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Abstract Computational models incorporating anisotropic
features of brain tissue have become a valuable tool for
studying the occurrence of traumatic brain injury. The tissue
deformation in the direction of white matter tracts (axonal
strain) was repeatedly shown to be an appropriate mechan-
ical parameter to predict injury. However, when assessing
the reliability of axonal strain to predict injury in a popula-
tion, it is important to consider the predictor sensitivity to
the biological inter-subject variability of the human brain.
The present study investigated the axonal strain response of
485 white matter subject-specific anisotropic finite element
models of the head subjected to the same loading condi-
tions. It was observed that the biological variability affected
the orientation of the preferential directions (coefficient of
variation of 39.41% for the elevation angle—coefficient of
variation of 29.31% for the azimuth angle) and the determina-
tion of the mechanical fiber alignment parameter in the model
(gray matter volume 55.55-70.75%). The magnitude of the
maximum axonal strain showed coefficients of variation of
11.91%. On the contrary, the localization of the maximum
axonal strain was consistent: the peak of strain was typically
located in a 2 cm® volume of the brain. For a sport concus-
sive event, the predictor was capable of discerning between
non-injurious and concussed populations in several areas of
the brain. It was concluded that, despite its sensitivity to bio-
logical variability, axonal strain is an appropriate mechanical
parameter to predict traumatic brain injury.
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1 Introduction

Traumatic brain injury (TBI) occurs when a sudden trauma
causes the brain to malfunction. The injury is generally pro-
duced by a bump, a blow, or jolt to the head or the penetration
of the tissue by an object. Depending of the extent of the
damage, symptoms of TBI may range from a brief change
in mental status or consciousness (mild TBI) to an extended
period of unconsciousness, amnesia, or even death (severe
TBI).

High rates of deficit and morbidity are unfortunately asso-
ciated with TBI. In the United States, between 2001 and 2006,
data compiled by the Centers for Disease Control and Preven-
tion indicated that each year on average 1.7 million people
suffered an injury and sought medical help. The treatments
consisted of 80.7% emergency department visits, 16.3% hos-
pitalizations and 3% deaths. The total estimated direct and
indirect medical cost was 76.5 billion dollars (Faul et al.
2010). In Europe, year 2006, Tagliaferri et al. (2006) reported
a TBI incidence rate of about 235 per 100,000 and an average
mortality rate of about 15 per 100,000. Olesen et al. (2012)
calculated that the total European 2010 cost of TBI (direct
health care, direct non-medical, and indirect) was around 33
billion euros.

The diagnosis of TBI is controversial. Impairment of cog-
nitive skills, such as thinking and language, and alterations in
perception and emotions are not easily quantifiable. Further-
more, currently available neuroimaging techniques do not
capture brain tissue damage, especially at the brain smallest
functional unit, the neuron (Shenton et al. 2012). Conse-
quently, the mechanisms underlying cell death are not fully
understood yet but are under continuous investigation. One
of the most realistic mechanisms of TBI seems to be the
deformation of the axons. Gennarelli et al. (1998) suggested
that, if the axon is stretched, ionic perturbations occur to
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maintain osmotic balance in the neuron. This causes local
swelling and impairment of axonal transport. In following
years, many studies confirmed that tissue deformation relates
to injury (Bain et al. 2001; Shaw 2002; Kang and Morrison
2015).

To investigate the relationship between mechanical forces
developed during an impact and the resulting brain injury,
finite element (FE) models of the human head have been
increasingly used. These mathematical models, which com-
bine an accurate representation of the head anatomy and
sophisticated material properties, have the potential to simu-
late tissue loads and deformation patterns of brain structures.
Local mechanical parameters derived from strain and stress
tensors can be extracted and used as injury predictors (Zhang
et al. 2004; Mao et al. 2006; Kleiven 2007; Takhounts
et al. 2008; Giordano and Kleiven 2014). Moreover, in vitro
research showed that the occurrence of TBI is related to both
viscoelastic properties and highly organized structure of the
brain tissue (Bain and Meaney 2000; Smith and Meaney
2000; Bain et al. 2001; Elkin and Morrison 2007). Thus, in
order to accurately emulate brain mechanical behavior, FE
models need to incorporate anisotropic features of the brain
and consider the deformation in the specific white matter
tract direction.

Information of white matter tract orientation can be
obtained from diffusion tensor images (DTIs) (Mori and
Zhang 2006). In the last years, few studies utilized diffu-
sion information at different levels to incorporate the effects
of inhomogeneity and anisotropy of brain tissue into injury
analysis (Colgan et al. 2010; Chatelin et al. 2011; Wright and
Ramesh 2012; Kraft et al. 2012; Giordano and Kleiven 2014;
Sahoo et al. 2015; Ji et al. 2015). In particular, in a study by
Giordano and Kleiven (2014), an anisotropic FE model of the
human head was developed and the brain tissue was modeled
as a hyper-viscoelastic fiber-reinforced material. The orien-
tation of white matter tracts was derived element-wise from
DTIs and the deformation in their direction (axonal strain)
was proposed as injury criterion. For a data set of mild TBI
from the American football league, the strain in the axonal
direction was found to be the best injury predictor. This result
was confirmed in a study by Sahoo etal. (2015) where another
anisotropic FE model was used for numerical computation
of 109 head traumas. The authors showed that axonal strain
was the appropriate candidate parameter to predict diffuse
axonal injury.

