Skip to main content
. Author manuscript; available in PMC: 2018 Jul 15.
Published in final edited form as: Neuroimage. 2017 Apr 13;155:530–548. doi: 10.1016/j.neuroimage.2017.03.057

Table 7.

A brief description of the datasets used for the validation of various multimodality based AD classification frameworks

Subjects
Type Classification algorithm Database Classification accuracy
AD MCI pMCI sMCI CN AD/CN MCI/CN AD/MCI sMCI/pMCI
(Fan et al., 2008b) 15 15 SFC SVM BLSA 90.00
(Vemuri et al., 2008) 190 190 SFC SVM ADNI 89.30
(Kohannim et al., 2010) 158 264 213 SFC SVM ADNI 93.81 75.49
(Davatzikos et al., 2011) 69 170 SFC SVM ADNI 61.70
(Dukart et al., 2011a) 21 13 SFC SVM Leipzig 100.00
(Cui et al., 2011) 96 56 87 111 SFC SVM ADNI 67.13
(Cui et al., 2012) 79 204 SFC SVM SMAS 71.09
(Dukart et al., 2013) 49 41 SFC SVM ANDI+Leipzig 90.001
(Zhang et al., 2014) 24 57 97 SFC Kernel SVM decision-tree OASIS 96.00 85.00 88.00
(Zhu et al., 2014) 51 99 52 SFC SVM ADNI 95.90 82.00
(Li et al., 2014a) 21 15 SFC SVM TH 94.30
(Apostolova et al., 2014) 95 182 111 SFC SVM ADNI 85.00 79.00 70.00
(Moradi et al., 2015) 200 164 100 231 SFC LDS,Random forest ADNI 81.72
(Zheng et al., 2015) 163 104 94 189 SFC SVM ADNI 92.11 79.37
(Tang et al., 2016) 29 23 SFC LDA+SVM TH 94.60
(Schouten et al., 2016) 77 173 SFC Elastic net classifier PRODEM 93.00
(Clark et al., 2016) 24 SFS Ensemble classifier ADRC 87.202
(Hinrichs et al., 2011) 48 119 66 SFS Multi-kernel SVM ADNI 92.40
(Zhang et al., 2011) 51 99 52 SFS Multi-kernel SVM ADNI 93.20 76.40
(Dai et al., 2012) 16 22 SFS Ensemble of MU-LDA XWH 89.47
(Zhang, Shen, 2012) 45 91 50 SFS Multi-kernel SVM ADNI 93.33 83.20
(Young et al., 2013) 63 47 96 73 SFS Gaussian process classifier ADNI 74.00
(Gray et al., 2013) 37 34 41 35 SFS Random forest ADNI 89.00 74.60 58.00
(Casanova et al., 2013) 171 153 182 188 SFS RLR ADNI 87.10 63.00
(Liu et al., 2014) 50 70 SFS Multi-kernel SVM ADNI 87.12
(Xu et al., 2015) 113 27 83 117 SFS SRC ADNI 94.80 74.50 77.80
(Zu et al., 2015) 51 43 56 52 SFS Multi-kernel SVM ADNI 95.95 80.26 69.78
(Cheng et al., 2015b) 51 43 56 52 SFS Domain transfer SVM ADNI 86.40 82.70 79.40
(Cheng et al., 2015a) 51 43 56 52 SFS M2TL ADNI 80.10
(Dyrba et al., 2015b) 28 25 SFS Multi-kernel SVM EDSD 85.00
(Korolev et al., 2016) 139 120 SFS Probabilistic multi-kernel ADNI 80.00
(Yu et al., 2016) 50 97 52 SFS Multi-task learning ADNI 92.60 80.00

SFC = Straightforward feature concatenation

SFS = Specialized fusion strategies LDS = Low density separation

SRC = Sparse representation-based classification

MU-LDA = Maximum uncertainty-linear discriminant analysis

M2TL = Multimodal manifold-regularized transfer learning

TH = Tongji hospital, Wuhan, China

SMAS = Sydney memory and aging study

XWH = Xuan wu hospital, Beijing, China

PRODEM = Prospective registry on dementia in Austria

ADRC = Alzheimer disease research center, Washington University school of medicine, St. Louis, Missouri

1

= Accuracy for the combined ADNI+Leipzig cohort

2

= Prediction of conversion from MCI to AD (AUC)