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genotyping data of 830 mapped loci identified 25 QTLs 
with 4.46–17.01% of phenotypic variance explained in the 
four environments. Meta-analysis revealed five consistent 
QTLs that could be detected in at least two environments. 
Notably, the consistent QTL cqSPA09 was detected in all 
four environments and explained 10.47–17.01% of the phe-
notypic variance. The segregation in the progeny of a resid-
ual heterozygous line confirmed that the cpSPA09 locus 
had additive effect in increasing shelling percentage. These 
consistent and major QTL regions provide opportunity not 
only for further gene discovery, but also for the develop-
ment of functional markers for breeding.

Introduction

Cultivated peanut (Arachis hypogaea L.), also known as 
groundnut, is an allotetraploid (AABB, 2n = 4x = 40) 
grain legume native to South America, but now grown in 
diverse environments in six continents between latitudes 
40°N and 40°S (Sharma and Bhatnagar-Mathur 2006). 
It provides edible oil and protein for human nutrition. In 
2014, the annual production of peanut (pods without shell-
ing) was around 42.32 million tones throughout the world 
(FAOSTAT 2014). Cultivated peanut was formed through 
the natural hybridization of its two diploid ancestors, 
A. duranensis (AA, 2n = 2x = 20) and A. ipaensis (BB, 
2n = 2x = 20). Because the assembly of chromosomal 
pseudomolecules of cultivated peanut is very challeng-
ing, the genome sequences of its diploid ancestors were 
reported recently, providing a foundation in understanding 
the genome of cultivated peanut (Bertioli et al. 2016).

Shelling percentage (SP) is an important economic trait 
in peanut production. Peanut pod has two parts: kernel 
and hull (Fig. 1a). Kernels (seeds) contain rich edible oil, 
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proteins, amino acids, and vitamin E, and are consumed 
worldwide as edible nut, peanut butter, or candy, and pea-
nut oil extracted from the seeds (Bertioli et al. 2016; Ozu-
dogru et al. 2013). The shelling of peanut hull is the first 
step needed to transform the peanut materials into a prod-
uct (Guzel et al. 2005). Shelling percentage (weight of 
kernels/weight of pods) significantly varied among peanut 

varieties. For example, Jiang et al. (2013) reported that the 
shelling percentages of the Chinese core collection of pea-
nut (574 accessions) ranged from 59.9 to 81.0%. Therefore, 
there is a great potential in the genetic improvement of 
shelling percentage in peanut breeding.

Quantitative trait locus (QTL) mapping has been widely 
conducted to identify the genomic regions associated with 

Fig. 1  Phenotypic variation 
of shelling percentage in the 
RIL population. a Phenotypic 
difference between the parents. 
b Phenotypic distribution of 
shelling percentage in the RIL 
population across 4 years. The 
y-axis represented density, 
while the x-axis represented 
shelling percentage (%). The 
dotted line represented the 
shelling percentage of Xuzhou 
68-4, and the dashed line repre-
sented the shelling percentage 
of Yuanza 9102
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economically important traits. Molecular markers tightly 
linked to QTLs can be developed and further deployed in 
marker-assisted breeding (Janila et al. 2016; Sukruth et al. 
2015; Varshney et al. 2014). Because of abundance, easy 
to use, and highly polymorphic, SSR markers were devel-
oped (Cuc et al. 2008; Ferguson et al. 2004; Gimenes et al. 
2007; Guo et al. 2009; He et al. 2003; Hopkins et al. 1999; 
Moretzsohn et al. 2005; Shirasawa et al. 2012; Zhou et al. 
2016) and widely used in the QTL mapping of disease 
resistance (Leal-Bertioli et al. 2015; Shoha et al. 2013), 
drought tolerance (Gautami et al. 2012; Ravi et al. 2011), 
quality traits (Mondal et al. 2015; Pandey et al. 2014), 
agronomic and yield traits (Faye et al. 2015; Huang et al. 
2015) in cultivated peanut. However, SSR markers have 
not been screened on whole-genome level in the Arachis 
genus. Although genome sequences of A. duranensis and 
A. ipaensis were reported, their SSRs have not been well 
exploited and utilized hitherto.

Limited efforts were made in identifying QTLs control-
ling shelling percentage in cultivated peanut. Faye et al. 
(2015) detected two QTLs for shelling percentage with 
5.74–6.97% phenotypic variant explained (PVE) under 
water stress condition in a RIL population. Huang et al. 
(2015) identified three QTLs for shelling percentage in 
an  F2:3 population, including qSPA5 (6.08% PVE), qSPA7 
(11.78% PVE), qSPA9 (2.00% PVE). These QTLs were 
detected only in single environment. Jiang et al. (2014) 
reported five, two and two significant associated alleles 
for shelling percentage in three field trials, respectively, 
through association analysis in Chinese peanut mini-core 
collection of 298 accessions. Only one SSR allele, 9B4-
260, was associated with shelling percentage in all three 
trials (1.49–2.98% PVE) (Jiang et al. 2014). No major 
QTLs were reported to be consistently expressed so far. 
Therefore, it is necessary to identify major and consistent 
QTLs of shelling percentage in order to accelerate the pro-
cess of genetic improvement in peanut breeding programs.

