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Abstract

Key message A total of 204,439 SSR markers were
developed in diploid genomes, and 25 QTLs for shelling
percentage were identified in a RIL population across
4 years including five consistent QTLs.

Abstract Cultivated peanut (Arachis hypogaea L.) is an
important grain legume providing edible oil and protein for
human nutrition. Genome sequences of its diploid ances-
tors, Arachis duranensis and A. ipaensis, were reported, but
their SSRs have not been well exploited and utilized hith-
erto. Shelling percentage is an important economic trait
and its improvement has been one of the major objectives
in peanut breeding programs. In this study, the genome
sequences of A. duranensis and A. ipaensis were used to
develop SSR markers, and a mapping population (Yuanza
9102 x Xuzhou 68-4) with 195 recombinant inbred lines
was used to map QTLs controlling shelling percentage. The
numbers of newly developed SSR markers were 84,383
and 120,056 in the A. duranensis and A. ipaensis genomes,
respectively. Genotyping of the mapping population was
conducted with both newly developed and previously
reported markers. QTL analysis using the phenotyping
data generated in Wuhan across four consecutive years and
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genotyping data of 830 mapped loci identified 25 QTLs
with 4.46-17.01% of phenotypic variance explained in the
four environments. Meta-analysis revealed five consistent
QTLs that could be detected in at least two environments.
Notably, the consistent QTL cgSPA09 was detected in all
four environments and explained 10.47-17.01% of the phe-
notypic variance. The segregation in the progeny of a resid-
ual heterozygous line confirmed that the ¢pSPAO9 locus
had additive effect in increasing shelling percentage. These
consistent and major QTL regions provide opportunity not
only for further gene discovery, but also for the develop-
ment of functional markers for breeding.

Introduction

Cultivated peanut (Arachis hypogaea L.), also known as
groundnut, is an allotetraploid (AABB, 2n = 4x = 40)
grain legume native to South America, but now grown in
diverse environments in six continents between latitudes
40°N and 40°S (Sharma and Bhatnagar-Mathur 2006).
It provides edible oil and protein for human nutrition. In
2014, the annual production of peanut (pods without shell-
ing) was around 42.32 million tones throughout the world
(FAOSTAT 2014). Cultivated peanut was formed through
the natural hybridization of its two diploid ancestors,
A. duranensis (AA, 2n = 2x = 20) and A. ipaensis (BB,
2n = 2x = 20). Because the assembly of chromosomal
pseudomolecules of cultivated peanut is very challeng-
ing, the genome sequences of its diploid ancestors were
reported recently, providing a foundation in understanding
the genome of cultivated peanut (Bertioli et al. 2016).
Shelling percentage (SP) is an important economic trait
in peanut production. Peanut pod has two parts: kernel
and hull (Fig. 1a). Kernels (seeds) contain rich edible oil,
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Fig. 1 Phenotypic variation (a)
of shelling percentage in the
RIL population. a Phenotypic
difference between the parents.
b Phenotypic distribution of
shelling percentage in the RIL
population across 4 years. The
y-axis represented density,
while the x-axis represented
shelling percentage (%). The
dotted line represented the
shelling percentage of Xuzhou
68-4, and the dashed line repre-
sented the shelling percentage
of Yuanza 9102
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proteins, amino acids, and vitamin E, and are consumed
worldwide as edible nut, peanut butter, or candy, and pea-
nut oil extracted from the seeds (Bertioli et al. 2016; Ozu-
dogru et al. 2013). The shelling of peanut hull is the first
step needed to transform the peanut materials into a prod-
uct (Guzel et al. 2005). Shelling percentage (weight of
kernels/weight of pods) significantly varied among peanut
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varieties. For example, Jiang et al. (2013) reported that the
shelling percentages of the Chinese core collection of pea-
nut (574 accessions) ranged from 59.9 to 81.0%. Therefore,
there is a great potential in the genetic improvement of
shelling percentage in peanut breeding.

Quantitative trait locus (QTL) mapping has been widely
conducted to identify the genomic regions associated with
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economically important traits. Molecular markers tightly
linked to QTLs can be developed and further deployed in
marker-assisted breeding (Janila et al. 2016; Sukruth et al.
2015; Varshney et al. 2014). Because of abundance, easy
to use, and highly polymorphic, SSR markers were devel-
oped (Cuc et al. 2008; Ferguson et al. 2004; Gimenes et al.
2007; Guo et al. 2009; He et al. 2003; Hopkins et al. 1999;
Moretzsohn et al. 2005; Shirasawa et al. 2012; Zhou et al.
2016) and widely used in the QTL mapping of disease
resistance (Leal-Bertioli et al. 2015; Shoha et al. 2013),
drought tolerance (Gautami et al. 2012; Ravi et al. 2011),
quality traits (Mondal et al. 2015; Pandey et al. 2014),
agronomic and yield traits (Faye et al. 2015; Huang et al.
2015) in cultivated peanut. However, SSR markers have
not been screened on whole-genome level in the Arachis
genus. Although genome sequences of A. duranensis and
A. ipaensis were reported, their SSRs have not been well
exploited and utilized hitherto.