A limitation of the FE models by Giordano and Kleiven
(2014) and Sahoo et al. (2015) was that the anisotropic
properties of the brain were extracted from diffusion data
of a single healthy subject (Giordano et al. 2014) or from
average diffusion data of 12 healthy subjects (Sahoo et al.
2015). However, several studies proved that the orientation of
white matter tracts vary substantially in a population (Biirgel
et al. 1999; Biirgel and Amunts 2006; Veenith et al. 2013;
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Sadeghi et al. 2015). For example, Biirgel and Amunts (2006)
showed that a significant inter-subject variability exists for
each tract within the single hemispheres and Veenith et al.
(2013) also found a high coeffiecient of variability (5-7%)
in measurements obtained from different subjects. Since the
mechanical properties of an anisotropic FE model are strictly
dependent on the orientation of the preferential directions, it
follows that anisotropic FE models of the human head based
on different subjects will likely respond differently to inju-
rious loads, affecting their capability of predicting TBI. On
top of the modeling uncertainties due to the approximation
of the geometry and material properties, the FE calculations
will be affected by uncertainties in the determination of the
correct alignment of the white matter tracts. In particular,
when anisotropic predictors are promoted (such as maximum
axonal strain), the modelers should be careful to investigate
the uncertainty of the predictions due to biological variation.
However, to the best knowledge of the authors, an investiga-
tion of this effect has never been performed.

The aim of this study was therefore to investigate the
uncertainty of TBI predictions of an anisotropic FE model
due to white matter tract variability. The same loading sce-
nario was imposed on 485 subject-specific FE head models
where the orientation of white matter tracts was determined
from the subject’s DTI. This investigation helped determin-
ing wheter the uncertainty introduced by the orientation of
white matter tracts was influencing the capability of the
axonal strain to separate injured and healthy populations.

2 Method
2.1 Human connectome dataset

The data used in this study were publicly released by the WU-
Minn Human Connectome Project (HCP) consortium in the
500 Subjects release (June 2014) and the MEG2 Release
(November 2014, Open Access). The HCP subjects were
drawn from a population of adult twins and their non-twin
siblings, in the age range of 22-35 years. The HCP aimed
at characterizing the structure of the major brain pathways,
understanding essential brain circuits and get insights into
the functions that depend on them (Sotiropoulos et al. 2013).
Among the different types of images included in the dataset,
485 diffusion weighted images (DWIs) were used in this
study.

High angular diffusion images generally consisted of 288
volumes with an isotropic resolution of 1.25 mm. The b
vectors and the b values were available in a text file, as
well as a binary volume mask representing the brain area
where to limit diffusion calculations. After the acquisition,
diffusion images were processed with a pipeline including
normalization of the intensities across runs and correction
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Fig. 1 Sagittal (left), coronal (middle) and transversal (right) sections
atx = —1,y = —17 and z = 19 of the T1w MNI152 template. The
regions of interest for TBI are labeled in color (ICBM-DTI-81 white
matter tractography atlas). Labeling: GCC genus of corpus callosum,

for EPI distortion, eddy current, motion artifacts, and gra-
dient nonlinearities. Moreover, the DWIs were registered to
the T1w native space, in order to have the structural and
diffusion images defined in the same subject-specific space.
More details regarding the dataset are reported in the refer-
ence manual (HCP 2014).

2.2 Diffusion tensor estimation, registration, and
tractography

The estimation of the diffusion tensors and the extraction
of the eigenvalue and eigenvector maps were implemented
through the DTIFIT tool of the diffusion toolbox (FDT)
in FSL (Oxford Centre for Functional MRI of the Brain,
FMRIB). For each subject, a weighted linear least squares
procedure was applied to the diffusion weighted images
acquired with b values smaller than 1500 s/mm?. The selec-
tion of these specific gradients was done to obtain the best
mono-exponential fit (Kristoffersen 2011). The effect of the
gradient nonlinearity on the b vectors was also considered
(Sotiropoulos et al. 2013). According to Koay et al. (2006),
negative eigenvalues were set to zero to guarantee the posi-
tive definitiveness of the diffusion tensors. The iteration over
the 485 subjects was automated through a script written in
Bash command language and executed in the Unix Shell.
Successively, in order to compare data acquired from dif-
ferent subjects, all the diffusion tensor images were registered
to the Montreal Neurological Institute (MNI) space (Grabner
et al. 2006) through nonlinear registration (scaling, shear-
ing and warping). The alignment to a common template was
automated over the 485 subjects through a script written in
Bash command language and executed in the Unix Shell.
In particular, the Functional MRI Software Library v5.0 in
FSL and the package for nonlinear registration, FNIRT, were
used. The warping maps available for each subject in the HCP

BCC body of corpus callosum, SCC splenium of corpus callosum, CST
cortico-spinal tract, ML medial lemniscus, ACR anterior corona radi-
ata, SCR superior corona radiata, PCR posterior corona radiata, PTR
posterior thalamic radiation. L and R stands for left and right

dataset (Glasser et al. 2013) were given in input to the FNIRT
toolbox. During the calculations, the principal direction of
diffusion was preserved (Alexander et al. 2001).

