lillemark et al., 2014).

Rathore et al. Page 8

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recently, Eskildson et al. investigated the prediction of AD conversion by measuring 

regional thickness at various stages of MCI conversion to AD (Eskildsen et al., 2013). To 

this end, pMCI subjects were categorized based on time to conversion to AD (6, 12, 24, or 

36 months), and each category was classified against sMCI subjects. Features were reduced 

using mRMR, and LDA was used to determine the classification accuracy. The classification 

based on stage-specific categories of pMCI subjects demonstrated better accuracy than the 

overall classification of pMCI and sMCI subjects.

In addition, the efficacy of regional thickness measures was investigated using orthogonal 

partial least-squares of the latent structures for AD classification in two independent cohorts 

(ADNI and AddNeuroMed (Lovestone et al., 2009; Lovestone et al., 2007)) and a pool of 

these cohorts (ADNI + AddNeuroMed) (Westman et al., 2011). Results demonstrated similar 

patterns of atrophy in two individual cohorts, showing that the key regions involved in AD 

classification were similar in both cohorts. They further proved similarity in the patterns of 

atrophy through training the classification algorithm on one cohort and testing it on the 

other. For example, AD classification derived from training on the AddNeuroMed cohort 

and testing on the ADNI cohort, and vice versa, led to accuracies of 86.0% and 83.40%, 

respectively. The individual and pooled cohorts were further used to predict the conversion 

from MCI to AD. For instance, the classification algorithm trained on the combined cohort 

classified 71% of the pMCI as AD-like and 60% of the sMCI as CN-like.

The reduced vertices as features-based methods demonstrated better classification accuracy 

than raw vertices as feature-based methods as shown by improvement of 10–13% for 

different subject groups (Park et al., 2012). Moreover, the supervised/unsupervised feature 

reduction-based methods offered better classification accuracy than atlas-based methods. An 

overall improvement of 2–8% over atlas-based methods was seen for different subject 

groups (86.67%–88.33% for AD/CN (Cho et al., 2012) and 65.22%–71.21% for pMCI/

sMCI (Cho et al., 2012)).

3.1.3. Pre-defined regions-based methods—These methods are based on the prior 

knowledge of the magnitude and spatial pattern of AD that were acquired by studies 

previously conducted on histological or imaging data (Baron et al., 2001; Frisoni et al., 

2002). Generally, features of some of the important regions that have shown to contain 

discriminatory AD-related information are extracted and used for classification. The datasets 

and classification accuracies of the studies using these methods are listed in Table 3.

3.1.3.1. Hippocampal features: The hippocampus is amongst the few structures of the 

medial temporal lobe that undergo severe structural changes in AD (Braak, Braak, 1991). 

The structural variation between the hippocampus of AD and healthy individuals has been 

studied intensively (Killiany et al., 2002; Wisse et al., 2014). The geometric properties of the 

hippocampus have been exploited as useful biomarkers in a few AD and MCI classification 

studies. For example, the shape of the hippocampus, quantified by spherical harmonics 

(Gerardin et al., 2009), surface-based anatomic mesh modeling (Li et al., 2007), statistical 

shape modeling (Shen et al., 2012), and large-deformation diffeomorphic metric mapping 

and PCA (Wang et al., 2007b), has been shown to be an effective biomarker for AD and 

MCI classification. The shape and volumetric features of the hippocampus have also been 

Rathore et al. Page 9

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combined for SVM-based AD conversion prediction (Costafreda et al., 2011). Interestingly, 

a study demonstrated superiority of hippocampal texture over reduction in its volume for 

SVM-based prediction of conversion from MCI to AD (Sorensen et al., 2016).

3.1.3.2. Biologically selected features: AD affects brain regions well beyond the 

hippocampus, such as atrophy of the entorhinal cortex (Dickerson et al., 2001), expansion of 

the ventricles (Ridha et al., 2008), and volumetric changes in other subcortical nuclei 

(amygdala, putamen, caudate, and thalamus) (Madsen et al., 1312; Visser et al., 1999). The 

analysis of structures beyond the hippocampus may not only improve understanding of the 

spatial pattern of AD, but may also lead to a more precise diagnosis. Therefore, features of 

these biologically selected regions are sometimes used directly for classification of subjects 

into normal and diseased classes. For example, Chincarini et al. used the statistical and 

textural features of the entorhinal cortex, perirhinal cortex, hippocampus, and 

parahippocampal gyri (Chincarini et al., 2011). The features of each region were analyzed 

with a random forest classifier to extract the relevant ones, which were subsequently 

processed with SVM for prediction of AD conversion. Recently, Tang et al. used shape 

diffeomorphometry of the left and right amygdala, hippocampus, thalamus, caudate, 

putamen, globus pallidus, and lateral ventricle for prediction of AD conversion using LDA 

(Tang et al., 2015).

3.2. Functional MRI-based studies

The neurodegenerative process of AD induces changes in functional connectivity between 

various regions of the brain (Fransson, 2005; Wang et al., 2007a). These alterations are 

generally measured while the patient is at rest, using resting-state functional MRI (rs-fMRI). 

Rs-fMRI, in principle, measures the brain activity by quantifying the blood oxygen level-

dependent signal, whereby an increased oxygen level is observed in activated regions of the 

brain due to increased blood flow. Various rs-fMRI studies have reported the existence of 

resting-state networks, which are characterized by spatially coherent, spontaneous 

fluctuations in the blood ox gen level-dependent signal and are made up of regional patterns 

that are commonly involved in brain functions, such as attention, sensory, or default mode 

processing (Fox, Raichle, 2007; Seeley et al., 2007). A network that is related to AD and has 

increasingly received attention is the default mode network (DMN) (Greicius et al., 2003; 

Greicius et al., 2004) also called the ‘task-negative’ network (anti-correlated to ‘task 

positive’ network) (Fox et al., 2005; Fransson, 2005), since its activity increases in the 

absence of a task. AD compromises primary brain targets, such as the DMN, by disrupting 

their functional activity (He et al., 2007; Li et al., 2002), as well as the functional 

connectivity between primary targets and the remaining parts of the brain (Wang et al., 

2007a; Wang et al., 2006). Some studies have reported that functional changes appear well 

before the changes in structural MRI become evident (Pievani et al., 2011; Teipel et al., 

2015). However, those studies are rare, and additional studies should be conducted to test 

whether functional MRI changes can appear before structural MRI.