Limited efforts were made in identifying QTLs control-
ling shelling percentage in cultivated peanut. Faye et al.
(2015) detected two QTLs for shelling percentage with
5.74-6.97% phenotypic variant explained (PVE) under
water stress condition in a RIL population. Huang et al.
(2015) identified three QTLs for shelling percentage in
an F,.; population, including gSPA5 (6.08% PVE), gSPA7
(11.78% PVE), qSPA9 (2.00% PVE). These QTLs were
detected only in single environment. Jiang et al. (2014)
reported five, two and two significant associated alleles
for shelling percentage in three field trials, respectively,
through association analysis in Chinese peanut mini-core
collection of 298 accessions. Only one SSR allele, 9B4-
260, was associated with shelling percentage in all three
trials (1.49-2.98% PVE) (Jiang et al. 2014). No major
QTLs were reported to be consistently expressed so far.
Therefore, it is necessary to identify major and consistent
QTLs of shelling percentage in order to accelerate the pro-
cess of genetic improvement in peanut breeding programs.

In this study, SSRs markers were developed in the A.
duranensis and A. ipaensis genomes, and a mapping pop-
ulation (Yuanza 9102 x Xuzhou 68-4) with 195 recombi-
nant inbred lines (RILs) was used to map QTLs controlling
shelling percentage in Wuhan, China, in four consecutive
years. The peanut cultivar Yuanza 9102 showed signifi-
cantly higher shelling percentage than Xuzhou 68-4 in pre-
vious screening of the Chinese peanut core collection.

Materials and methods

Plant materials and phenotyping

A mapping population comprising 195 recombinant inbred
lines (RILs) was developed by crossing peanut cultivar

Yuanza 9102 and Xuzhou 68-4 and advanced to the F5 gen-
eration by single seed descent method (Luo et al. 2017).
The female parent, Yuanza 9102, belongs to A. hypogaea
subsp. hypogaea var. vulgaris and is derived from inter-
specific hybridization between the cultivated peanut Bai-
shal016 and wild species A. diogoi. The male parent,
Xuzhou 68-4, belongs to A. hypogaea subsp. hypogaea
var. hypogaea and has larger pods but significantly lower
shelling percentage than the female parent, Yuanza 9102
(Fig. 1a). The RIL population was used as mapping popula-
tion to validate the quality of newly developed SSR mark-
ers, to construct a dense genetic map and to conduct QTL
analysis for shelling percentage in this study. Generations
Fs—F; of the RIL population were used in the present study
for generating phenotyping data followed by QTL analysis.

The RIL population and the two parents were planted in
the experimental field in OCRI-CAAS, Wuhan, China, in
four consecutive years from 2013 to 2016. These experi-
ments were treated as four environments and designated
as Wuhan2013, Wuhan2014, Wuhan2015 and Wuhan2016
in this study. In each environment, the 195 RILs and the
two parents were planted in a randomized complete block
design with three replications. Each plot contained one
row, with 12 plants in each row, 20 cm between plants
and 30 cm between rows. Field management followed the
standard agricultural practices. Eight representative plants
in the middle of each row were harvested to investigate
shelling percentage (SP = % x 100%), accord-
ing to previously described standard procedures (Huang
et al. 2015; Jiang et al. 2006).

Statistical analysis for the phenotypic data of shelling
percentage was conducted using IBM SPSS Statistics Ver-
sion 22 software. Treating the year as a single environment,
the univariate variance analyses were performed with stand-
ard GLM method and variance components were estimated
by restricted maximum likelihood (REML) method. The
broad-sense heritability across the four environment trials
was calculated based on the estimated variance components
with the following formula: H? = <7g2/(<7g2 + agzxe +02)
based on plot mean and H? = og /(05 + 05, ./r + 0 /rn)
based on entry mean, where ng is the genotypic variance
component among RILs, ngxe is the RILs x environment
interaction variance component, aez is the residual (error)
variance component, and r is the number of environment
trials, n is the number of replications in each field trials
(Holl and Nyquist 2010).

Development of SSR marker in the genome sequences
of A. duranensis and A. ipaensis

Genome sequences of A. duranensis and A. ipaensis were
downloaded from the PeanutBase (Bertioli et al. 2016).
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SSR motifs were identified using the MISA script (Thiel
2014). For normal microsatellites, a minimum of 10, 6, 5,
5, 5 and 5 repeats were required for detecting mono-, di-,
tri-, tetra-, penta- and hexa-nucleotide motifs, respectively.
Compound microsatellites were interrupted by less than
100 base pairs. Primer3 software (https://sourceforge.net/
projects/primer3/) was used to design SSR markers with
the following parameters: minimum, maximum, and opti-
mal sizes were 18, 27, and 20 nt, respectively; minimum
and maximum GC content were 20 and 80%, respectively;
minimum, maximum, and optimal Tm were 57, 63, and
60 °C, respectively; and product size range was from 100
to 300 bp. These markers were referred as newly developed
markers in this context and designated with an initial let-
ter ‘Ad’ and ‘Ai’ for A. duranensis and A. ipaensis, respec-
tively, followed by the chromosome number, the corre-
sponding subgenome character and an identifier.