In this study, SSRs markers were developed in the A. 
duranensis and A. ipaensis genomes, and a mapping pop-
ulation (Yuanza 9102 × Xuzhou 68-4) with 195 recombi-
nant inbred lines (RILs) was used to map QTLs controlling 
shelling percentage in Wuhan, China, in four consecutive 
years. The peanut cultivar Yuanza 9102 showed signifi-
cantly higher shelling percentage than Xuzhou 68-4 in pre-
vious screening of the Chinese peanut core collection.

Materials and methods

Plant materials and phenotyping

A mapping population comprising 195 recombinant inbred 
lines (RILs) was developed by crossing peanut cultivar 

Yuanza 9102 and Xuzhou 68-4 and advanced to the  F5 gen-
eration by single seed descent method (Luo et al. 2017). 
The female parent, Yuanza 9102, belongs to A. hypogaea 
subsp. hypogaea var. vulgaris and is derived from inter-
specific hybridization between the cultivated peanut Bai-
sha1016 and wild species A. diogoi. The male parent, 
Xuzhou 68-4, belongs to A. hypogaea subsp. hypogaea 
var. hypogaea and has larger pods but significantly lower 
shelling percentage than the female parent, Yuanza 9102 
(Fig. 1a). The RIL population was used as mapping popula-
tion to validate the quality of newly developed SSR mark-
ers, to construct a dense genetic map and to conduct QTL 
analysis for shelling percentage in this study. Generations 
 F5–F8 of the RIL population were used in the present study 
for generating phenotyping data followed by QTL analysis.

The RIL population and the two parents were planted in 
the experimental field in OCRI-CAAS, Wuhan, China, in 
four consecutive years from 2013 to 2016. These experi-
ments were treated as four environments and designated 
as Wuhan2013, Wuhan2014, Wuhan2015 and Wuhan2016 
in this study. In each environment, the 195 RILs and the 
two parents were planted in a randomized complete block 
design with three replications. Each plot contained one 
row, with 12 plants in each row, 20 cm between plants 
and 30 cm between rows. Field management followed the 
standard agricultural practices. Eight representative plants 
in the middle of each row were harvested to investigate 
shelling percentage (SP =

Weight of kernels
Weight of pods

× 100%), accord-
ing to previously described standard procedures (Huang 
et al. 2015; Jiang et al. 2006).

Statistical analysis for the phenotypic data of shelling 
percentage was conducted using IBM SPSS Statistics Ver-
sion 22 software. Treating the year as a single environment, 
the univariate variance analyses were performed with stand-
ard GLM method and variance components were estimated 
by restricted maximum likelihood (REML) method. The 
broad-sense heritability across the four environment trials 
was calculated based on the estimated variance components 
with the following formula: H2

= σ 2
g /(σ

2
g + σ 2

g×e + σ 2
e ) 

based on plot mean and H2
= σ 2

g /(σ
2
g + σ 2

g×e/r + σ 2
e /rn) 

based on entry mean, where σ 2
g  is the genotypic variance 

component among RILs, σ 2
g×e is the RILs × environment 

interaction variance component, σ 2
e  is the residual (error) 

variance component, and r is the number of environment 
trials, n is the number of replications in each field trials 
(Holl and Nyquist 2010).

Development of SSR marker in the genome sequences 
of A. duranensis and A. ipaensis

Genome sequences of A. duranensis and A. ipaensis were 
downloaded from the PeanutBase (Bertioli et al. 2016). 
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SSR motifs were identified using the MISA script (Thiel 
2014). For normal microsatellites, a minimum of 10, 6, 5, 
5, 5 and 5 repeats were required for detecting mono-, di-, 
tri-, tetra-, penta- and hexa-nucleotide motifs, respectively. 
Compound microsatellites were interrupted by less than 
100 base pairs. Primer3 software (https://sourceforge.net/
projects/primer3/) was used to design SSR markers with 
the following parameters: minimum, maximum, and opti-
mal sizes were 18, 27, and 20 nt, respectively; minimum 
and maximum GC content were 20 and 80%, respectively; 
minimum, maximum, and optimal Tm were 57, 63, and 
60 °C, respectively; and product size range was from 100 
to 300 bp. These markers were referred as newly developed 
markers in this context and designated with an initial let-
ter ‘Ad’ and ‘Ai’ for A. duranensis and A. ipaensis, respec-
tively, followed by the chromosome number, the corre-
sponding subgenome character and an identifier.