The preliminary evidence of disrupted functional connectivity (Li et al., 2002; Wang et al., 

2007a; Wang et al., 2006), and its association with AD have led researchers to hypothesize 

that proper quantification of the functional connectivity across different brain regions can 
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capture the global distribution of the abnormalities present in AD, and can further aid in AD 

classification (Chen et al., 2011; Jie et al., 2014). Such quantification involves spatial 

parcellation of fMRI data according to a structural brain template, and calculation of pair-

wise connectivity between the activation in all pairs of regions. The connectivity 

information, generally defined as the correlation, covariance, or the mutual information 

between the fMRI time series of the two regions, is stored in an n × n matrix for each 

subject, where n is the number of brain regions obtained by parcellation. The connectivity 

information is then used as input for classification. For example, Chen et al. used Pearson 

correlation coefficient as connectivity metric for Fisher LDA-based AD and MCI 

classification (Chen et al., 2011). In addition, Challis et al. used covariance as a connectivity 

metric for Gaussian-process, logistic regression model-based AD and MCI classification 

(Challis et al., 2015). They showed that the connectivity strength between the medial 

structures and temporal and sub-cortical regions best classified MCI, and that the 

connectivity strength between the frontal areas and the rest of the brain best classified AD. It 

has also been suggested to develop graphs on connectivity matrcies and compute network 

measures from the graph instead of using raw connectivity matrices. For example, Jie et al., 

proposed to extract global topology and local connectivity based features from the graph. 

The least absolute shrinkage and selection operator was used for feature selection, while 

multi-kernel SVM was used for MCI classification (Jie et al., 2014). Similarly, Khazaee et 

al. computed integration and segregation measures from the graph, and used Fisher score for 

feature selection and SVM for AD classification (Khazaee et al., 2015).

Overall, the functional connectivity-based methods demonstrated good classification results 

(97.00% for AD/MCI (Challis et al., 2015) and 91.90% for MCI/CN (Jie et al., 2014)).

3.3. Diffusion tensor imaging (DTI)-based studies

AD is associated with loss of brain barriers that restrict water motion, thereby compromising 

the integrity of WM, and leading to abnormal diffusivity patterns (Xie et al., 2006). DTI is 

used to analyze water diffusion at the microstructural level of the brain for determining the 

abnormal diffusion pattern of AD. Voxel-based studies showed that AD and MCI subjects 

have reduced fractional anisotropy (FA) in multiple posterior WM regions (Medina et al., 

2006) and increased mean diffusivity (MD) in the posterior occipital–parietal cortex, and 

right parietal supramarginal gyrus (Rose et al., 2006). ROI-based studies demonstrated 

higher MD and/or lower FA in the hippocampus (Fellgiebel et al., 2006; Kantarci et al., 

2001; Muller et al., 2005; Muller et al., 2007) and posterior cingulate (Choo et al., 2010; 

Fellgiebel et al., 2005). Interestingly, a previous study suggested that diffusivity measures of 

the hippocampus are better predictors of MCI conversion than volume (Fellgiebel et al., 

2006). Evidence of abnormal and complex diffusivity patterns has led to the hypothesis that 

these biomarkers can be used for AD classification using advanced classification framework 

(Selnes et al., 2013). The studies using DTI-based features, summarized in Table 5, can be 

further divided into three categories, depending on how features are extracted: i) 

tractography, ii) connectivity network measures, and iii) discriminative voxel selection.

3.3.1. Tractography-based methods—In this method, the fibers located by means of 

tractography are clustered into various fiber bundles, based on an anatomical atlas. The 
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located fibers are reduced to a compact, low-dimensional representation, from which 

diffusivity measures are calculated for classification. For example, Nir et al. used 

tractography to locate fibers, then clustered them into 18 fiber bundles based on the 18 

regions defined in Johns Hopkins University probabilistic WM tract atlas (Nir et al., 2015). 

They computed density maps to quantify the number of fibers passing through each voxel, 

and used the shortest path graph search to reduce fiber bundles to a compact, low-

dimensional representation, based on the maximum density path (MDP). These MDPs were 

registered across subjects, and diffusivity measures of FA and MD, computed along all the 

MDPs, were used as features for SVM-based AD and MCI classification.

3.3.2. Connectivity network measure-based methods—In this method, DTI images 

are parcellated into anatomical regions, and several features are calculated from the fibers 

within these regions. Connectivity networks are developed based on these regions (i.e., 

features) and a collection of network measures are derived for classification. In this context, 

Wee et al. parcellated the brain into anatomical regions, and developed connectivity 

networks based on the regional features of fiber count, averages of on-fiber FA, MD, and 

three principal diffusivities (Wee et al., 2011). Clustering coefficients of all the regions, 

computed for all the networks, were used as features. The feature set was reduced by 

determining the Pearson correlation coefficient, and SVM-RFE was used for MCI 

classification. Recently, Prasad et al. adopted the same methodology, and developed two 

connectivity networks based on regional features of fiber count, and flow along the fibers 

(Prasad et al., 2015). Raw connectivity matrices and various other network measures, such 

as global efficiency, transitivity, path-length, modularity, radius, and diameter were used for 

SVM-based classification of early and late MCI subjects.