Genotyping of mapping population and construction
of genetic map

A total of 2240 newly developed markers (Table S3) as
well as 7200 previously reported markers (Bravo et al.
2006; Cuc et al. 2008; Ferguson et al. 2004; Gimenes et al.
2007; Guo et al. 2009, 2012; He et al. 2003; Hopkins et al.
1999; Hoshino et al. 2006; Huang et al. 2016b; Koilkonda
et al. 2012; Leal-Bertioli et al. 2009; Macedo et al. 2012;
Moretzsohn et al. 2005, 2009; Moretzsohn Mde et al. 2004;
Nagy et al. 2010; Naito et al. 2008; Shirasawa et al. 2012;
Wang et al. 2012a; Zhou et al. 2016) were used to screen
polymorphism between the two parental genotypes. Poly-
morphic markers were used to genotype individual RILs.
Based on known genomic positions, the 2240 newly devel-
oped markers were selected to validate the quality of newly
developed SSR markers and to improve the quality of pre-
vious genetic map (Luo et al. 2017) for the identification of
QTLs controlling shelling percentage. The polymorphism
of the 2240 newly developed markers was compared to that
of the 7200 previously reported markers. Genomic DNA
was extracted from young leaves collected from RILs in F;
generations using a modified CTAB method (Doyle 1990).
PCR amplification was conducted as described in Luo et al.
(2017). The PCR products were separated on a 6% poly-
acrylamide gel and visualized by silver staining (Fountain
etal. 2011).

Pearson’s Chi-square test was used to assess the good-
ness of fit to the expected segregation ratio 15:2:15 for co-
dominant marker or 17:15 for dominant marker (P < 0.001).
A genetic linkage map was constructed using the JoinMap
4.0 software (Van Ooijen 2006). The recombination ratio
was converted to map distance using the Kosambi func-
tion (Kosambi 2011). The graphical presentation of genetic
linkage map was generated with the MapChart 2.3 software
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(Voorrips 2002). The linkage groups (LGs) were designated
as AI-A10 and B1-B10 by aligning the markers to the
integrated consensus genetic map (Shirasawa et al. 2013)
and the genome sequences of A. duranensis and Arachis
ipaensis (Bertioli et al. 2016). This consensus genetic map
was integrated based on 16 genetic maps and used as refer-
ence in other publications (Chen et al. 2016; Huang et al.
2015; Zhou et al. 2014).

QTL and meta-analyses

Genome-wide QTL mapping was performed using the
mean value of shelling percentage in each environment.
The QTLs were scanned with the Windows QTL Cartog-
rapher 2.5 software (Wang et al. 2012b) through composite
interval mapping (CIM). The threshold of LOD for declar-
ing the presence of a QTL was determined by 1000 per-
mutation tests at P < 0.05. When separated by a minimum
distance of 20 cM, two peaks on one chromosome were
considered as two different QTLs (Ravi et al. 2011). Other-
wise, the higher peak was chosen to more closely approxi-
mate the position of the QTL. QTLs are designated with an
initial letter ‘q’ followed by the abbreviation of trait name
(SP), and the corresponding linkage group, similar to the
previously described nomenclature (Udall et al. 2006).
After the linkage group, the codes 1, 2, 3 and 4 were added
for QTLs detected in 2013, 2014 2015 and 2016, respec-
tively. Alphabetical letters were added if two or more QTLs
were identified in the same linkage group in the same year.
For example, if two QTLs for shelling percentage were
detected on chromosome A09 in 2013, they were names as
qSPA09.1a and gSPA09.1b, respectively. In addition, QTLs
with more than 10% PVE were considered as major QTLs
while other QTLs were considered as minor QTLs. If QTLs
detected in different environments had overlapping 2-LOD
support intervals, they were considered to be a consistent
QTL and subjected to meta-analysis to estimate its position
using the BioMercator software (Sosnowski et al. 2012).
Consistent QTLs were designated with initial letters ‘cq’.

Results
Phenotypic variation of shelling percentage

Phenotypic evaluation of shelling percentage of two
parental genotypes and RILs showed significant variation
across four environments, i.e., Wuhan2013, Wuhan2014,
Wuhan2015 and Wuhan2016 (Table 1). The shelling per-
centage of female parent, Yuanza 9102, varied from 80.32
to 82.13% while that of male parent, Xuzhou 68-4, varied
from 75.31 to 76.56% in the four environments. The shell-
ing percentage in the RIL population showed a continuous
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Table 1 The observed Year P (%) P2 (%) RIL (%) Min (%) Max (%) SD (%) Skew Kurt
phenotypic performance
of mean Valufes of shelling . 2013 80.32 75.31 76.92 65.39 83.33 372 —0.833 0447
percentage of two parents an 2014 82.13 75.39 78.05 66.74 84.79 3.65 0742 0.174
RILs in four field trials
2015 82.12 75.96 78.18 68.28 83.72 3.03 ~0.827  0.582
2016 82.03 76.56 78.16 67.04 83.52 3.12 —0.803  0.568

