Skip to main content
. Author manuscript; available in PMC: 2018 Jul 15.
Published in final edited form as: Neuroimage. 2017 Apr 13;155:530–548. doi: 10.1016/j.neuroimage.2017.03.057

Table 2.

A brief description of the datasets used for the validation of cortical thickness-based AD classification frameworks

Study Subjects
Type Classification algorithm Database Classification accuracy
AD MCI pMCI sMCI CN AD/CN AD/MCI MCI/CN sMCI/pMCI
(Li et al., 2014b) 24 26 VAF SVM XWH 80.00
(Cho et al., 2012) 128 72 131 160 RV LDA ADNI 88.33 71.21
(Park et al., 2012) 25 25 50 RV SVM OASIS 90.00 90.00 86.00
(Park et al., 2013) 30 12 30 RV SVM ADNI 83.001 90.00
(Desikan et al., 2009) 65 57 94 Atlas LR ADNI 95.00 95.00
(McEvoy et al., 2009) 84 175 139 Atlas LDA ADNI 89.00
(Oliveira et al., 2010) 14 20 Atlas SVM DPUSP 88.20
(Eskildsen et al., 2013) 194 340 134 226 Atlas LDA ADNI 86.70 71.10
(Eskildsen et al., 2013) 29 (36) 134 Atlas LDA ADNI 77.30
(Eskildsen et al., 2013) 61 (24) 134 Atlas LDA ADNI 73.00
(Eskildsen et al., 2013) 128 (12) 134 Atlas LDA ADNI 74.50
(Eskildsen et al., 2013) 122 (06) 134 Atlas LDA ADNI 80.90
(Wee et al., 2013) 198 89 111 200 Atlas Multi-kernel SVM ADNI 92.35 79.24 83.75 75.05
(Lillemark et al., 2014) 114 240 170 Atlas LDA ADNI 87.70* 76.60* 78.40*

RV = Reduced vertex-wise

XWH = Xuan Wu Hospital, Beijing, China

D Department of s chiatr, niversit of ao aulo, ao aulo, razil

1

= prediction of conversion from MCI to AD

*

shows AUC.

The first entry for (Eskildsen et al., 2013) shows the classification accuracy by using all the sMCIs and pMCIs. The remaining entries show the classification between sMCI and different sets of pMCI subjects, divided according to their time of conversion from sMCI to pMCI. Numbers of months are shown in parenthesis against pMCI subjects.