Table 7.
Subjects
|
Type | Classification algorithm | Database | Classification accuracy
|
||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AD | MCI | pMCI | sMCI | CN | AD/CN | MCI/CN | AD/MCI | sMCI/pMCI | ||||
(Fan et al., 2008b) | — | 15 | — | — | 15 | SFC | SVM | BLSA | — | 90.00 | — | — |
(Vemuri et al., 2008) | 190 | — | — | — | 190 | SFC | SVM | ADNI | 89.30 | — | — | — |
(Kohannim et al., 2010) | 158 | 264 | — | — | 213 | SFC | SVM | ADNI | 93.81 | 75.49 | — | — |
(Davatzikos et al., 2011) | — | — | 69 | 170 | — | SFC | SVM | ADNI | — | — | — | 61.70 |
(Dukart et al., 2011a) | 21 | — | — | — | 13 | SFC | SVM | Leipzig | 100.00 | — | — | — |
(Cui et al., 2011) | 96 | — | 56 | 87 | 111 | SFC | SVM | ADNI | — | — | — | 67.13 |
(Cui et al., 2012) | — | 79 | — | — | 204 | SFC | SVM | SMAS | — | 71.09 | — | — |
(Dukart et al., 2013) | 49 | — | — | — | 41 | SFC | SVM | ANDI+Leipzig | 90.001 | — | — | — |
(Zhang et al., 2014) | 24 | 57 | — | — | 97 | SFC | Kernel SVM decision-tree | OASIS | 96.00 | 85.00 | 88.00 | — |
(Zhu et al., 2014) | 51 | 99 | — | — | 52 | SFC | SVM | ADNI | 95.90 | 82.00 | — | — |
(Li et al., 2014a) | 21 | — | — | — | 15 | SFC | SVM | TH | 94.30 | — | — | — |
(Apostolova et al., 2014) | 95 | 182 | — | — | 111 | SFC | SVM | ADNI | 85.00 | 79.00 | 70.00 | — |
(Moradi et al., 2015) | 200 | — | 164 | 100 | 231 | SFC | LDS,Random forest | ADNI | — | — | — | 81.72 |
(Zheng et al., 2015) | 163 | — | 104 | 94 | 189 | SFC | SVM | ADNI | 92.11 | — | — | 79.37 |
(Tang et al., 2016) | 29 | — | — | — | 23 | SFC | LDA+SVM | TH | 94.60 | — | — | — |
(Schouten et al., 2016) | 77 | — | — | — | 173 | SFC | Elastic net classifier | PRODEM | 93.00 | — | — | — |
(Clark et al., 2016) | — | 24 | — | — | — | SFS | Ensemble classifier | ADRC | — | — | 87.202 | — |
(Hinrichs et al., 2011) | 48 | 119 | — | — | 66 | SFS | Multi-kernel SVM | ADNI | 92.40 | — | — | — |
(Zhang et al., 2011) | 51 | 99 | — | — | 52 | SFS | Multi-kernel SVM | ADNI | 93.20 | 76.40 | — | — |
(Dai et al., 2012) | 16 | — | — | — | 22 | SFS | Ensemble of MU-LDA | XWH | 89.47 | — | — | — |
(Zhang, Shen, 2012) | 45 | 91 | — | — | 50 | SFS | Multi-kernel SVM | ADNI | 93.33 | 83.20 | — | — |
(Young et al., 2013) | 63 | — | 47 | 96 | 73 | SFS | Gaussian process classifier | ADNI | — | — | — | 74.00 |
(Gray et al., 2013) | 37 | — | 34 | 41 | 35 | SFS | Random forest | ADNI | 89.00 | 74.60 | — | 58.00 |
(Casanova et al., 2013) | 171 | — | 153 | 182 | 188 | SFS | RLR | ADNI | 87.10 | — | — | 63.00 |
(Liu et al., 2014) | 50 | — | — | — | 70 | SFS | Multi-kernel SVM | ADNI | 87.12 | — | — | — |
(Xu et al., 2015) | 113 | — | 27 | 83 | 117 | SFS | SRC | ADNI | 94.80 | 74.50 | — | 77.80 |
(Zu et al., 2015) | 51 | — | 43 | 56 | 52 | SFS | Multi-kernel SVM | ADNI | 95.95 | 80.26 | — | 69.78 |
(Cheng et al., 2015b) | 51 | — | 43 | 56 | 52 | SFS | Domain transfer SVM | ADNI | — | 86.40 | 82.70 | 79.40 |
(Cheng et al., 2015a) | 51 | — | 43 | 56 | 52 | SFS | M2TL | ADNI | — | — | — | 80.10 |
(Dyrba et al., 2015b) | 28 | — | — | — | 25 | SFS | Multi-kernel SVM | EDSD | 85.00 | — | — | — |
(Korolev et al., 2016) | — | — | 139 | 120 | — | SFS | Probabilistic multi-kernel | ADNI | — | — | — | 80.00 |
(Yu et al., 2016) | 50 | 97 | — | — | 52 | SFS | Multi-task learning | ADNI | 92.60 | 80.00 | — | — |
SFC = Straightforward feature concatenation
SFS = Specialized fusion strategies LDS = Low density separation
SRC = Sparse representation-based classification
MU-LDA = Maximum uncertainty-linear discriminant analysis
M2TL = Multimodal manifold-regularized transfer learning
TH = Tongji hospital, Wuhan, China
SMAS = Sydney memory and aging study
XWH = Xuan wu hospital, Beijing, China
PRODEM = Prospective registry on dementia in Austria
ADRC = Alzheimer disease research center, Washington University school of medicine, St. Louis, Missouri
= Accuracy for the combined ADNI+Leipzig cohort
= Prediction of conversion from MCI to AD (AUC)