3.3.3. Discriminative voxel selection-based methods—In this method, 

discriminative voxels are selected to reduce the dimensionality of DTI data, and diffusion 

measures of selected voxels are used as features for classification. Dyrba et al. adopted this 

approach in two of their studies. In the first study, they used PCA and an entropy-based 

information gain criterion for selecting discriminative voxels, and used diffusion measures 

of the FA, MD and mode of anisotropy of the selected voxels as features for SVM-based AD 

classification (Dyrba et al., 2013). In the subsequent study (Dyrba et al., 2015a), they used 

the same classification framework for classifying MCI subjects, stratified by their positive or 

negative amyloid burden.

3.4. Positron-emission tomography (PET)-based studies

The characteristic patterns of glucose metabolism on brain FDG-PET and of amyloid 

deposition on amyloid PET can help in differentiating AD from healthy individuals. An 

association between AD and hypometabolism was found in several brain regions, such as the 

parieto–`temporal and posterior cingulate cortices (Mosconi et al., 2008), and hippocampus 

(Mosconi et al., 2005). Similarly, AD subjects compared to healthy individuals have shown 

higher amyloid burden in overall cortex and all cortical regions (precuneus, anterior and 

posterior cingulate, and frontal median, temporal, parietal and occipital cortex) (Camus et 

al., 2012). These evidences of the association of hypometabolism and amyloid burden with 
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AD encouraged the use of FDG-PET and amyloid PET as a suitable biomarker for AD 

classification.

3.4.1. FDG-PET—Recently, there has been a growing interest in using the cerebral glucose 

metabolism rate for AD classification and prediction of conversion from MCI to AD (Gray 

et al., 2012; Toussaint et al., 2012). Four main methods that utilize the cerebral glucose 

metabolism rate are considered here: voxels as feature (VAF)-based, discriminative voxel 

selection-based, atlas-based, and projection-based methods. Table 6 lists the studies using 

these methods, and their datasets and corresponding classification performance.

3.4.1.1. VAF-based methods: This set of methods, similar to those discussed for structural 

MRI in section 3.1, utilizes the intensity value of all the voxels of an input PET scan. 

Hinrichs et al. adopted this approach for AD classification using LPBM (Hinrichs et al., 

2009).

3.4.1.2. Discriminative voxel selection-based methods: The prominent goal of these 

methods is to simultaneously select the informative voxels (features) used in VAF-based 

methods. For example, Cabral et al. used this method to investigate the prediction of AD 

conversion based on FDG-PET images at various time-points (Cabral et al., 2015). 

Discriminative voxels of the images were selected using mutual information criterion, and 

SVM and Gaussian naive bayes were used for classification. The classification based on 

stage-specific categories of pMCIs demonstrated better predictive accuracy than did the 

overall classification of pMCI and sMCI, a result also demonstrated earlier by (Eskildsen et 

al., 2013).

3.4.1.3. Atlas-based methods: Several FDG-PET based AD classification studies are based 

on parcellation of PET images into different anatomical regions, utilizing pre-defined 

structural atlases. Pagani et al. used the average regional intensity and inter-hemispheric 

symmetry between the parcellated regions as features for SVM-based classification (Pagani 

et al., 2015). Similarly, Gray et al. used the average regional intensities of baseline and 12-

months follow-up scans, and the difference of intensity between these two time-points as 

features for SVM-based classification (Gray et al., 2012). Accuracy increased by a factor of 

1–2% when using both the longitudinal and cross-sectional features in this study.

3.4.1.4. Projection-based methods: Projection-based methods reduce the dimensionality of 

features by projecting the higher-dimensional feature space into a lower-dimensional space, 

where the significance of each feature, with respect to the problem at hand, can be measured 

in terms of its variance. Thus, a subset of features with relatively larger variance may be 

selected for further inspection. In this context, Padilla et al. applied non-negative matrix 

factorization projections to input images (Padilla et al., 2012). They then selected several 

subsets of these projections, and classified those using SVM. Ultimately, the classification 

results obtained from several projections were combined to obtain a final prediction. The 

authors showed that this method achieved a 17% improvement in classification accuracy as 

compared to a VAF-based method for the same dataset.
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3.4.2. Amyloid-PET—In vivo measurements of the cerebral am loid burden (β-amyloid) 

may be clinically useful in the management of patients with cognitive impairment who are 

being evaluated for possible AD. Several radioligands are used for measuring amyloid 

burden, such as the 11C-Pittsburgh Compound B (11C-PIB), and 18F-labelled amyloid-PET 

tracers, including florbetapir, flutemetamol, and florbetaben. Some group analysis-based 

studies have revealed differences in amyloid burden in various brain regions in different 

subject groups; higher amyloid burden has been found in MCI (Klunk et al., 2004) and AD 

subjects (Camus et al., 2012) than in healthy individuals, and in subjects with pMCI than in 

those with sMCI (Koivunen et al., 2011; Okello et al., 2009). However, very little attention 

has been paid to quantification of plaque levels in different brain regions and its use in AD 

classification. Vandenberghe et al. proposed one such classification framework in which they 

used the intensity values of all the voxels of 18F-flutemetamol PET scans as features for 

SVM-based classification of AD versus healthy individuals, and pMCI versus sMCI subjects 

(Vandenberghe et al., 2013).

3.5. Multimodal studies

Several biomarkers have shown association with AD, including proteins measured in the 

CSF (Melah et al., 2016), brain atrophy, particularly in the hippocampus (Frisoni et al., 

2002) and posterior cingulate gyrus (Baron et al., 2001), measured through structural MRI, 

and hypometabolism, associated with AD in the temporal and parietal lobe, as well as in the 

posterior cingulate cortex, measured via functional imaging (Herholz et al., 2002; Langbaum 

et al., 2009). In addition, AD brains demonstrate the formation of insoluble β amyloid 

plaques and neurofibrillary tangles (Jagust, 2013), and it has been suggested that the 

quantity of β am loid can be related to the disease stage (Murpy, LeVine III, 2010).