Once all the images were aligned in the MNI space, the
ICBM-DTI-81 white matter tractography atlas (Mori et al.
2008) was used to identify regions of interest (ROIs) and
divide different white matter tracts during the analysis. This
atlas was indeed defined in the MNI space and contained
48 labels identifying the major white matter tracts in the
brain. In this study, 15 labels were used for the analysis.
Important regions of interest for TBI were the cortico-spinal
tracts (CST) and the medial lemniscus (ML) in the brainstem,
the commissural fibers in the genus, body and splenium of the
corpus callosum (GCC, BCC, SCC), anterior, superior, and
posterior corona radiata (ACR, SCR, PCR) and the posterior
thalamic radiation (PTR). Figure 1 illustrates their location
in the MNI space.

Deterministic tractography was executed in UCL Camino
Diffusion MRI Toolkit. The tracking algorithm was based on
a fourth order Runge-Kutta method (Basser et al. 2000). In
particular, fibers were seeded in the voxels of the 15 regions
corresponding to the ICBM-DTI-81 atlas. To exclude bound-
ary fibers and reduce the impact of misregistration, the ROI
template was eroded by a voxel, as reported in Veenith et al.
(2013). The construction of the fibers was stopped either in
correspondence of voxels with fractional anisotropy lower
than 0.2 or when the curve direction changed more than 40
degrees in 1 mm. The step size of the fibers was fixed to be
0.5 mm where new points were linearly interpolated.

2.3 Scalar parametric maps
From the previously estimated diffusion tensor images

(DTIs) scalar parametric maps (Mori and Zhang 2006) were
extracted in order to study the microstructural organization
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Fig. 3 Schematic representation of the procedure for evaluating the fiber shape descriptors

of the brain tissue in a healthy population and define mechan-
ical parameters for patient specific FE models. A MATLAB
script estimated the fractional anisotropy (FA) map as fol-
lowing:

1
203+ 23+ 1)) M

A :\/(M — 22 + 02 = 23> + (A3 — 11)?
with A; eigenvalues of the diffusion tensor (DiffT).
For each subject, the mean value of the diffusion parame-
ter was calculated in each of the 15 ROIs. Successively, the
mean and the standard deviation of previously extracted val-
ues were estimated among different subjects. The rationale
for the fractional anisotropy analysis is reported in Fig. 2.

2.4 Statistical analysis of white matter tracts
The previously estimated white matter tracts (tractography)

were analyzed in terms of length, curvature, and orientation
in the three-dimensional space. The analysis was performed
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for each of the 485 subject in the 15 ROIs using a MATLAB
script. A schematic representation of the analysis is reported
in Fig. 3.

The length of a fiber was defined as the product of the step
size Am (fixed to 0.5 mm) and the number of points forming
the fiber, n, as below:

l=Amn—1) (2)

Each fiber was geometrically characterized with local shape
descriptors (Gerig et al. 2004; Corouge et al. 2004). The geo-
metrical characteristics were derived from the Frenet frame,
anon-inertial coordinate system attached to each point of the
fiber. To identify the local orientation of a fiber in the three-
dimensional space, the unit tangent vector T(s) was extracted
at each point forming the fiber according to:

dr(s)

T(s) = ‘ dZ—” ‘ 3)
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White Matter Tract

Fig. 4 Characterization of the fiber tangent vector T by means of ® €
[0, ], elevation angle, and @ € [0, 2x], azimuth angle, in a three-
dimensional Cartesian coordinate system {ej, e, €3}

where r(s) represented the fiber tract parameterized by the
arc length s. The fiber orientation was expressed in terms
of two Eulerian angles ® € [0, w] (elevation angle) and
@ € [0, 2] (azimuth angle) in a three-dimensional Carte-
sian coordinate system {ej, e, ez} (Fig. 4).

T(®, @) = sin(O)cos(P)e; + sin(@)sin(P)e, + cos(O@)e3
4)

Finally, the local curvature of a white matter tract was com-
puted as the failure of a curve to be a straight line:

dT(s)
ds

|

‘ &)

Only fibers with a minimum length of 10 mm were ana-
lyzed, in order to exclude tracts that terminated prematurely.
The threshold value was selected from the histogram of the
lengths in order to include the majority of the tracts.

To compare the orientation and curvature of the tracts in a
specific region of interest, the reference fiber was identified
as the one passing through the center of the ROI. The other
tracts were then aligned by making their seed point corre-
sponding to the closest point of the reference. The search of
the closest point was only executed in 12 mm before and after
the reference seed point in order to find the best correspon-
dence in the ROI’s area. After the alignment the mean and
standard deviation of T(s) and k(s) for each arch-length value
were calculated. These quantities represented the evolution
of the average tangent vector and the average curvature along
the reference fiber in a particular ROI. From these mean ROI
values, the mean and the standard deviation of the average
length and the average evolution of T(s) and k(s) were cal-
culated among the 485 subject.