P1 female parent Yuanza 9102, P2 male parent Xuzhou 68-4, Min minimum, Max maximum, SD standard
deviation, Skew skewness, Kurt kurtosis

Table 2 Variance analysis for shelling percentage in the RIL popula-
tion in four environments

Table 3 Numbers of the identified SSR loci and developed SSR
markers in the Arachis duranensis and A. ipaensis genomes

Variables df Mean square F value P value
Environment 3 210.028 171.423 <0.001
Genotype 193 119.456 97.500 <0.001
Genotype X environment 570 5.784 4.721 <0.001
Error 1532 1.225

distribution skewed towards higher values in each environ-
ment (Table 1; Fig. 1b), indicating polygenic inheritance.
The values of broad-sense heritability for shelling percent-
age was estimated to be 0.7769 based on plot mean and
0.9520 based on entry mean, indicating strong control by
genetic factors. Variance analysis across the four trials
also revealed that genetic, environmental effects and geno-
type X environment interactions significantly influenced
shelling percentage (Table 2).

The abundance of SSRs in the genomes of Arachis
duranensis and A. ipaensis

The availability of the pseudochromosomes of A. duran-
ensis and A. ipaensis, the diploid ancestors of cultivated
peanut, provides physical maps for genetic studies in the
Arachis genus. A total of 264,135 and 392,107 SSR loci
were identified by searching through the genome sequences
of A. duranensis and A. ipaensis, respectively, with the
MISA script. The average intervals of SSR loci were esti-
mated as 4.10 and 3.45 kb in A. duranensis and A. ipaen-
sis, respectively, indicating the high abundance of SRRs in
their genomes. Of the repeat motifs observed, the mono-
nucleotide motif was the most abundant, followed by di-,
tri-, tetra-, penta- and hexa-nucleotide motifs (Table 3). The
number of SSRs presented in compound formation in the
A. duranensis and A. ipaensis genomes were 22,125 and
37,381, respectively.

The investigation of nucleotide composition character-
istics revealed that some repeat types were dominant than
others (Table S1). In the A. duranensis genome, the SSRs
were found to be 232 repeat types and A/T (99.43%), AT/
AT (48.97%) AAT/ATT (41.32%), AAAT/ATTT (55.41%),

Motifs ~ SSR loci SSR markers

A. duranensis  A. ipaensis  A. duranensis  A. ipaensis
MNR 144,287 223,670 NA NA
DNR 47,805 75,334 34,486 54,195
TNR 42,529 45,717 29,090 32,242
TTR 4988 6736 3761 5245
PNR 1657 2419 1379 2019
HNR 744 850 416 534
COM 22,125 37,381 15,251 25,822
Total 264,135 392,107 84,383 120,056

MNR, DNR, TNR, TTR, PNR, and HNR mono-, di-, tri-, tetra-, penta-,
and hexa-nucleotide SSRs, respectively, COM compound microsatel-
lites

AAAAT/ATTTT (37.65%) and AAGAGG/CCTCTT
(27.28%) were the most common repeat types correspond-
ing to mono- to hexa-nucleotide repeats, respectively. There
was similar tendency in the 231 repeat types found in the A.
ipaensis genome, and the most common repeat types cor-
responding to mono- to penta-nucleotide repeats were A/T
(98.81%), AT/AT (44.86%) AAT/ATT (35.00%), AAAT/
ATTT (58.95%), and AAAAT/ATTTT (37.16%), respec-
tively, while the most abundant hexa-nucleotide motif was
AAAAAT/ATTTTT (18.00%) which was different from the
A. duranensis genome.

Development and validation of SSR markers

SSR markers were designed for di-, tri-, tetra-, penta- and
hexa-nucleotide motifs as well as compound microsatellites
using the Primer3 software. A total of 84,383 and 120,056
SSR markers were finally developed in the A. duranen-
sis and A. ipaensis genome, respectively (Tables 3, S2).
There were 15,251 and 25,822 SSR markers with motifs
in compound formation in the A. duranensis and A. ipaen-
sis genome, respectively, while the remaining markers
amplified single motif. In the A. duranensis genome, SSR
makers with di-, tri-, tetra-, penta- and hexa-nucleotide
motifs accounted for 40.87, 34.47, 4.46, 1.63 and 0.49%,
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respectively (Table 3). Similarly, SSR makers with di-, tri-,
tetra-, penta- and hexa-nucleotide motifs in the A. ipaensis
genome accounted for 45.14, 26.86, 4.37, 1.68 and 0.44%,
respectively (Table 3).

In order to validate the quality of the newly developed
SSR markers, 2240 primer pairs were synthesized to screen
polymorphic markers in both the parental genotypes and
the RIL population. Among the 2240 newly developed
markers, 365 markers amplified polymorphic bands while
1706 markers amplified same bands between the two par-
ents (Table S2). A total of 180 newly developed SSR mark-
ers (accounted for 8.04%) amplified 185 polymorphic
loci in the RIL population. In comparison, 682 previously
reported markers amplified 693 polymorphic loci, which
accounted for 9.47% of the 7200 previously reported mark-
ers screened.