These biomarkers yield complementary information, i.e., different modalities capture 

disease information from different perspectives, thereby improving understanding of the 

disease pattern over that presented by one modality. Classification frameworks facilitate 

exploitation of the complementary information obtained from multiple modalities. A top-

level breakdown of two classification frameworks, straightforward feature concatenation and 

specialized fusion frameworks, used to exploit multimodal data for AD classification is 

shown in Figure 3. The terms F1, F2, …, Fn−1, Fn are the feature sets extracted from 1, 2, …, 
n−1, n modalities or other biomarkers, respectively. The symbols C1, C2,…, Cn−1, Cn 

represent the classification algorithms trained on feature sets 1, 2, …n−1, n, respectively. 

Table 7 summarizes the results and the corresponding datasets for the studies using these 

frameworks.

3.5.1. Straightforward feature concatenation—The simplest method for exploiting 

the complementary information provided by multiple modalities is concatenation of the 

features of these modalities into a single feature vector and training a classifier on that 

vector.

Structural MRI is a key component of these studies, and its features are combined with 

features extracted from various other modalities to improve classification. In this context, 

various authors have combined structural MRI-based features with the features calculated 
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from DTI and functional MRI. In earlier studies, the regional volumetric measures, 

calculated from structural MRI, and FA, calculated from WM tracts, have been combined for 

SVM-based MCI and AD classification (Cui et al., 2012; Li et al., 2014a). Among recent 

studies, Tang et al. used volumetric, shape, and diffusion features of the hippocampus and 

amygdala for AD classification (Tang et al., 2016). They used PCA and tudent’s t-test for 

reducing the feature set, and LDA and SVM for classification. Similarly, Schouten et al. 

combined regional volumetric measures, diffusion measures, and correlation measures 

amongst all brain regions calculated from functional MRI (Schouten et al., 2016). They 

employed logistic elastic net (Zou, Hastie, 2005) for classification.

The combination of structural MRI with demographics, cognitive tests, and genetic data has 

also been explored in a few studies. For instance, Vemuri et al. combined GM, WM, and 

CSF density maps with age, gender, and APOE genotype for SVM-based AD classification 

(Vemuri et al., 2008). Zhang et al. used GM density maps, intracranial volume, atlas-scaling 

factor, normalized whole brain volume, and age as features for AD and MCI classification 

(Zhang et al., 2014). The feature set was classified by using a kernel SVM decision-tree (a 

variant of the SVM decision-tree). Recently, Moradi et al. used GM density maps, age, and 

cognitive tests as features, and employed classification algorithms such as low-density 

separation and random forest for AD conversion prediction (Moradi et al., 2015).

The combination of structural MRI features with PET and CSF biomarkers is another 

dimension. In earlier studies, Fan et al. combined regional volumetric measures, and 

regional cerebral blood flow for MCI classification using SVM (Fan et al., 2008b). In 

addition to this, the SPARE-AD index (Davatzikos et al., 2009) was combined with CSF 

biomarkers (Davatzikos et al., 2011) to predict conversion from MCI to AD using SVM. 

Further, Dukart et al. first used FDG-PET and GM density values of all the voxels of 

selected ROIs (Dukart et al., 2011a) and later the average of all the voxels of selected ROIs 

for SVM-based AD classification (Dukart et al., 2013). In recent studies, Zhu et al. 

combined regional GM volume, regional average PET intensity, and CSF biomarkers as 

features, and proposed a matrix-similarity-based loss function for better classification using 

SVM (Zhu et al., 2014). Similarly, Zheng et al. used regional thickness measures, regional 

correlative measures (calculated from thickness measures) and APOE genotype for SVM-

based AD classification, and AD prediction conversion (Zheng et al., 2015). Apostolova et 

al. used hippocampal volume and CSF biomarkers for SVM-based AD and MCI 

classification (Apostolova et al., 2014).

The combination of structural MRI, PET, and CSF biomarkers together with genetic data 

and neuropsychological status exam scores has also been common. For example, SPARE-

AD was combined with cognitive scores, APOE genotype, and CSF biomarkers (Da et al., 

2014) to predict conversion from MCI to AD. Similarly, Kohannim et al. combined 

hippocampal, ventricular, and temporal lobe volumes, FDG-PET numeric summary, CSF 

biomarkers, APOE genotype, age, sex, and body mass index for SVM-based AD and MCI 

classification (Kohannim et al., 2010). In addition, Cui et al. combined average regional 

cortical thickness, standard deviation of thickness, average regional surface area and cortical 

volume from structural MRI with CSF biomarkers and neuropsychological status exam 
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scores (Cui et al., 2011). Features were reduced using mRMR, and SVM was used for 

classification.

3.5.2. Specialized fusion strategies—While the simplicity of straightforward 

concatenation may be considered desirable, the method suffers from a major pitfall: because 

it treats all features as equivalent, it provides no way to account for the different natures of 

features extracted from different modalities (Hinrichs et al., 2011; Liu et al., 2014). For 

instance, where one modality has many more features than another (or has variation on a 

much larger scale), classification algorithms trained on concatenated features may produce 

prediction models that effectively ignore the other modalities. Specialized fusion strategies 

can be used to ensure that the complementary information found across all modalities is still 

used. These strategies may either combine the results of classification rules trained on the 

individual modalities (Dai et al., 2012) or use special combination rules to combine features 

before training (Dyrba et al., 2015b; Zhang, Shen, 2012; Zhang et al., 2011).

These strategies were employed to utilize the complementary information of features 

extracted from structural MRI, rs-fMRI, and DTI for AD classification. Dai et al. used 

regional GM volumetric measures, and functional measures (amplitude of low-frequenc 

fluctuations, regional homogeneit, and regional functional connectivity strength) as features 

(Dai et al., 2012). They trained separate maximum uncertainty LDA classifiers on the 

structural and functional measures, and combined the output of the classifiers via weighted 

voting. Recently, Dyrba et al. used regional GM volumetric measures, average tract intensity 

for FA, MD, and mode of anisotropy, and network measures of weighted local clustering 

coefficient and the shortest weighted path-length calculated from rs-fMRI as features (Dyrba 

et al., 2015b). They adopted multi-kernel SVM for AD classification.