2.5 Generation of white matter subject-specific FE
models

The FE models used in this study were white matter subject-
specific adaptations of the anisotropic FE model developed
by Giordano and Kleiven (2014). The baseline model (Gior-
dano and Kleiven 2014) consisted of 16,906 nodes, 11,158
eight node brick elements, 10,165 four-node shell elements
and 22 two-node truss elements. As it can be seen in Fig. 5,
it included the scalp, the skull, the brain, the meninges, the
CSF, the ventricles, 11 of the largest parasagittal bridging
veins and a simple neck with the extension of the spinal
cord and the dura mater. Details about model validation are
reported in “Appendix 1.” Further detail can be found in
the publication by Giordano et al. (2014), Giordano and
Kleiven (2014), Giordano and Kleiven (2016). Tables 1, 2
and 3 describe the material models used in the simulations.
The brain was assigned a Gasser—Ogden—Holzapfel (GOH)
hyper-viscoelastic fiber-reinforced anisotropic law defined
by the hyper-elastic strain energy potential:

G - J2—-1 1
W=—(U—-3)+K — =In(J)
2 4 2 )
+ ﬁ(ekz(fg) —1)
ka

where

E, =k, = 3) + (1 — 3k)(Iug
(I —3) +( )(L4e) o

i4a =C: Ny, @ Noy

In the expression W represents the strain energy per unit
of reference volume, G and K are the shear and the bulk
modulus respectively, J is equal to the determinant of the
deformation gradient, I; corresponds to the first invariant
of the isochoric Cauchy—Green strain tensor, and k; and kj
describe the fiber stiffness (Gasser et al. 2006). The gray mat-
ter behavior was assumed to be isotropic (k = 0.3333), while
the degree of anisotropy of the white matter was discretized
into intervals based on FA (Table 2).

In order to generate white matter subject-specific FE mod-
els, the diffusion information of a single subject was mapped
within the geometry of the baseline model. The protocol pro-
posed by Giordano et al. (2014) was followed: as first the
FE brain mesh was voxelized to a reference volume; sub-
sequently the DTI brain and the voxelized brain mask were
aligned by affine registration. Finally the DTI volume was
transformed to the FE reference using the preservation of
principal direction algorithm (FSL). To insert the diffusion
information into the FE model, all DTI voxels belonging to
a single finite element of the brain were identified based on
spatial coordinates. Diffusion information was averaged to
extract the mean element anisotropy information according
to
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Fig. 5 Baseline FE model of the human head (Giordano and Kleiven 2014). On the top isometric view of the head model with open scalp and
exposed skull. Internal view of the head model with open skull and exposed brain. On the bottom details of the skull base, brain membranes and

bridging veins

Table 1 A summary of the

material properties of the head Tissue Young’s modulus (MPa) Density (Kg/dm?) Poisson’s ratio
2131?((1151 components used in this Outer compact bone 15,000 2.00 0.22
Inner compact bone 15,000 2.00 0.22
Porous bone 1000 1.30 0.24
Neck bone 1000 1.30 0.24
Cerebrospinal fluid K =2.1GPa 1.00 -
Brain Hyper-viscoelastic fiber-reinforced GOH (see Table 3)
Sinuses K =2.1GPa 1.00 -
Dura mater 31.5 1.13 0.45
Falx 31.5 1.13 0.45
Tentorium 31.5 1.13 0.45
Pia mater 11.5 1.13 0.45
Scalp Viscoelastic 1.13 0.42
Bridging veins EA=19N - -
The capital letter K represents the Bulk Modulus while EA means force/unit strain. The brain is assigned a
hyper-viscoelastic fiber-reinforced anisotropic material
DiffT _ ZZNZI DiffT; - e~ @) The white matter tract orientation was extracted as the
1 Relement = YN e D principal eigenvector of DiffT;, and was specified in the

In the formula, N refers to the number of selected voxels
for a finite element, and DiffT; and D; are respectively the
diffusion tensor and the normalized distance from the center
of the voxel to the center of the finite element for each selected
voxel (7).
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model element-wise by a system of local coordinates using
the * ELEMENT_ SOLID_ORTHO keyword in the Ls-Dyna
input deck. In terms of model parts, the brain was divided
into gray matter and eight groups of white matter based on
FA values (Table 2; Fig. 6).
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Table 2 Discretization of

; ) o FA range k value
fractional anisotropy in intervals
and respective k values for FE 0.0-0.2 0.3333
simulations (Giordano et al.
2014) 0.2-0.3 0.2732
0.3-0.4 0.2500
0.4-0.5 0.2273
0.5-0.6 0.2000
0.6-0.7 0.1667
0.7-0.8 0.1282
0.8-0.9 0.0769
0.9-1.0 0.0000

Table 3 Properties of brain tissue in the head model: parameters refer
to the hyper-viscoelastic fiber-reinforced anisotropic formulation (Gior-
dano and Kleiven 2014)

Parameter Value

G (Pa) 2990

K (MPa) 50

k Depending on FA
k1 Depending on location
ko — 0

M; for r; = 1070 0.7685

M, for rp = 10735 0.1856

Ms for 13 = 1074 0.0148

My for iy = 10735 0.0190

Ms for ts = 10725 0.0026

Mg for 16 = 107! s 0.0070

Moo 0.0025

Viscoelasticity was considered by using a 6-order Prony series identified
from high frequency data by Nicolle et al. (2005)

2.6 Loading conditions

The kinematics from reconstructions of a sport accident that
took place in the American National Football League (case
NFL57) (Newman et al. 2000) were imposed on the FE mod-
els. This specific case was selected because of high rotational
acceleration occurring in the transversal and coronal planes,
which is typically associated with traumatic brain injury.
The accident dynamic consisted in a football player strik-
ing another football player in the head. The striking player
was not injured while the struck player was concussed.