Construction of genetic map

Polymorphic loci of both the 180 newly developed
and the 682 previously reported markers were used to

construct genetic linkage map with the JoinMap 4.0 soft-
ware. Among the 862 polymorphic markers (Table S4),
one maker (AHGS0729) amplified three genetic loci and
14 markers amplified two genetic loci, while the remain-
ing 847 markers amplified single locus. Among these
878 genetic loci, 784 loci were co-dominant and 94 loci
were dominant. Finally, a genetic linkage map containing
the 830 loci was constructed spanning 1386.19 cM with
an average inter-marker distance of 1.67 cM (Table 4;
Fig. 2). The 830 loci were assigned to 20 LGs designated
as AO01-A10 for A subgenome and BO1-B10 for B sub-
genome by aligning the markers to the integrated consen-
sus genetic map (Shirasawa et al. 2013) and the genome
sequences of A. duranensis and A. ipaensis (Bertioli
et al. 2016). There were 371 loci for the A subgenome
and 459 loci for the B subgenome with the map length of
588.48 and 797.71 cM, respectively. The length of LGs
varied from 13.78 cM (A10) to 125.04 cM (B04) and the
number of mapped loci ranged from 3 to 110 markers
(Table 4; Fig. 2). The Chi-square analysis identified 258
loci (31.09%) that significantly deviated from expected

Table 4 Description of the LG Length Loci SDL SDL % Pl P2

genetic linkage map constructed

in this study A0l 80.23 70 9 12.86 2 7
A02 29.92 11 5 45.45 0 5
A03 76.89 16 5 30.04 0 5
A04 20.47 6 0 0.00 0 0
A05 110.81 110 24 21.82 17 7
A06 50.35 26 17 65.38 0 17
A07 46.47 39 6 15.38 0 6
A08 66.63 17 0 0.00 0 0
A09 92.93 73 13 17.81 0 13
A10 13.78 3 0 0.00 0 0
A subgenome 588.48 371 79 21.24 19 60
BOI 93.44 69 10 14.49 2 8
B02 108.91 92 13 14.13 1 12
B03 73.90 8 1 12.50 1 0
B04 125.04 81 57 70.37 1 56
BO5 97.01 88 82 93.18 0 82
B06 27.10 3 0 0.00 0 0
B07 40.62 5 0 0.00 0 0
B08 47.08 11 4 38.91 0 4
B09 79.51 10 2 20.00 0 2
B10 105.11 92 10 10.87 2 8
B subgenome 797.71 459 179 39.06 7 172
Whole genome 1386.19 830 258 31.09 26 232

LG linkage group, SDL the number of segregation distortion loci in each linkage group (P < 0.001), SDL %
the percentage of segregation distortion loci in each linkage group (P < 0.001), P/ the number of SSR loci
that segregated distortedly to the parent Yuanza 9102, P2 the number of SSR loci that segregated distort-

edly to the parent Xuzhou 68-4
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Fig. 2 Graphical presentation of genetic linkage map constructed in the RIL population derived from a cross by Yuanza 9102 and Xuzhou 68-4

ratios of 15:2:15 or 17:15 (P < 0.001), of which 26 and
232 loci skewed towards Yuanza 9102 and Xuzhou 68-4,
respectively (Tables 4, S5). The skewed loci on LG A05
favored the female parent “Yuanza 9102” allele, while
LG AO01, A06, A07, A09, BO1, BO2, BO4, BOS and B10
contained loci favoring the male parent “Xuzhou 68-4”
allele. In addition, no more than five skewed loci were
mapped on LG A02, A03, B0O3, BO8 and B09. The most
significant segregation distortion was observed on LG
BO5 whose percentage of skewed loci was 93.18%
(Table 4).

Detection of QTLs for shelling percentage

Genome-wide QTL analysis was performed using the
genetic map and phenotypic data of shelling percent-
age obtained from the RILs during 2013, 2014, 2015 and
2016 in Wuhan. Using composite interval mapping (CIM)
analysis, 25 QTLs with 4.46-17.01% phenotypic vari-
ation explained (PVE) were identified to be associated
with shelling percentage across four environments (Fig. 3;
Table 5). Three major QTLs namely gSPA09.1a, gSPA09.1b
and gSPB04.1 and five minor QTLs namely ¢SPAO0S5.1,
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Fig. 2 continued