In addition, the features extracted from structural MRI and PET images, as well as CSF 

biomarkers were also fused using these strategies. In this context, regional GM volume, 

regional average FDG-PET intensity, and CSF biomarkers were used as features for AD and 

MCI classification along with multi-kernel learning (Zhang, Shen, 2012; Zhang et al., 2011) 

and multi-task learning (Yu et al., 2016). The same features were also used for prediction of 

conversion from MCI to AD by using domain transfer learning (Cheng et al., 2015b) and 

semi-supervised multimodal manifold-regularized transfer learning (Cheng et al., 2015a). 

Recently, Liu et al. used CSF biomarkers, and shape measures of hippocampus and GM 

volume in atlas-defined ROIs for AD classification using multi-kernel SVM (Liu et al., 

2014). Xu et al. proposed using the GM volume, regional average intensity from FDG-PET 

and Florbetapir images as features (Xu et al., 2015). They assigned different weights to the 

features of different modalities for classification of AD versus MCI subjects, and pMCI 

versus sMCI subjects using a sparse representation-based classification method. Zu et al. 

used regional GM volume, and the regional average FDG-PET intensity for AD and MCI 

classification, and used multi-kernel SVM for classification (Zu et al., 2015).

Furthermore, these strategies were also used to exploit the features of structural MRI, PET, 

and CSF biomarkers together with genetic data and neuropsychological status exam scores. 

In earlier studies, Hinrichs et al. used structural MRI-based density maps, FDG-PET 

intensities, CSF biomarkers, APOE genotype, and neuropsychological status exam scores as 

Rathore et al. Page 16

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



features for multi-kernel SVM-based AD classification, and AD conversion prediction 

(Hinrichs et al., 2011). Young et al. used regional GM volume, regional average FDG-PET 

intensity, and CSF biomarkers along with APOE genotype, and employed Gaussian process 

classifier to train multiple kernels on AD and CN subjects, and test on pMCI and sMCI 

subjects (Young et al., 2013). Also, Gray et al. trained random forest classifiers on regional 

GM volumetric measures, CSF biomarkers, voxel-based FDG-PET intensities, and APOE 

genotype for AD and MCI classification (Gray et al., 2013). Casanova et al. combined 

SPARE-AD index with GM, WM and CSF density maps, total hippocampal volume, 

regional volumetric and cortical thickness measures, and cognitive scores for AD 

classification and prediction of conversion from MCI to AD using large-scale RLR 

(Casanova et al., 2013). In recent studies, Korolev et al. used cortical and subcortical 

volumes, mean cortical thickness, surface area, and curvature from structural MRI, clinical 

measures and plasma measures for AD conversion prediction. They used mutual information 

criterion for feature selection and probabilistic multi-kernel learning for classification 

(Korolev et al., 2016). Similarly, Clark et al. used cognitive scores, cortical thickness 

measures, hippocampal and ventricular volume along with age, sex, and education. They 

selected features using random forest, and used an ensemble of random forests of 

conditional trees, SVM, naive Bayes, and multilayer perceptrons for classification. (Clark et 

al., 2016).

Overall, the multimodal techniques under this category have demonstrated varied 

improvement over single modalities, ranging from 1 to 7%. Almost all the methods 

demonstrated some improvement (Dyrba et al., 2015b), however, no improvement was 

observed using multimodality data as compared to DTI measures alone.

4. Discussion

Recent advances in neuroimaging research suggest that AD pathology can be detected 

preclinically (Perrin et al., 2009). Consequently, an important body of research has been 

devoted to the neuroimaging-based AD/MCI classification and AD conversion prediction 

using various neuroimaging modalities, such as structural MRI, functional MRI, DTI, and 

PET. In this review, we presented only those studies that used appropriate cross-validation 

strategies to assess the performance of their classification frameworks. Among the various 

neuroimaging modalities, structural MRI was the most frequently used, likely due to its 

widespread availability. The second most common method was the combination of features 

from one or more modalities with data levels such as genetic data, cognitive scores, and CSF 

biomarkers. Research based on features extracted from FDG-PET, amyloid-PET, DTI, and 

functional MRI were less common. The main objective in most of the studies reviewed here 

was the production and selection of AD-related inherent features from high-dimensional raw 

neuroimaging data. Therefore, we grouped the classification studies appertaining to each 

modality according to feature extraction methods. Brain atrophy was most often quantified 

via tissue density maps (Casanova et al., 2011; Kloppel et al., 2008), cortical/subcortical 

thickness measurements (Desikan et al., 2009; Wee et al., 2013), and geometric measures of 

hippocampus (Costafreda et al., 2011; Gerardin et al., 2009) from structural MRI. 

Connectivity networks developed on top of the functional strength (Chen et al., 2011; Koch 

et al., 2012) and diffusion measures (Prasad et al., 2015; Wee et al., 2011) of parcellated 
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brain regions were the most common feature extraction methods in functional MRI and DTI, 

respectively. Similarly, the cerebral glucose metabolic rate measured in parcellated brain 

regions was common in FDG-PET (Gray et al., 2012; Pagani et al., 2015). These automated 

feature extraction methods generate a high-dimensional data for further analysis. A wide 

variety of sophisticated and well-established supervised classification algorithms such as 

SVM and LDA have been applied on extracted neuroimaging features for AD/MCI 

classification or AD prediction conversion in different studies.