In all the simulations, the skull was a rigid body while
translational and rotational accelerations (Fig. 7) were
applied to the head center of gravity. The interface between
the dura mater and the skull was modeled in LsDyna with
tied-surface contacts. The meninges—brain interface was
instead modeled with a sliding only contact that did not allow
any separation in the radial direction but allowed transfer of
tension and compression in the radial direction. This model-

ing choice wanted to represent the vacuum experienced by
the cerebrospinal fluid when inertia forces created tension in
brain region opposite to the impact location.

The GOH model was supplied to Ls-Dyna as a user sub-
routine. The custom executable was called in the input deck
using a user-defined material with input parameters from
Tables 1, 2 and 3. For the calculations, reduced integration
and hourglass control were used for the brain while selec-
tively reduced integration was used for the other components.
The hourglass energies were always controlled to be lower
than 10% of the peak internal energy for each part in the
model.

2.7 Strain-based injury criteria

Finite element head impact analyses were used in combina-
tion with axonal strain-based injury predictors to assess the
risk of traumatic brain injury. In the current study, the peak
values of the principal Green-St. Venant strain and axonal
strain were considered independent of the time of occur-
rence. The peak value was selected because it represented
the worst case scenario, namely the maximum deformation
that occurred in the tissue and that was believed to cause the
injury.

Specifically, the axonal strain expressed the deformation
of the tissue in the direction of white matter tracts and was
defined as

Ey =k(I} =3) + (1 = 3k)(I4y — 1)

- - ©))
Iy = C :mpg ® ngy
where E, represents the axonal strain, I corresponds to
the first invariant of the isochoric Cauchy—Green strain ten-
sor, C is the isochoric Cauchy—Green strain tensor, ng, the
fiber unit vector in the undeformed configuration and k the
dispersion parameter. This measure was directly calculated
from the constitutive model for the brain tissue, thanks to the
anisotropic formulation of the material.

3 Result
3.1 Statistical analysis of white matter tracts

The normalization procedure of the 485 diffusion images
showed a mean registration error % inter-subject variabil-
ity of 2.15 £ 0.18%. In addition, above 57% of the voxels
that presented different values between the registered and the
fixed images were false positives, meaning that the subject’s
registered images were slightly bigger than the MNI152 tem-
plate. Table 4 reports the inter-subject variability of FA for
the commissural fibers of the corpus callosum, cortico-spinal
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Fig. 6 Separation between gray and white matter based on fractional
anisotropy from DTI. The image refers to the baseline model by Gior-
dano and Kleiven (2014). No elements are found in the most anisotropic
group 0.9 < FA < 1.0. From the left to the right, axial cross sections
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of the FE model and FA map at z = —46.9, —11.2, —3.3 and 28.4 mm
are illustrated. The z-axis represents the inferior—superior direction and
coordinates are expressed relatively to the center of mass of the head
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Fig. 7 Head models loading conditions based on the reconstruction of a concussive case (case study NFL57) (Newman et al. 2000). Translational
and angular accelerations are illustrated for both concussed and unharmed players
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Table 4 Mean, standard deviation and coefficient of variation of FA
for the 15 ROIs analyzed in the study

ROI FA Mean FA SD FA Cv (%)
GCC 0.5585 0.0406 7.2631
BCC 0.5532 0.0473 8.5534
SCC 0.6446 0.0518 8.0409
CSTR 0.4287 0.0502 11.7033
CSTL 0.4359 0.0481 11.0422
MLR 0.4997 0.0494 9.8977
MLL 0.4968 0.0511 10.2975
ACRR 0.4011 0.0286 7.1311
ACRL 0.4212 0.0279 6.6283
SCRR 0.4208 0.0315 7.4956
SCRL 0.4408 0.0379 8.5919
PCRR 0.4249 0.0324 7.6276
PCRL 04114 0.0351 8.5392
PTRR 0.5156 0.0362 7.0299
PTRL 0.5487 0.0411 7.4978

The mean was operated subject-wise and ROI-wise (see Fig. 2)

tract, medial lemniscus, corona radiata, and posterior thala-
mic radiation. The mean values ranged from 0.4011£0.0286
in the anterior right corona radiata to 0.6446 + 0.0518 in the
splenium of the corpus callosum. The thalamic radiation and
the corpus callosum showed relatively high anisotropy val-
ues compared with those of the corona radiata. The biological
variability was found to be elevated with a mean coefficient
of variation across the ROIs of 8.48%. In the analysis of
interhemispheric differences, significant left-right asymme-
try was not found. Minor differences in mean values were
present in several regions, most significantly in the posterior
thalamic radiation. However, in general, the differences in
regional mean values were moderate and within 1 standard
deviation (SD).