qSPB03.1, gqSPBO05.1a, qSPB05.1b and ¢SPBI10.1 were
detected in Wuhan2013 trial, which explained 4.46-17.01%
phenotypic variation. In Wuhan2014 trial, one major QTL,
qSPA09.2, and three minor QTLs namely ¢SPB02.2,
qSPB04.2 and gSPB10.2, were identified with 4.68—10.47%
PVE. In Wuhan2015 trial, four QTLs namely ¢SPA09.3a,
qSPA09.3b, qSPB02.3 and ¢SPBI10.3a, and three minor
QTLs namely ¢SPA05.3, ¢SPB05.3 and ¢SPBI10.3b
were detected with 5.28-12.20% PVE. In Wuhan 2016
trial, one major QTL, ¢SPA09.4, and five minor QTLs
namely gSPB02.4, gSPB04.4a, gSPB04.4b, gSPB05.4 and
qSPB10.4, were identified with 5.32-14.39% PVE. A total
of nine QTLs explaining more than 10% phenotypic varia-
tion were identified as major QTLs in four environments.
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To further dissect the QTLs controlling shelling per-
centage, meta-analysis was conducted to integrate QTLs
detected in multiple environments, whose confidence inter-
vals were overlapped, into five consistent QTLs (Table 6;
Fig. 3b) using the BioMercator software (Sosnowski et al.
2012). Specifically, chromosome A09 was associated with
major and consistent QTL controlling shelling percentage
in cultivated peanut. The consistent QTL c¢pSPAO9 was
detected in all four environments and explained 17.01,
10.47, 12.20 and 14.39% of the phenotypic variance in
2013, 2014, 2015 and 2016, respectively. In addition, the
consistent QTLs, cgSPB02 and cqSPBI10 were detected in
three environments (2014, 2015 and 2016), and explained
8.01-11.20% and 7.99-10.64% of the phenotypic variance,
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respectively (Table 6; Fig. 3b). The consistent QTLs
¢qSPB04 was detected in 2013 and 2016 (4.68-5.32%
PVE), while cgSPB05 was detected in 2013 and 2015
(4.82-5.59% PVE).

In order to validate the consistent QTL ¢pSPA0Y, flank-
ing marker AdO9A7577 and Ad91124 (Fig. 3b) were used
to screen the RIL population in F; generation grown in
Wuhan in 2015, and a plant named RIL 15-71126 was
found to be heterozygous at the cpSPA09 locus. Seeds of
RIL 15-71126 were grown in Wuhan in 2016 and shell-
ing percentages of 31 plants were measured. Among these
residual heterozygous lines, five plants with homologous
alleles from Yuanza 9102 had an average shelling percent-
age of 78.45%, while nine plants with homologous alleles
from Xuzhou 68-4 had an average shelling percentage of
72.82% (Fig. 3c; Table S7). The shelling percentages of
remaining 17 heterozygous plants averaged at 75.62%. Chi-
square test revealed that the segregation of the cgSPA09
locus among the 31 plants fitted the expected 1:2:1 seg-
regation ratio (P = 0.52). Variance analysis and multiple
comparisons revealed significant differences (P < 0.05)
between each pair of the three genotypic groups (Fig. 3c;
Table S7), which were congruent with the finding that the
allele came from the parent Yuanza 9102 at the cpSPAO9
locus had additive effect in increasing shelling percentage.

Discussion

SSRs were found to be abundant and dispersed throughout
the A. duranensis and A. ipaensis genomes in this study.
The recently completed genome sequences of the diploid
ancestors of cultivated peanut provide physical maps of the
highest resolution (Bertioli et al. 2016). A total of 264,135
and 392,107 SSR loci were identified from them, respec-
tively. This number is much larger than the 375,180 loci
found in another genome-derived SSR identification by
genomic survey sequencing of the cultivated peanut Zhon-
ghua 16 (Zhou et al. 2016) and other previous reports (Cuc
et al. 2008; Ferguson et al. 2004; Gimenes et al. 2007; Guo
et al. 2009; He et al. 2003; Hopkins et al. 1999; Huang et al.
2016b; Moretzsohn et al. 2005; Shirasawa et al. 2012).
The average intervals of SSR loci were estimated as 4.10
and 3.45 kb in A. duranensis and A. ipaensis, respectively,
which are neither the highest nor the lowest in plant (Shi
et al. 2014; Wang et al. 2015; Yu et al. 2016). The mono-,
di- and tri-nucleotide SSR motifs were more abundant than
tetra-, penta-, and hexa-nucleotide motifs. Moreover, we
found that the A/T (99.43%), AT/AT (48.97%) and AAT/
ATT (41.32%) repeats were the most abundant mono-, di-
and tri-nucleotide SSRs, respectively, in both genomes,
which were congruent with previous reports in peanut
(Zhou et al. 2016) or other species such as Brassica, rice

and Arabidopsis (Katti et al. 2001; Shi et al. 2014; Tem-
nykh et al. 2001).