The main advantage of applying classification algorithms on neuroimaging data is the 

potential use for detecting AD at the prodromal stages, well even before clinical 

manifestation (Misra et al., 2009; Park et al., 2013), demonstrating the probable use in 

routine clinical settings in the future. Among the wide range of classification algorithms, 

SVM was the most frequent for AD classification (Apostolova et al., 2014; Cui et al., 2012; 

Kohannim et al., 2010; Padilla et al., 2012). Multi-kernel learning, which are an extension of 

ordinary kernel-based classification algorithms, were also increasingly used in AD 

classification (Dyrba et al., 2015b; Liu et al., 2014; Zu et al., 2015). Other less common 

classification algorithms used in AD research were LDA (Lillemark et al., 2014; Tang et al., 

2015), orthogonal partial least square regression (Westman et al., 2011), random forest 

(Moradi et al., 2015), regularization-based methods (Casanova et al., 2011), voting-based 

ensemble methods (Liu et al., 2015), kernel SVM decision-tree (Zhang et al., 2014), and 

LPBM (Hinrichs et al., 2009). While SVM could have the advantage of achieving high 

classification accuracy with small training sample size compared to other classification 

algorithms such as neural networks (Shao, Lunetta, 2012), they might have the disadvantage 

of the need for parameter tuning (Chapelle et al., 2002). For neuroimaging AD classification 

it remains important to conduct studies comparing between diverse classification algorithms 

thoroughly, as only limited number of studies have been conducted so far (Khondoker et al., 

2016; Lehmann et al., 2007).

The feature extraction methods summarized here are influenced by several factors that vary 

across studies. One factor is spatial smoothing of structural MRI and FDG-PET, which is 

generally performed to account for noise (i.e. registration errors). Usually, Gaussian 

smoothing of full-width half-max is used for denoising. It is important to note that too small 

kernel size might lead to missing the many regions that might present group differences. 

Conversely, too large kernel may blur image features in regions that display group 

differences from the rest of the regions. An optimal solution has yet to be achieved as the 

kernel size is chosen either ad hoc or empirically. A majority of the reviewed studies used a 

Gaussian kernel of 8 mm for both structural MRI (Misra et al., 2009; Moradi et al., 2015) 

and FDG-PET (Gray et al., 2013; Pagani et al., 2015; Zhang et al., 2011; Zhu et al., 2014). 

However, kernels of other sizes, such as 10 mm for structural MRI (Dai et al., 2012; Plant et 

al., 2010) and 15 mm for FDG-PET (Fan et al., 2008b), were rarely used. An additional 

factor that influences the atlas-based methods is the selection of the atlas itself. Atlas-based 

parcellation using a pre-defined anatomical brain atlas is a methodologically simple and 

computationally tractable feature extraction method, with general versatility (Ota et al., 

2015; Zhang et al., 2011). However, the choice of atlas will have an effect on classification 

performance. It has been shown that features extracted based on different anatomical 

parcellations lead to differences in classification performance under similar experimental 
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conditions (Ota et al., 2014, 2015). These differences in classification performances may be 

associated with changes in parcellation between atlases, for example, the cerebellum region. 

The LONI probabilistic brain atlas considers the cerebellum as one single region, whereas 

the AAL atlas finely parcellates the cerebellum into 26 smaller regions.

In addition to feature extraction and classification, feature selection is also important for 

identifying distinguishing features. Selection of appropriate features not only removes the 

non-informative signal, but also reduces the computational time involved in classification. 

Two widely adopted methods for feature selection are biologically informed and automated 

feature selection. The former relies on prior biological knowledge about the discriminating 

ability of certain regions, generally obtained from existing literature, whereas the latter 

selects features based on general data characteristics, without prior knowledge. Among the 

automated methods, various ranking-based methods, such as t-tests (Tang et al., 2016; Wee 

et al., 2013) and earson’s correlation coefficient test (Davatzikos et al., 2008; Wee et al., 

2011), wrapper-based methods, a combination of ranking and wrapper-based methods, such 

as mRMR (Wee et al., 2013), and embedded methods, such as elastic net regression, were 

used in the reviewed studies, and improved the classification performance. It is feasible that 

variations in feature-selection methods will lead to differences in AD classification 

performance. It has been suggested that automated feature selection will not improve 

classification accuracy as compared to biologically informed feature selection, driven by 

prior biological knowledge of regions typically affected by AD, such as the hippocampus, 

amygdala, thalamus, and caudate (Chu et al., 2012). Similar results were observed in the 

Pittsburgh Brain Activity Interpretation Competition, wherein the team applying prior 

biological knowledge for feature selection (Chu et al., 2011) outperformed the teams using 

automated feature selection. In addition, the winning method (Sørensen et al., 2014) in the 

recent CADDementia 2015 challenge (Bron et al., 2015) was also based on biologically 

informed feature selection.

4.1. AD classification studies comparison

The key components of each classification study, such as prediction accuracy, study 

population, and feature types were summarized in table format in this review. It should be 

emphasized that these tables are meant to provide a glance to each individual study and not 

for comparative purposes. Frequently throughout reviewing these studies, authors stated that 

their proposed classification framework was superior to existing ones solely on the basis of 

the achieved accuracy. However, we believe that considering the number of factors involved 

in each study, summarized below, it is difficult to compare these studies directly and 

therefore to draw general conclusions about the state of the field as a whole.

Length of follow-up period—The length of the follow-up period for defining MCI 

conversion also varied from a minimum of 6 months to a maximum of 36 months across 

different studies. It is well-known that the level of neurodegeneration, and hence, the rate of 

AD prediction increases as the MCI subjects progress on a continuum from the CN state to 

the AD state (Cabral et al., 2015; Eskildsen et al., 2013). Therefore, we believe that the 

prediction performance of various studies cannot be compared directly, considering the 

different lengths of the follow-up periods.
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Study population—Baseline characteristics of the study population, such as gender, age, 

genotype (APOE), and education are considered to be confounding factors in AD 

classification. These factors may have a profound effect on key features extracted from the 

neuroimaging modalities and therefore on the resultant classification accuracies. AD 

classification studies in general differ in how they deal with the confounding factors, i.e., the 

number of confounding factors that need to be considered, and how they are considered, etc. 