Figure 8 reports the mean length of the fibers seeded in the
15 regions of interest for TBI. The mean length values ranged
from 66.72 £ 12.17 mm (left medial lemniscus) to 108.4 +
15.69 mm (splenium of the corpus callosum). The biological
variability was found to be high with a mean coefficient of
variation across the ROIs of 12.6%.

Figures 9 and 10 illustrate the white matter tract geo-
metrical characteristics along the reference fiber for the
corpus callosum and the cortico-spinal tracts respectively.
The detailed results for all the 15 ROIs are reported in
“Appendix 2.” On the left of Figs. 9 and 10, the tractography
model allows the visualization of the fibers in 3D space. In
the middle, the average curvature along the reference fiber is
reported. On the right, the evolution of the elevation angle (®)
and azimuth angle (@) (Fig. 4) is depicted to show the distri-
bution of the reference fiber along the parametrized arc. The
inter-subject variability is represented as a gray band indicat-
ing £ 1 SD. For the corpus callosum (Fig. 9) the fibers were
analyzed laterally, from left to right. For the cortico-spinal
bundles (Fig. 10) the analysis was performed vertically, from
inferior to superior. The origin of the plot corresponds to the
center of the ROIL.

As it can be seen from Figs. 9 and 10, the inter-subject
variability for curvature was found to be high. The mean cur-
vature for the callosal fibers of the genu, body and splenium
was 0.052 £ 0.0058, 0.047 £ 0.0054 and 0.043 £ 0.0047,
respectively. The coefficient of variation across the ROIs was
11.16%. The cortico-spinal bundles showed a mean curva-
ture of 0.039 % 0.014 for the left and 0.038 & 0.013 for the
right bundles. The coefficient of variation across the ROIs
was 36.23%.

The evolution of the elevation (®) and azimuth (@) angles
along the reference fiber (Fig. 4) also showed significant
inter-subject variability. On average, the elevation angle for
the callosal fibers of the genu, body and splenium was
90.21° £8.85°, 86.35° £28.54° and 88.46° +4.62°, respec-
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Fig. 8 Mean length of the fibers corresponding to the 15 selected ROIs for TBI analysis. Error bars represent the inter-subject variability over 485

subjects (SD)
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Fig. 9 Inter-subject variability of the 3D orientation of the callosal
white matter tracts. On the left visualization in the 3D space of the
reference fiber (A anterior, P posterior, L left, R right). In the mid-
dle curvature along the reference fiber. On the right evolution of the

tively. ® had a coefficient of variation across the ROIs of
20.13%. The mean azimuth angle was 82.21° &£ 8.85° for the
genu, 11.54° £ 6.17° for the body and 88.46° £ 4.62° for
the splenium of the corpus callosum. The coefficient of vari-
ation for @ across the ROIs was 45.38%. The cortico-spinal
bundles showed a mean elevation angle of 42.79° + 8.38°
for the right and 43.56 & 9.67 for the left bundles. ® dif-
fered across the ROIs with a coefficient of variation of
20.88%. On average, the azimuth angle of the right and
left bundles was 77.47° £ 14.18° and 110.82° =+ 41.40°,
respectively. The coefficient of variation across the ROIs
was 27.83%.
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Fiber Length (mm)

elevation angle and azimuth angle (refer to Fig. 4). The inter-subject
variability is represented as a gray band indicating + 1 SD. The origin
of the plot corresponds to the center of the ROIL Negative length values
are related to fibers in the left part of the ROI

3.2 Subject-specific FE models

Subject-specific anisotropic FE models were generated by
mapping the diffusion information of a single subject within
the baseline FE model. According to Giordano et al. (2014),
the brain was divided in gray and white matter and, in turn,
white matter was divided in eight groups based on the align-
ment of the neuronal fibers (Table 2). According to Eq. 8,
diffusion information from medical images was averaged
to extract the mean anisotropy information for each finite
element. Table 5 illustrates how the inter-subject biologi-
cal variability of FA from medical images translated into
variability in the FE models after the weighted averaging pro-
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cedure. The finite elements corresponding to the commissural
fibers of the corpus callosum, cortico-spinal tract, medial
lemniscus, corona radiata, and posterior thalamic radiation
were identified based on spatial correspondance. The mean
FA values ranged from 0.3648 +0.0272 in the posterior right
corona radiata to 0.6084 +0.0515 in the splenium of the cor-
pus callosum. Although some smoothing effects were visible
due to the procedure (typically the FA mean values were
lower in the model than in the medical images), the biologi-
cal variability was found to be representative of the medical
images with a mean coefficient of variation across the ROIs
of 8.27%.

Figure 11 illustrates the proportion of finite elements
belonging to a certain anisotropy group in the brain for the
485 analyzed subjects. As it can be seen from Fig. 11, the
biological variability of white matter tracts affected the deter-
mination of the mechanical fiber alignment parameter k and
the separation of gray and white matter in the FE model.
The average number of elements belonging to gray matter

and azimuth angle (refer to Fig. 4). The inter-subject variability is rep-
resented as a gray band indicating £ 1 SD. The origin of the plot
corresponds to the center of the ROI. Negative length values are related
to fibers in the inferior part of the ROI

(k = 0.3333) ranged from 2291 (55.55%) to 2918 (70.75%)
with a coefficient of variation of 3.8%.