Genotyping of mapping population and construction 
of genetic map

A total of 2240 newly developed markers (Table S3) as 
well as 7200 previously reported markers (Bravo et al. 
2006; Cuc et al. 2008; Ferguson et al. 2004; Gimenes et al. 
2007; Guo et al. 2009, 2012; He et al. 2003; Hopkins et al. 
1999; Hoshino et al. 2006; Huang et al. 2016b; Koilkonda 
et al. 2012; Leal-Bertioli et al. 2009; Macedo et al. 2012; 
Moretzsohn et al. 2005, 2009; Moretzsohn Mde et al. 2004; 
Nagy et al. 2010; Naito et al. 2008; Shirasawa et al. 2012; 
Wang et al. 2012a; Zhou et al. 2016) were used to screen 
polymorphism between the two parental genotypes. Poly-
morphic markers were used to genotype individual RILs. 
Based on known genomic positions, the 2240 newly devel-
oped markers were selected to validate the quality of newly 
developed SSR markers and to improve the quality of pre-
vious genetic map (Luo et al. 2017) for the identification of 
QTLs controlling shelling percentage. The polymorphism 
of the 2240 newly developed markers was compared to that 
of the 7200 previously reported markers. Genomic DNA 
was extracted from young leaves collected from RILs in  F5 
generations using a modified CTAB method (Doyle 1990). 
PCR amplification was conducted as described in Luo et al. 
(2017). The PCR products were separated on a 6% poly-
acrylamide gel and visualized by silver staining (Fountain 
et al. 2011).

Pearson’s Chi-square test was used to assess the good-
ness of fit to the expected segregation ratio 15:2:15 for co-
dominant marker or 17:15 for dominant marker (P < 0.001). 
A genetic linkage map was constructed using the JoinMap 
4.0 software (Van Ooijen 2006). The recombination ratio 
was converted to map distance using the Kosambi func-
tion (Kosambi 2011). The graphical presentation of genetic 
linkage map was generated with the MapChart 2.3 software 

(Voorrips 2002). The linkage groups (LGs) were designated 
as A1–A10 and B1–B10 by aligning the markers to the 
integrated consensus genetic map (Shirasawa et al. 2013) 
and the genome sequences of A. duranensis and Arachis 
ipaensis (Bertioli et al. 2016). This consensus genetic map 
was integrated based on 16 genetic maps and used as refer-
ence in other publications (Chen et al. 2016; Huang et al. 
2015; Zhou et al. 2014).

QTL and meta‑analyses

Genome-wide QTL mapping was performed using the 
mean value of shelling percentage in each environment. 
The QTLs were scanned with the Windows QTL Cartog-
rapher 2.5 software (Wang et al. 2012b) through composite 
interval mapping (CIM). The threshold of LOD for declar-
ing the presence of a QTL was determined by 1000 per-
mutation tests at P < 0.05. When separated by a minimum 
distance of 20 cM, two peaks on one chromosome were 
considered as two different QTLs (Ravi et al. 2011). Other-
wise, the higher peak was chosen to more closely approxi-
mate the position of the QTL. QTLs are designated with an 
initial letter ‘q’ followed by the abbreviation of trait name 
(SP), and the corresponding linkage group, similar to the 
previously described nomenclature (Udall et al. 2006). 
After the linkage group, the codes 1, 2, 3 and 4 were added 
for QTLs detected in 2013, 2014 2015 and 2016, respec-
tively. Alphabetical letters were added if two or more QTLs 
were identified in the same linkage group in the same year. 
For example, if two QTLs for shelling percentage were 
detected on chromosome A09 in 2013, they were names as 
qSPA09.1a and qSPA09.1b, respectively. In addition, QTLs 
with more than 10% PVE were considered as major QTLs 
while other QTLs were considered as minor QTLs. If QTLs 
detected in different environments had overlapping 2-LOD 
support intervals, they were considered to be a consistent 
QTL and subjected to meta-analysis to estimate its position 
using the BioMercator software (Sosnowski et al. 2012). 
Consistent QTLs were designated with initial letters ‘cq’.

Results

Phenotypic variation of shelling percentage

Phenotypic evaluation of shelling percentage of two 
parental genotypes and RILs showed significant variation 
across four environments, i.e., Wuhan2013, Wuhan2014, 
Wuhan2015 and Wuhan2016 (Table 1). The shelling per-
centage of female parent, Yuanza 9102, varied from 80.32 
to 82.13% while that of male parent, Xuzhou 68-4, varied 
from 75.31 to 76.56% in the four environments. The shell-
ing percentage in the RIL population showed a continuous 

https://sourceforge.net/projects/primer3/
https://sourceforge.net/projects/primer3/
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distribution skewed towards higher values in each environ-
ment (Table 1; Fig. 1b), indicating polygenic inheritance. 
The values of broad-sense heritability for shelling percent-
age was estimated to be 0.7769 based on plot mean and 
0.9520 based on entry mean, indicating strong control by 
genetic factors. Variance analysis across the four trials 
also revealed that genetic, environmental effects and geno-
type × environment interactions significantly influenced 
shelling percentage (Table 2).