In the past, confounding factors have mainly been dealt with by matching the subjects in 

different groups according to the factors or by using confounding factors as covariates in a 

statistical model, in order to remove their effect from the model. However, increasing 

attention has been given to this issue in recent years, and several automated methods have 

now been proposed to control for the effects of confounding factors (Dukart et al., 2011b; Li 

et al., 2011).

Degree of impairment—An objective, final diagnosis of AD can only be made through 

autopsy and therefore is rarely used (Kloppel et al., 2008). Even then, the disease stage at 

autopsy can be very different from the disease stage determined by scanning. Alternatively, 

clinical diagnostic criteria for AD (McKhann et al., 2011) and MCI (Petersen, 2004) are 

used in practice as a reference standard for evaluation. The MCI diagnosis based on these 

criteria leads to a clinically heterogeneous mix of more and less impaired patients, where 

each patient presents a disease stage on a continuum from CN to AD (Misra et al., 2009). A 

more severely impaired MCI group, when MCI is used as one diagnostic entity, may show 

larger structural differences from healthy individuals, leading to potentially higher 

classification accuracies.

Evaluation metrics—Classification performance in some of the studies reviewed here 

was only reported in terms of classification accuracy. The measure of classification accuracy 

by itself could be uninformative in unbalanced datasets and cannot be used for comparison. 

For instance, a 90% classification accuracy in a dataset of 90 diseased and 10 healthy 

individuals does not convey any information, since a biased classification algorithm that 

classifies all the subjects as diseased can also lead to a 90% classification accuracy. 

Therefore, we believe that balanced accuracy; sensitivity/specificity or precision/recall, 

along with the area under a receiver-operating-characteristic curve should be reported for 

direct comparison of results.

Factors affecting the performance of classification algorithms—The expected 

performance of a classification algorithm is defined by two factors. The first is the number 

of subjects in the training set and the second is the relative proportion of subjects from each 

class present in the test set. Mostly the first factor is determined by the sample size available 

for training, and by the cross-validation strategy used in the experiment. The larger the 

number of subjects in the training set, the better the generalizability of the classification 

algorithm. The second factor could affect the classification accuracy as depending on class 

relative proportion, the sensitivity and specificity of a classification algorithm could differ. 

This factor can be easier to fix, as stratification is becoming increasingly common, and 

subjects of different classes are selected based on matched demographic characteristics.
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The choice of the split-in-train-test or k-fold cross-validation strategies, adopted in the 

classification framework, influences the statistical significance of the classification accuracy 

(Mendelson et al., 2014), which can be calculated via binomial or permutation tests 

(Noirhomme et al., 2014). The split-in-train-test assumes independence between the training 

and test sets, which is the key to binomial tests. However, the split-in-train-test can generally 

be limited in some medical applications where classification algorithms are trained on small 

number of subjects. Consequently, k-fold cross-validation is more commonly applied. K-

fold cross-validation does not hold the independence assumption, as the training subjects in 

different iterations could overlap; therefore, permutation tests are feasible for evaluating the 

statistical significance of k-fold cross-validation strategies (Noirhomme et al., 2014). It has 

been suggested that 10-fold or 5-fold cross-validation should be used to establish a trade-off 

between bias and variance (Lemm et al., 2011). Furthermore, it has been suggested that 

permutation tests should be used along with cross-validation, especially when dealing with a 

small sample size (Noirhomme et al., 2014).

4.2. Challenges with AD classification studies

Generalization ability—A critical challenge underlying the clinical use of AD 

classification frameworks is the ability of predictive models that allow good generalization 

to new patient data. Ideally, the models should be able to perform well regardless of the 

variability of imaging protocols, scanners (Abdulkadir et al., 2011) and demographics, and 

should be free of double-dipping, a phenomenon very common in older studies. The term 

double-dipping, or circular analysis, refers to the use of test subjects in any part of the 

training process, such as selection of features and training of classification algorithm, and 

may lead to over-fitted classification (Kriegeskorte et al., 2009). To conduct a fair validation, 

one should avoid double-dipping by excluding the test subjects used in the subsequent 

validation of the classification algorithms from the process of feature selection and training 

of the classification algorithm. Double-dipping was quite common in feature selection in 

older studies (Querbes et al., 2009; Wolz et al., 2011); however, it has become less common 

as its effects became clearer. In order to encourage the development of classification 

frameworks that are generalizable to new datasets, the neuroimaging community has 

organized more AD classification challenges, in which different researchers attempt to solve 

the classification problem by leveraging the current state-of-the-art techniques on publicly 

available datasets.

For example, the purpose of CADDementia 2015 challenge (Bron et al., 2015) was to 

measure the generalizability of structural MRI-based classification studies on unseen 

subjects, where the best performing study yielded an area under the receiver-operating-

characteristic curve of 78.8%. Similarly, the main aim of the DREAM 2016 challenge (Allen 

et al., 2016) was to identify accurate biomarkers of cognitive decline for advancing early 

diagnosis. These challenges not only help to determine the generalizability of any study, but 

also enable fair performance comparison of different studies on the same dataset, which 

would otherwise not be possible due to different experimental conditions across distinct 

studies. Furthermore, efforts have been made to standardize comparison of various studies 

on the same dataset, such as in the study of Cuingnet et al., in which the authors evaluated 

the performances of 10 studies using the ADNI dataset (Cuingnet et al., 2011).
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Sample size—It is generally believed that smaller datasets do not capture the full spectrum 

of heterogeneity among different classes and therefore, may be less generalizable on unseen 

patient data, whereas opposite is true for larger datasets. Nonetheless, quite different results 

were seen in CADDementia 2015 challenge (Bron et al., 2015), where the studies training 

classification algorithms on larger training sets (Abdulkadir et al., 2014; Eskildsen et al., 

2014) did not perform better than the studies training classification algorithms on relatively 

smaller datasets. Therefore, the minimum sample size required for training a generalizable 

classification model remains debatable.