A total of 84,383 and 120,056 SSR markers were finally
developed in the A. duranensis and A. ipaensis genomes,
respectively. Among the 2240 newly developed mark-
ers used in the genotyping of the RIL population in this
study, 1706 markers amplified same bands and 365 markers
amplified polymorphism bands in the two parents (Table
S2). The quality of the newly developed markers was sim-
ilar to recent reported SSR markers (Huang et al. 2016b;
Zhou et al. 2016). Subsequently, around 8.04% of the 2240
newly developed markers were polymorphic in the RIL
population, which was similar to percentage of the previ-
ously reported markers (9.47%). These results verified the
validity and reliability of the newly developed SSR mark-
ers. Compared to the previous genetic map of the same
RIL population (Luo et al. 2017), the mapped loci of the
genetic map constructed in this study were improved from
743 to 830, and more importantly, the designated chromo-
somes were improved from 16 to 20. With known genomic
positions, the newly developed SSR markers could be eas-
ily selected to improve the quality of genetic map by fill-
ing uncovered chromosomes or increasing the densities of
covered chromosomes. Note that some of the newly devel-
oped markers were not mapped back to their original chro-
mosomes in the constructed linkage map (Table S6), owing
to the fact that there might be some segment exchanges
among peanut chromosomes (Huang et al. 2016a). Collec-
tively, SSR markers identified in this study should be useful
in a variety of applications, such as studying of population
structures, genetic map construction and mapping genes for
important traits.

The broad-sense heritability estimated in this study was
relatively high for shelling percentage in cultivated pea-
nut, indicating that genetic factors play a major role in
the determination of this trait. In this study, a RIL popu-
lation was used to construct a dense genetic linkage map
and conducting QTL analysis for shelling percentage.
Because of a lack of polymorphism at the DNA level, the
first SSR-based genetic linkage map for peanut only had
135 SSR loci (Varshney et al. 2009). However, a genetic
linkage map containing 830 loci and covering a total length
of 1386.19 cM with an average inter-marker distance of
1.67 cM was constructed in this study. The loci number and
density of our map were relatively higher than that of previ-
ous reports (Chen et al. 2016; Huang et al. 2015; Qin et al.
2012; Ravi et al. 2011), except for the integrated consen-
sus map (Shirasawa et al. 2013) and a recent report (Huang
et al. 2016a), indicated a high quality of the linkage map
constructed in this study. A total of 25 QTLs with 4.46—
17.01% PVE were identified to be associated with shelling
percentage across four environments. The LOD values of
these QTLs ranged from 3.3 to 11.1 and were higher than
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«Fig. 3 Overview of QTLs for shelling percentage in the RIL popu-
lation. a Genome-wide overview of QTLs for shelling percentage
across four environments. b QTLs location of shelling percentage in
the corresponding linkage maps. Consistent QTLs obtained by meta-
analysis in four environments are highlighted in dark blue color on
the chromosome bars. ¢ The boxplot of shelling percentage among
three genotypic groups in the progeny of the residual heterozygous
line RIL 15-71126. Center lines show the medians; box limits indi-
cate the 25th and 75th percentiles as determined by R software;
whiskers extend 1.5 times the interquartile range from the 25th and
75th percentiles; data points are plotted as open circles. n = 9, 17,
5 plants. A, B, H indicated homologous alleles from Yuanza 9102,
homologous alleles from Xuzhou 68-4 and heterozygotes, respec-
tively

the threshold of LOD for declaring the presence of a QTL
that was determined by 1000 permutation tests. The 25
QTLs were mapped on chromosomes A05, A09, B02, BO3,
B04, BOS5 and B10. Because no QTL for shelling percent-
age had been reported on subgenome B, the 17 QTLs on
chromosomes B02, BO3, BO4, BO5 and B10 were novel.
The chromosomes AO5 and AQ9 that might harbor impor-
tant genes for shelling percentage as two QTLs from this

study and one QTL from an earlier study (Huang et al.
2015) were mapped on A0S, and six QTLs from this study
and one QTL from a previous study (Huang et al. 2015)
were identified on A09. Collectively, shelling percentage
was controlled by many QTLs on multiple chromosomes
and environments often affected their effects. All the linked
markers after validation can be deployed in marker-assisted
selection (MAS) for the improvement of shelling percent-
age in peanut breeding.

Although parents had merely 5% difference in their trait
means, this did not limit segregation variance and the power
to detect QTLs in the RIL population. Kalih et al. (2014)
successfully identified QTLs for plant height, heading
stage, and Fusarium head blight in triticale even if parents
had similar trait means. Miedaner et al. (2012) also iden-
tified QTLs for several agronomic traits in a segregating
population whose parents did not differ much. In this study,
significant variances and transgressive segregations were
observed in the RIL population (Table 1; Fig. 1), indicating
that the parents carry complementary alleles at several loci
that were newly combined in the progeny (Tanksley 1993).