The abundance of SSRs in the genomes of Arachis 
duranensis and A. ipaensis

The availability of the pseudochromosomes of A. duran-
ensis and A. ipaensis, the diploid ancestors of cultivated 
peanut, provides physical maps for genetic studies in the 
Arachis genus. A total of 264,135 and 392,107 SSR loci 
were identified by searching through the genome sequences 
of A. duranensis and A. ipaensis, respectively, with the 
MISA script. The average intervals of SSR loci were esti-
mated as 4.10 and 3.45 kb in A. duranensis and A. ipaen-
sis, respectively, indicating the high abundance of SRRs in 
their genomes. Of the repeat motifs observed, the mono-
nucleotide motif was the most abundant, followed by di-, 
tri-, tetra-, penta- and hexa-nucleotide motifs (Table 3). The 
number of SSRs presented in compound formation in the 
A. duranensis and A. ipaensis genomes were 22,125 and 
37,381, respectively.

The investigation of nucleotide composition character-
istics revealed that some repeat types were dominant than 
others (Table S1). In the A. duranensis genome, the SSRs 
were found to be 232 repeat types and A/T (99.43%), AT/
AT (48.97%) AAT/ATT (41.32%), AAAT/ATTT (55.41%), 

AAAAT/ATTTT (37.65%) and AAGAGG/CCTCTT 
(27.28%) were the most common repeat types correspond-
ing to mono- to hexa-nucleotide repeats, respectively. There 
was similar tendency in the 231 repeat types found in the A. 
ipaensis genome, and the most common repeat types cor-
responding to mono- to penta-nucleotide repeats were A/T 
(98.81%), AT/AT (44.86%) AAT/ATT (35.00%), AAAT/
ATTT (58.95%), and AAAAT/ATTTT (37.16%), respec-
tively, while the most abundant hexa-nucleotide motif was 
AAAAAT/ATTTTT (18.00%) which was different from the 
A. duranensis genome.

Development and validation of SSR markers

SSR markers were designed for di-, tri-, tetra-, penta- and 
hexa-nucleotide motifs as well as compound microsatellites 
using the Primer3 software. A total of 84,383 and 120,056 
SSR markers were finally developed in the A. duranen-
sis and A. ipaensis genome, respectively (Tables 3, S2). 
There were 15,251 and 25,822 SSR markers with motifs 
in compound formation in the A. duranensis and A. ipaen-
sis genome, respectively, while the remaining markers 
amplified single motif. In the A. duranensis genome, SSR 
makers with di-, tri-, tetra-, penta- and hexa-nucleotide 
motifs accounted for 40.87, 34.47, 4.46, 1.63 and 0.49%, 

Table 1  The observed 
phenotypic performance 
of mean values of shelling 
percentage of two parents and 
RILs in four field trials

P1 female parent Yuanza 9102, P2 male parent Xuzhou 68-4, Min minimum, Max maximum, SD standard 
deviation, Skew skewness, Kurt kurtosis

Year P1 (%) P2 (%) RIL (%) Min (%) Max (%) SD (%) Skew Kurt

2013 80.32 75.31 76.92 65.39 83.33 3.72 −0.833 0.447

2014 82.13 75.39 78.05 66.74 84.79 3.65 −0.742 0.174

2015 82.12 75.96 78.18 68.28 83.72 3.03 −0.827 0.582

2016 82.03 76.56 78.16 67.04 83.52 3.12 −0.803 0.568

Table 2  Variance analysis for shelling percentage in the RIL popula-
tion in four environments

Variables df Mean square F value P value

Environment 3 210.028 171.423 <0.001

Genotype 193 119.456 97.500 <0.001

Genotype × environment 570 5.784 4.721 <0.001

Error 1532 1.225

Table 3  Numbers of the identified SSR loci and developed SSR 
markers in the Arachis duranensis and A. ipaensis genomes

MNR, DNR, TNR, TTR, PNR, and HNR mono-, di-, tri-, tetra-, penta-, 
and hexa-nucleotide SSRs, respectively, COM compound microsatel-
lites

Motifs SSR loci SSR markers

A. duranensis A. ipaensis A. duranensis A. ipaensis

MNR 144,287 223,670 NA NA

DNR 47,805 75,334 34,486 54,195

TNR 42,529 45,717 29,090 32,242

TTR 4988 6736 3761 5245

PNR 1657 2419 1379 2019

HNR 744 850 416 534

COM 22,125 37,381 15,251 25,822

Total 264,135 392,107 84,383 120,056
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respectively (Table 3). Similarly, SSR makers with di-, tri-, 
tetra-, penta- and hexa-nucleotide motifs in the A. ipaensis 
genome accounted for 45.14, 26.86, 4.37, 1.68 and 0.44%, 
respectively (Table 3).