Reproducibility—Disregard of the appropriate packaging of classification frameworks, 

where numerical solutions could lead to different experimentation conditions, and the use of 

local datasets or a subset of a larger public dataset without providing detailed subject level 

identification, are the main factors hindering the reproducibility of existing results and 

comparison between study findings. We highly encourage reporting the results derived from 

public datasets, and appropriate listing of the subjects, as had been done in a few studies 

(Moradi et al., 2015; Zhang et al., 2011). We also recommend that authors attend to the 

proper packaging and availability of their code, particularly in cases where sophisticated 

feature extraction and classification algorithms have been used, as this can markedly 

improve reproducibility.

AD heterogeneity—The heterogeneity of AD necessitates a definition of distinct 

clinicopathological subtypes of AD. While AD has been stereotypically defined using the 

Braak stages, atypical AD cases do not fit into this scheme. For example, a recent study has 

shown that hippocampal sparing and limbic-predominant AD subtypes might account for 

about 25% of AD cases (Murray et al., 2011). Simplistic measures, such as the ratio of 

hippocampal to cortical volumes, showed a high discrimination ability between the subtypes 

(Whitwell et al., 2012). Other studies used clustering-based approaches for defining the AD 

pattern; a recent study made use of cortical thickness clustering and showed that AD in the 

earlier stages can be categorized into various anatomical subtypes, with distinct clinical 

features (Noh et al., 2014). By including additional biomarkers, such as cerebrospinal fluid 

and serum biomarkers, four clusters emerged with distinct biomarker patterns, the first of 

which was biologically similar to healthy individuals and which rarely converted to AD 

(Nettiksimmons et al., 2014). We believe that the heterogeneity of AD patterns has been 

widely ignored in the existing AD classification studies, and more attention should be paid 

to this line of research in future. The development of tools that can deal with heterogeneous 

imaging patterns is important and should become an area of focus (Dong et al., 2016a; Dong 

et al., 2016b; Varol et al., 2017). It is likely that systematic quantification of heterogeneity is 

critical for developing effective personalized diagnostic and predictive tools using machine 

learning.

4.3. Conclusion and future directions

Neuroimaging-based classification of AD and MCI has increasingly been reported in the 

literature over the past decade, as a means to derive individual biomarkers of these 

conditions. The ultimate goal of AD classification is to generate an individual diagnosis 

using a single MRI scan by applying classification models already trained on a large pool of 
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diseased and healthy individuals, and to predict future progression at earlier disease stages. 

Several neuroimaging modalities, as discussed in this review, including structural and 

functional MRI, DTI, FDG-PET, and amyloid-PET, have shown characteristic alterations in 

the brains of AD and MCI patients that can help rule-in the pathophysiological process of 

AD. No single neuroimaging modality can be sufficient, as each has complementary merits 

and limitations. Combining information from multiple modalities has improved the 

classification performance of AD/MCI and AD conversion prediction. In addition, the 

combination of features extracted from neuroimaging modalities with demographics, 

cognitive test scores, CSF biomarkers, and genetic data were also effective in achieving 

accurate classification. However, there is a great need for validation of these markers in 

clinical settings, along with their validation in databases comprising highly preselected 

subjects, which significantly differ from that seen in the clinic. Some challenges faced by the 

researchers in the field of AD classification, such as high dimensions of raw neuroimaging 

data, smaller sample sizes, generalizability, and heterogeneity in AD, make it difficult to 

derive a more precise classification. However, the use of neuroimaging for AD classification 

remains highly promising, as many of the aforementioned challenges can be addressed.

The potential consideration of classification frameworks in clinical practice has largely 

driven the development of machine-learning tools that can integrate several imaging features 

and make predictions on an individual basis. This line of research is likely to become a 

focus-point in the upcoming decade. In addition, multimodal approaches that seek to find 

patterns of neurodegeneration across different types of images that form distinctive imaging 

signatures of the stages of AD, and consensus-based approaches, which tend to improve 

classification by combining the output of multiple classification algorithms, are also gaining 

increasing attention. Biologically informed feature selection, and characterization of 

heterogeneity of AD are also important lines of research that are likely to be emphasized in 

future studies.
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Abbreviations (Acronym Abbreviation)

AAL Automated anatomical labeling

AD Alzheimer’s disease

ADNI Alzheimer’s disease neuroimage initiative

AUC Area under a receiver-operating-characteristic curve

CN Cognitively normal
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CSF Cerebrospinal fluid

DMAF Density maps as features

DMN Default mode network

DTI Diffusion tensor imaging

FDG-PET Fluorodeoxyglucose positron emission tomography

fMRI Functional magnetic resonance imaging

GM Gray matter

LDA Linear discriminant analysis

LPBM Linear program boosting method

LR Logistic regression

MCI Mild cognitive impairment

MRI Magnetic resonance imaging

mRMR Minimum-redundancy and maximum-relevance

OASIS Open access series of imaging initiatives

pMCI Progressive mild cognitive impairment

RAVENS Regional analysis of volumes examined in normalized space

ROI Region of interest

RLR Regularized logistic regression

RVM Relevance vector machines

rs-fMRI Resting state functional magnetic resonance imaging

sMCI Stable mild cognitive impairment

sMRI Structural magnetic resonance imaging

SPARE-AD Spatial pattern of abnormality for recognition of early Alzheimer’s disease

SVM Support vector machines

SVM-RFE Support vector machines-recursive feature elimination

VAF Voxels as features

VBM Voxel based morphometry

WM White matter
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Figure 1. 
A top-level layout of neuroimaging-based classification framework for AD classification
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Figure 2. 
A top-level breakdown of structural MRI-based classification studies for AD classification
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Figure 3. 
A top-level breakdown of multimodality-based classification studies for AD classification
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