The biological variability of white matter tracts also
affected the orientation of the fiber reinforcements in the FE
model. As a mean of example, Fig. 12 illustrates the orien-
tation of white matter tracts in the corpus callosum of three
subjects randomly chosen in the pool of 485. Similar to Eq. 4,
to measure the statistical variability of the orientations over
the 485 analyzed subjects, the fiber principal orientation vec-
tor P was characterized in terms of elevation (®) and azimuth
(@) angles:

P(®, @) =sin(®)cos(P)e; + sin(®)sin(PD)e, + cos(O)e3
(10)

The biological variability was found to be considerable with
the mean coefficient of variation across the white matter equal
t039.42% for ©, elevation angle, and 29.31% for @, azimuth
angle.
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Table 5 Mean, standard deviation and coefficient of variation of FA in
the finite elements corresponding to the 15 ROIs analyzed in the study

Finite elements FA mean FA SD FA Cv (%)
GCC 0.4799 0.0405 8.4370
BCC 0.5178 0.0460 8.8876
SCC 0.6084 0.0515 8.4624
CSTR 0.3788 0.0395 10.4351
CSTL 0.3818 0.0390 10.2249
MLR 0.4369 0.0494 11.3077
MLL 0.4435 0.0439 9.9014
ACRR 0.3769 0.0280 7.4391
ACRL 0.3888 0.0248 6.3820
SCRR 0.4082 0.0273 6.6950
SCRL 0.3958 0.0237 5.9841
PCRR 0.3648 0.0272 7.4566
PCRL 0.3654 0.0286 7.8255
PTRR 0.4728 0.0349 7.3801
PTRL 0.5002 0.0359 7.1818

The mean was operated subject-wise and ROI-wise (see Fig. 2)

3.3 Traumatic brain injury prediction

A summary of the model prediction of maximum axonal
strain (MAS) for different areas of the brain is reported in
Fig. 13. For comparison, a summary of the model prediction
of maximum principal strain (MPS) is reported in Fig. 14.
The mean values and standard deviations observed in the
simulations are illustrated for concussed and uninjured play-

ers in the whole white matter, brainstem, midbrain, corpus
callosum, and thalamus. For the concussed player, the mean
values for MAS ranged from 0.027 4 0.0051 in the brain-
stem to 0.261 £ 0.0253 in the whole white matter. The mean
values for MPS ranged from 0.107 £0.0013 in the brainstem
to 0.498 £ 0.0034 in the midbrain. For the unharmed player,
the mean values for MAS ranged from 0.016 &+ 0.0042 in
the brainstem to 0.233 % 0.033 in the whole white matter.
The mean values for MPS ranged from 0.067 £ 0.001 in the
brainstem to 0.397 +0.003 in the midbrain. Overall, the vari-
ability of the model predictions was found to be high with a
mean coefficient of variation across the whole white matter
of 11.91% for MAS and 2.33% for MPS.

The ¢ test for equality of means was used for a statistical
comparison between the concussed (Figs. 13, 14 black) and
the unharmed (Figs. 13, 14 white) populations. A statistical
difference (¢ test, p < 0.05) was found in all areas of the brain
meaning that, although the prediction of MAS and MPS were
affected by biological variability, the mean values of the two
populations (unharmed/concussed) were still different within
the 5% confidence interval. The FE models predicted a typ-
ical strain pattern in the brain, independent of the subject
specificity of the model. For the unharmed player, areas of
large principal strain were observed in the temporal lobe and
superior parts of the cortex (Fig. 15). The maximum axonal
strain was mostly located in the cingulate gyrus (Fig. 16).
For the concussed player, areas of large principal strain were
observed in the splenium of the corpus callosum as well as in
the temporal and occipital lobe close to the right lateral ventri-
cle (Fig. 17). A similar strain pattern was seen for the axonal
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Fig. 11 Proportion of finite elements belonging to a certain group of gray/white matter in the brain for the 485 subjects. On the top results for the
nine groups of brain tissue. k = 0.3333 corresponds to gray matter. Az the bottom zoom of the results for the most anisotropic groups
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Fig. 12 Orientation of white matter tracts in the corpus callosum of three subjects (black, blue and red) randomly chosen in the pool of 485
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Fig. 13 A summary of the mean values and standard deviations
observed in the simulations for axonal strain. The values are shown
in black for concussed (n = 485) and white for non-injured (n = 485)
players for various anatomical regions of the brain. Statistical differ-

strain whose peaks were mostly located at the edge between
the body of the corpus callosum and the lateral ventricles
(Fig. 18). Figures 15, 16, 17 and 18 illustrate the localization
of MPS and MAS for the concussed and unharmed player,
respectively, over the 485 studied subjects. As indicated by
the figures, despite the biological variability, the measures of

ences in ¢ tests are reported as *xx when p <0.05. The boxplots show
the median, minimum, and maximum value for axonal strain. Outliers
are plotted as crosses outside the box