In order to validate the quality of the newly developed 
SSR markers, 2240 primer pairs were synthesized to screen 
polymorphic markers in both the parental genotypes and 
the RIL population. Among the 2240 newly developed 
markers, 365 markers amplified polymorphic bands while 
1706 markers amplified same bands between the two par-
ents (Table S2). A total of 180 newly developed SSR mark-
ers (accounted for 8.04%) amplified 185 polymorphic 
loci in the RIL population. In comparison, 682 previously 
reported markers amplified 693 polymorphic loci, which 
accounted for 9.47% of the 7200 previously reported mark-
ers screened.

Construction of genetic map

Polymorphic loci of both the 180 newly developed 
and the 682 previously reported markers were used to 

construct genetic linkage map with the JoinMap 4.0 soft-
ware. Among the 862 polymorphic markers (Table S4), 
one maker (AHGS0729) amplified three genetic loci and 
14 markers amplified two genetic loci, while the remain-
ing 847 markers amplified single locus. Among these 
878 genetic loci, 784 loci were co-dominant and 94 loci 
were dominant. Finally, a genetic linkage map containing 
the 830 loci was constructed spanning 1386.19 cM with 
an average inter-marker distance of 1.67 cM (Table 4; 
Fig. 2). The 830 loci were assigned to 20 LGs designated 
as A01–A10 for A subgenome and B01–B10 for B sub-
genome by aligning the markers to the integrated consen-
sus genetic map (Shirasawa et al. 2013) and the genome 
sequences of A. duranensis and A. ipaensis (Bertioli 
et al. 2016). There were 371 loci for the A subgenome 
and 459 loci for the B subgenome with the map length of 
588.48 and 797.71 cM, respectively. The length of LGs 
varied from 13.78 cM (A10) to 125.04 cM (B04) and the 
number of mapped loci ranged from 3 to 110 markers 
(Table 4; Fig. 2). The Chi-square analysis identified 258 
loci (31.09%) that significantly deviated from expected 

Table 4  Description of the 
genetic linkage map constructed 
in this study

LG linkage group, SDL the number of segregation distortion loci in each linkage group (P < 0.001), SDL % 
the percentage of segregation distortion loci in each linkage group (P < 0.001), P1 the number of SSR loci 
that segregated distortedly to the parent Yuanza 9102, P2 the number of SSR loci that segregated distort-
edly to the parent Xuzhou 68-4

LG Length Loci SDL SDL % P1 P2

A01 80.23 70 9 12.86 2 7

A02 29.92 11 5 45.45 0 5

A03 76.89 16 5 30.04 0 5

A04 20.47 6 0 0.00 0 0

A05 110.81 110 24 21.82 17 7

A06 50.35 26 17 65.38 0 17

A07 46.47 39 6 15.38 0 6

A08 66.63 17 0 0.00 0 0

A09 92.93 73 13 17.81 0 13

A10 13.78 3 0 0.00 0 0

A subgenome 588.48 371 79 21.24 19 60

B01 93.44 69 10 14.49 2 8

B02 108.91 92 13 14.13 1 12

B03 73.90 8 1 12.50 1 0

B04 125.04 81 57 70.37 1 56

B05 97.01 88 82 93.18 0 82

B06 27.10 3 0 0.00 0 0

B07 40.62 5 0 0.00 0 0

B08 47.08 11 4 38.91 0 4

B09 79.51 10 2 20.00 0 2

B10 105.11 92 10 10.87 2 8

B subgenome 797.71 459 179 39.06 7 172

Whole genome 1386.19 830 258 31.09 26 232
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ratios of 15:2:15 or 17:15 (P < 0.001), of which 26 and 
232 loci skewed towards Yuanza 9102 and Xuzhou 68-4, 
respectively (Tables 4, S5). The skewed loci on LG A05 
favored the female parent “Yuanza 9102” allele, while 
LG A01, A06, A07, A09, B01, B02, B04, B05 and B10 
contained loci favoring the male parent “Xuzhou 68-4” 
allele. In addition, no more than five skewed loci were 
mapped on LG A02, A03, B03, B08 and B09. The most 
significant segregation distortion was observed on LG 
B05 whose percentage of skewed loci was 93.18% 
(Table 4). 

Detection of QTLs for shelling percentage

Genome-wide QTL analysis was performed using the 
genetic map and phenotypic data of shelling percent-
age obtained from the RILs during 2013, 2014, 2015 and 
2016 in Wuhan. Using composite interval mapping (CIM) 
analysis, 25 QTLs with 4.46–17.01% phenotypic vari-
ation explained (PVE) were identified to be associated 
with shelling percentage across four environments (Fig. 3; 
Table 5). Three major QTLs namely qSPA09.1a, qSPA09.1b 
and qSPB04.1 and five minor QTLs namely qSPA05.1, 
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Fig. 2  Graphical presentation of genetic linkage map constructed in the RIL population derived from a cross by Yuanza 9102 and Xuzhou 68-4
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qSPB03.1, qSPB05.1a, qSPB05.1b and qSPB10.1 were 
detected in Wuhan2013 trial, which explained 4.46–17.01% 
phenotypic variation. In Wuhan2014 trial, one major QTL, 
qSPA09.2, and three minor QTLs namely qSPB02.2, 
qSPB04.2 and qSPB10.2, were identified with 4.68–10.47% 
PVE. In Wuhan2015 trial, four QTLs namely qSPA09.3a, 
qSPA09.3b, qSPB02.3 and qSPB10.3a, and three minor 
QTLs namely qSPA05.3, qSPB05.3 and qSPB10.3b 
were detected with 5.28–12.20% PVE. In Wuhan 2016 
trial, one major QTL, qSPA09.4, and five minor QTLs 
namely qSPB02.4, qSPB04.4a, qSPB04.4b, qSPB05.4 and 
qSPB10.4, were identified with 5.32–14.39% PVE. A total 
of nine QTLs explaining more than 10% phenotypic varia-
tion were identified as major QTLs in four environments. 