Table 5 QTL information of

. . . Environment LG QTL POS (cM) CI (cM) LOD Additive PVE (%)
shelling percentage in peanut in

four environments Wuhan2013 A05 qSPA05. 1 88.7 86.7-91.3 33 —0.81 4.46
A09 qSPA09Y.1a 16.6 16.1-17.6 9.0 —1.47 14.67

A09 qSPA09.1b 27.6 27.2-28 11.1 —1.55 17.01

BO3 qSPB03.1 46.6 44.6-559 49 —0.98 6.84

B04 qSPB04.1 100.3 99-101.7 7.9 —1.26 11.45

BOS qSPBO05.1a 54.4 53.8-553 4.9 —1.04 6.91

BO5 qSPB05.1b 83.6 81.5-849 39 0.91 4.82

B10 qSPBI10.1 72.8 72.1-73.8 3.4 0.84 4.62

Wuhan2014 A09 qSPA09.2 26.9 26.6-272 7.6 —-1.23 10.47

B02 qSPB02.2 81.0 79.8-82.5 1.0 —1.21 9.72

B04 qSPB04.2 84.8 83.7-87.8 3.6 —0.86 4.68

B10 qSPBI10.2 55.8 55.5-56.8 5.9 1.05 7.99

Wuhan2015 A0S qSPA05.3 83.7 82.3-85.7 4.1 -0.72 5.28

A09 qSPA09.3a 13.1 11.1-145 172 —0.99 10.19

A09 qSPA09.3b 27.4 26.6-27.6 8.9 -1.09 12.20

B02 qSPB02.3 81.0 80-82.5 83 —1.08 11.20

BO5 qSPB05.3 83.6 82.9-84.7 4.9 0.79 5.59

B10 qSPBI10.3a 55.8 55.5-57.1 8.0 1.01 10.64

B10 qSPB10.3b 67.9 64.3-68.1 6.6 0.95 9.27

Wuhan2016 A09 qSPA09.4 27.6 26.8-28.1 10.8 —1.26 14.39

B02 qSPB02.4 81.0 79.7-82.5 6.5 —0.94 8.01

B04 qSPB04.4a 84.8 83.8-87.8 4.5 -0.77 5.32

B04 qSPB04.4b 96.3 93.3-96.9 3.9 —0.76 5.34

BO5 qSPBO05.4 442 43.4-445 42 —0.75 5.45

B10 qSPB10.4 56.2 55.6-56.8 7.5 0.97 9.28

LG linkage group, POS position, CI 2-LOD confidence interval, LOD logarithm of odds, PVE phenotypic

variation explained
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Table 6 Consistent QTLs of

. . Consistent QTL LG POS (cM) CI (cM) Consistent QTLs
shelling percentage integrated
by meta-analysis in four cqSPA09 A09  27.24 27.04-27.45 gSPA09.1b, gSPA09.2, gSPA09.3b, gSPA09.4
environments cqSPB02 B02  81.01 80.24-81.77 ¢SPB02.2, gSPB02.3, SPB02.4
cqSPB04 BO4 8481 83.37-86.24 ¢SPB04.2, gSPB04.4a
cqSPBO5 BO5S  83.61 82.81-84.4 cqSPB0S.1b, cqSPB05.3
cqgSPBI0 BI0  56.06 55.58-56.54 qSPB10.2, ¢SPB10.3a, gSPB10.4

LG linkage group, POS position, CI confidence interval

This is in accordance with the fundamental rule of quantita-
tive genetics for complex traits. The QTLs on chromosomes
A05, A09, B02, B03 and B04 and two QTLs on chromo-
some BO5 (¢gSPBO05.1a and gSPB05.4) had negative addi-
tive genetic effects (Table 5), which revealed that mater-
nal parent Yuanza 9102 as the source of alleles improving
the shelling percentage. However, the QTL ¢gSPB05.3 and
those on chromosome B10 had positive additive genetic
effects (Table 5), suggesting that the alleles for increasing
shelling percentage came from the parent Xuzhou 68-4.
These QTLs explained the transgressive segregation of
shelling percentage in the RIL population (Fig. 1).

Because of the fact that the identification of QTLs
for shelling percentage was highly affected by environ-
ment, it iS very important to assess their consistent per-
formance across varied environments. Faye et al. (2015)
detected two QTLs for shelling percentage with 5.74—
6.97% PVE in a RIL population only under water stress
condition. Huang et al. (2015) detected three QTLs for
shelling percentage with 2.00-11.78% PVE in an F,4
population in single environment. None of them were
reported to be consistently expressed so far. Despite the
significant G x E interactions (P < 0.001) present in the
four trials conducted in this study, a consistent and major
QTL, cgSPA09, has shown stable performance across all
four environments. It was integrated from gSPA09.1b,
qSPA09.2, qSPA09.3b and gSPA09.4 by meta-analysis.
The consistent QTL ¢gSPA09 provided a significant level
of consistent contribution to shelling percentage (13.75—
26.82% PVE) in the four environments, and therefore
may be an important interval for improving shelling
percentage in peanut breeding. The segregation in the
progeny of a residual heterozygous line, RIL 15-71126,
confirmed that the allele came from the parent Yuanza
9102 at the cpSPA0O9 locus had additive effect in increas-
ing shelling percentage. Further studies, for example fine
mapping, should be conducted to investigate its candi-
date genes. In addition, four consistent and minor QTLs
namely cgSPBO02, cqSPB04, cqSPBO05 and cqSPBI10, were
detected in two or three environments. Such QTLs with
consistent performance for shelling percentage have been

@ Springer

identified for the first time in peanut and will be very use-
ful for further fine mapping of these QTL regions and
development of diagnostic markers for peanut breeding.
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