To further dissect the QTLs controlling shelling per-
centage, meta-analysis was conducted to integrate QTLs 
detected in multiple environments, whose confidence inter-
vals were overlapped, into five consistent QTLs (Table 6; 
Fig. 3b) using the BioMercator software (Sosnowski et al. 
2012). Specifically, chromosome A09 was associated with 
major and consistent QTL controlling shelling percentage 
in cultivated peanut. The consistent QTL cpSPA09 was 
detected in all four environments and explained 17.01, 
10.47, 12.20 and 14.39% of the phenotypic variance in 
2013, 2014, 2015 and 2016, respectively. In addition, the 
consistent QTLs, cqSPB02 and cqSPB10 were detected in 
three environments (2014, 2015 and 2016), and explained 
8.01–11.20% and 7.99–10.64% of the phenotypic variance, 
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respectively (Table 6; Fig. 3b). The consistent QTLs 
cqSPB04 was detected in 2013 and 2016 (4.68–5.32% 
PVE), while cqSPB05 was detected in 2013 and 2015 
(4.82–5.59% PVE).

In order to validate the consistent QTL cpSPA09, flank-
ing marker Ad09A7577 and Ad91I24 (Fig. 3b) were used 
to screen the RIL population in  F7 generation grown in 
Wuhan in 2015, and a plant named RIL 15-71126 was 
found to be heterozygous at the cpSPA09 locus. Seeds of 
RIL 15-71126 were grown in Wuhan in 2016 and shell-
ing percentages of 31 plants were measured. Among these 
residual heterozygous lines, five plants with homologous 
alleles from Yuanza 9102 had an average shelling percent-
age of 78.45%, while nine plants with homologous alleles 
from Xuzhou 68-4 had an average shelling percentage of 
72.82% (Fig. 3c; Table S7). The shelling percentages of 
remaining 17 heterozygous plants averaged at 75.62%. Chi-
square test revealed that the segregation of the cqSPA09 
locus among the 31 plants fitted the expected 1:2:1 seg-
regation ratio (P = 0.52). Variance analysis and multiple 
comparisons revealed significant differences (P < 0.05) 
between each pair of the three genotypic groups (Fig. 3c; 
Table S7), which were congruent with the finding that the 
allele came from the parent Yuanza 9102 at the cpSPA09 
locus had additive effect in increasing shelling percentage.

Discussion

SSRs were found to be abundant and dispersed throughout 
the A. duranensis and A. ipaensis genomes in this study. 
The recently completed genome sequences of the diploid 
ancestors of cultivated peanut provide physical maps of the 
highest resolution (Bertioli et al. 2016). A total of 264,135 
and 392,107 SSR loci were identified from them, respec-
tively. This number is much larger than the 375,180 loci 
found in another genome-derived SSR identification by 
genomic survey sequencing of the cultivated peanut Zhon-
ghua 16 (Zhou et al. 2016) and other previous reports (Cuc 
et al. 2008; Ferguson et al. 2004; Gimenes et al. 2007; Guo 
et al. 2009; He et al. 2003; Hopkins et al. 1999; Huang et al. 
2016b; Moretzsohn et al. 2005; Shirasawa et al. 2012). 
The average intervals of SSR loci were estimated as 4.10 
and 3.45 kb in A. duranensis and A. ipaensis, respectively, 
which are neither the highest nor the lowest in plant (Shi 
et al. 2014; Wang et al. 2015; Yu et al. 2016). The mono-, 
di- and tri-nucleotide SSR motifs were more abundant than 
tetra-, penta-, and hexa-nucleotide motifs. Moreover, we 
found that the A/T (99.43%), AT/AT (48.97%) and AAT/
ATT (41.32%) repeats were the most abundant mono-, di- 
and tri-nucleotide SSRs, respectively, in both genomes, 
which were congruent with previous reports in peanut 
(Zhou et al. 2016) or other species such as Brassica, rice 

and Arabidopsis (Katti et al. 2001; Shi et al. 2014; Tem-
nykh et al. 2001).

A total of 84,383 and 120,056 SSR markers were finally 
developed in the A. duranensis and A. ipaensis genomes, 
respectively. Among the 2240 newly developed mark-
ers used in the genotyping of the RIL population in this 
study, 1706 markers amplified same bands and 365 markers 
amplified polymorphism bands in the two parents (Table 
S2). The quality of the newly developed markers was sim-
ilar to recent reported SSR markers (Huang et al. 2016b; 
Zhou et al. 2016). Subsequently, around 8.04% of the 2240 
newly developed markers were polymorphic in the RIL 
population, which was similar to percentage of the previ-
ously reported markers (9.47%). These results verified the 
validity and reliability of the newly developed SSR mark-
ers. Compared to the previous genetic map of the same 
RIL population (Luo et al. 2017), the mapped loci of the 
genetic map constructed in this study were improved from 
743 to 830, and more importantly, the designated chromo-
somes were improved from 16 to 20. With known genomic 
positions, the newly developed SSR markers could be eas-
ily selected to improve the quality of genetic map by fill-
ing uncovered chromosomes or increasing the densities of 
covered chromosomes. Note that some of the newly devel-
oped markers were not mapped back to their original chro-
mosomes in the constructed linkage map (Table S6), owing 
to the fact that there might be some segment exchanges 
among peanut chromosomes (Huang et al. 2016a). Collec-
tively, SSR markers identified in this study should be useful 
in a variety of applications, such as studying of population 
structures, genetic map construction and mapping genes for 
important traits.

The broad-sense heritability estimated in this study was 
relatively high for shelling percentage in cultivated pea-
nut, indicating that genetic factors play a major role in 
the determination of this trait. In this study, a RIL popu-
lation was used to construct a dense genetic linkage map 
and conducting QTL analysis for shelling percentage. 
Because of a lack of polymorphism at the DNA level, the 
first SSR-based genetic linkage map for peanut only had 
135 SSR loci (Varshney et al. 2009). However, a genetic 
linkage map containing 830 loci and covering a total length 
of 1386.19 cM with an average inter-marker distance of 
1.67 cM was constructed in this study. The loci number and 
density of our map were relatively higher than that of previ-
ous reports (Chen et al. 2016; Huang et al. 2015; Qin et al. 
2012; Ravi et al. 2011), except for the integrated consen-
sus map (Shirasawa et al. 2013) and a recent report (Huang 
et al. 2016a), indicated a high quality of the linkage map 
constructed in this study. A total of 25 QTLs with 4.46–
17.01% PVE were identified to be associated with shelling 
percentage across four environments. The LOD values of 
these QTLs ranged from 3.3 to 11.1 and were higher than 
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the threshold of LOD for declaring the presence of a QTL 
that was determined by 1000 permutation tests. The 25 
QTLs were mapped on chromosomes A05, A09, B02, B03, 
B04, B05 and B10. Because no QTL for shelling percent-
age had been reported on subgenome B, the 17 QTLs on 
chromosomes B02, B03, B04, B05 and B10 were novel. 
The chromosomes A05 and A09 that might harbor impor-
tant genes for shelling percentage as two QTLs from this 

study and one QTL from an earlier study (Huang et al. 
2015) were mapped on A05, and six QTLs from this study 
and one QTL from a previous study (Huang et al. 2015) 
were identified on A09. Collectively, shelling percentage 
was controlled by many QTLs on multiple chromosomes 
and environments often affected their effects. All the linked 
markers after validation can be deployed in marker-assisted 
selection (MAS) for the improvement of shelling percent-
age in peanut breeding.

Although parents had merely 5% difference in their trait 
means, this did not limit segregation variance and the power 
to detect QTLs in the RIL population. Kalih et al. (2014) 
successfully identified QTLs for plant height, heading 
stage, and Fusarium head blight in triticale even if parents 
had similar trait means. Miedaner et al. (2012) also iden-
tified QTLs for several agronomic traits in a segregating 
population whose parents did not differ much. In this study, 
significant variances and transgressive segregations were 
observed in the RIL population (Table 1; Fig. 1), indicating 
that the parents carry complementary alleles at several loci 
that were newly combined in the progeny (Tanksley 1993). 

Fig. 3  Overview of QTLs for shelling percentage in the RIL popu-
lation. a Genome-wide overview of QTLs for shelling percentage 
across four environments. b QTLs location of shelling percentage in 
the corresponding linkage maps. Consistent QTLs obtained by meta-
analysis in four environments are highlighted in dark blue color on 
the chromosome bars. c The boxplot of shelling percentage among 
three genotypic groups in the progeny of the residual heterozygous 
line RIL 15-71126. Center lines show the medians; box limits indi-
cate the 25th and 75th percentiles as determined by R software; 
whiskers extend 1.5 times the interquartile range from the 25th and 
75th percentiles; data points are plotted as open circles. n = 9, 17, 
5 plants. A, B, H indicated homologous alleles from Yuanza 9102, 
homologous alleles from Xuzhou 68-4 and heterozygotes, respec-
tively

◂

Table 5  QTL information of 
shelling percentage in peanut in 
four environments

LG linkage group, POS position, CI 2-LOD confidence interval, LOD logarithm of odds, PVE phenotypic 
variation explained

Environment LG QTL POS (cM) CI (cM) LOD Additive PVE (%)

Wuhan2013 A05 qSPA05.1 88.7 86.7–91.3 3.3 −0.81 4.46

A09 qSPA09.1a 16.6 16.1–17.6 9.0 −1.47 14.67

A09 qSPA09.1b 27.6 27.2–28 11.1 −1.55 17.01

B03 qSPB03.1 46.6 44.6–55.9 4.9 −0.98 6.84

B04 qSPB04.1 100.3 99–101.7 7.9 −1.26 11.45

B05 qSPB05.1a 54.4 53.8–55.3 4.9 −1.04 6.91

B05 qSPB05.1b 83.6 81.5–84.9 3.9 0.91 4.82

B10 qSPB10.1 72.8 72.1–73.8 3.4 0.84 4.62

Wuhan2014 A09 qSPA09.2 26.9 26.6–27.2 7.6 −1.23 10.47

B02 qSPB02.2 81.0 79.8–82.5 7.0 −1.21 9.72

B04 qSPB04.2 84.8 83.7–87.8 3.6 −0.86 4.68

B10 qSPB10.2 55.8 55.5–56.8 5.9 1.05 7.99

Wuhan2015 A05 qSPA05.3 83.7 82.3–85.7 4.1 −0.72 5.28

A09 qSPA09.3a 13.1 11.1–14.5 7.2 −0.99 10.19

A09 qSPA09.3b 27.4 26.6–27.6 8.9 −1.09 12.20

B02 qSPB02.3 81.0 80–82.5 8.3 −1.08 11.20

B05 qSPB05.3 83.6 82.9–84.7 4.9 0.79 5.59

B10 qSPB10.3a 55.8 55.5–57.1 8.0 1.01 10.64

B10 qSPB10.3b 67.9 64.3–68.1 6.6 0.95 9.27

Wuhan2016 A09 qSPA09.4 27.6 26.8–28.1 10.8 −1.26 14.39

B02 qSPB02.4 81.0 79.7–82.5 6.5 −0.94 8.01

B04 qSPB04.4a 84.8 83.8–87.8 4.5 −0.77 5.32

B04 qSPB04.4b 96.3 93.3–96.9 3.9 −0.76 5.34

B05 qSPB05.4 44.2 43.4–44.5 4.2 −0.75 5.45

B10 qSPB10.4 56.2 55.6–56.8 7.5 0.97 9.28
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This is in accordance with the fundamental rule of quantita-
tive genetics for complex traits. The QTLs on chromosomes 
A05, A09, B02, B03 and B04 and two QTLs on chromo-
some B05 (qSPB05.1a and qSPB05.4) had negative addi-
tive genetic effects (Table 5), which revealed that mater-
nal parent Yuanza 9102 as the source of alleles improving 
the shelling percentage. However, the QTL qSPB05.3 and 
those on chromosome B10 had positive additive genetic 
effects (Table 5), suggesting that the alleles for increasing 
shelling percentage came from the parent Xuzhou 68-4. 
These QTLs explained the transgressive segregation of 
shelling percentage in the RIL population (Fig. 1).

Because of the fact that the identification of QTLs 
for shelling percentage was highly affected by environ-
ment, it is very important to assess their consistent per-
formance across varied environments. Faye et al. (2015) 
detected two QTLs for shelling percentage with 5.74–
6.97% PVE in a RIL population only under water stress 
condition. Huang et al. (2015) detected three QTLs for 
shelling percentage with 2.00–11.78% PVE in an  F2:3 
population in single environment. None of them were 
reported to be consistently expressed so far. Despite the 
significant G × E interactions (P < 0.001) present in the 
four trials conducted in this study, a consistent and major 
QTL, cqSPA09, has shown stable performance across all 
four environments. It was integrated from qSPA09.1b, 
qSPA09.2, qSPA09.3b and qSPA09.4 by meta-analysis. 
The consistent QTL cqSPA09 provided a significant level 
of consistent contribution to shelling percentage (13.75–
26.82% PVE) in the four environments, and therefore 
may be an important interval for improving shelling 
percentage in peanut breeding. The segregation in the 
progeny of a residual heterozygous line, RIL 15-71126, 
confirmed that the allele came from the parent Yuanza 
9102 at the cpSPA09 locus had additive effect in increas-
ing shelling percentage. Further studies, for example fine 
mapping, should be conducted to investigate its candi-
date genes. In addition, four consistent and minor QTLs 
namely cqSPB02, cqSPB04, cqSPB05 and cqSPB10, were 
detected in two or three environments. Such QTLs with 
consistent performance for shelling percentage have been 

identified for the first time in peanut and will be very use-
ful for further fine mapping of these QTL regions and 
development of diagnostic markers for peanut breeding.
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