MPS and MAS were repeatable. Disregarding the outliers,
the MAS was located in a 2 cm? volume: laterally (x-axis)
and vertically (z-axis) coordinates varied within 1 cm while
horizontally (y-axis) the variation was slightly larger, mostly
within 2 cm (Figs. 16,18).
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Fig. 14 A summary of the mean values and standard deviations
observed in the simulations for principal strain. The values are shown
in black for concussed (n = 485) and white for non-injured (n = 485)
players for various anatomical regions of the brain. Statistical differ-

4 Discussion
4.1 Biological variability of white matter tracts

At present, only a few reports of biological variability data
for regional FA are available (Lee et al. 2009; Oishi et al.
2008; Yendiki et al. 2011; Veenith et al. 2013). The cumu-
lative data derived from this kind of studies forms the basis
for the use of DTI measurements in clinical patients, where,
a sound definition of healthy state is necessary prior to the
diagnosis/classification of a disease. The data derived from
this study therefore contribute to define FA values in a nor-
mal population. This diffusion information can be used in
future studies to observe alterations in the values of diffu-
sion parameters related to white matter pathologies.

When compared to reports of measurements made by
Oishi et al. (2008) and Yendiki et al. (2011), the estimates in
the corpus callosum, brainstem, thalamus, and corona radi-
ata showed agreement within a standard deviation. However,
when compared to reports of measurements made by Lee
et al. (2009) and Veenith et al. (2013), the results obtained
in the current study differed to a greater extent from the
literature (mostly within 2—-3 SD). The dissimilarities were
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ences in ¢ tests are reported as xx when p <0.05. The boxplots show
the median, minimum, and maximum value for principal strain. Outliers
are plotted as crosses outside the box

probably due to differences in the choice of the ROI’s loca-
tion as well as in the choice of the reference space used for
image normalization. As a matter of fact, in Oishi’s study
(Oishi et al. 2008) the ICBM-DTI-81 atlas in MNI space
was used as reference, as it was done in the present study. In
Yendiki’s study (Yendiki et al. 2011), ROIs were manually
labeled but the reference frame for image normalization was,
once again, the MNI-152 atlas. In Lee’s and Veenith’s studies
(Lee et al. 2009; Veenith et al. 2013) other spatial references
were adopted. It is concluded that using a common reference
space for image normalization produced diffusion parame-
ters mean values in agreement within a standard deviation. If
significant differences in FA values are found between two
studies, it could be due to consistent anatomical difference
between the two spatial references. Moreover, for areas of
the brain located close to the ventricles, differences could be
due to cerebrospinal fluid (CSF) contamination, i.e., to the
inclusion of voxels representing CSF in the average values
extracted, due to incorrect normalization.

In order to study the microstructural organization of the
brain tissue in a healthy population, tractographic data were
analyzed in terms of mean length, orientation and curvature.
The mean length of the fibers of the corpus callosum was
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Case NFL57H1 — Unharmed Player — MPS Distribution
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Fig. 15 Location of maximum principal strain for the unharmed player
(Case NFL57H1). On the top scatter plot representing the nodes where
the maximum principal strain was observed. The size of the markers
(blue) is proportional to the frequency of occurence of a certain loca-
tion. For spatial reference, the mesh of the corpus callosum is plotted in

87.57 £ 8.53 mm for the genu, 89.91 + 8.68 mm for the
body and 108.4 & 15.69 mm for the splenium. These values
were comparable within 2 SD to the results by Caminiti et al.
(2013), where the length of the callosal fibers (2x length
from the cerebral cortex to the fiber midline) was reported to
be 110.40, 114.74, and 142.44 mm for the genu, the body and
the splenium respectively. In Caminiti’s study, a slightly over-
estimation of the length occurred since the distance between
the end of the fiber and the layer III of the cortex was included
in the calculations.

Overall fibers resulted longer in the posterior part of the
structures, in contrast with the anterior: it can be noted in
Fig. 8 for the corpus callosum and corona radiata. More-
over, the central part of the brain structures presented lower
variability than the peripheral one. The fiber in the brain-
stem presented the highest variability. Registration errors in
image normalization could partly explain the higher variabil-
ity, being the brainstem located at the edge of the registered
images.

The evolution of the elevation and azimuth angles for the
callosal and cortico-spinal fibers indicated fiber shapes in
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gray. On the bottom distribution of the coordinates of the points where
maximum principal strain was found. X-axis, Y-axis, and Z-axis corre-
spond to the lateral, anterior—posterior and inferior—superior directions,
respectively

agreement with the expected 3D distribution known from
histology. The fibers seeded from the genu of the corpus
callosum were characterized by an elevation angle of circa
90° and an azimuth angle varying in the range 90°-0°-90°
(Fig.9) . This indicated u-shaped tracts with most fibers lying
in the transverse plane. The tracts seeded from the body of
the corpus callosum (Fig. 9) presented small azimuth angles.
The elevation angle varied between 120° and 60°. This rep-
resented u-shaped white matter tracts with disposition in
the coronal plane. The splenium had a shape similar to the
genu with some tracts lying on oblique surfaces between
the transversal and coronal planes. Both the left and right
cortico-spinal tracts were characterized by elevation angles
of circa 45° (Fig. 10) indicating disposition in the coronal
plane with a moderate inclination with respect to the verti-
cal. Furthermore the trend of the azimuth angles represented
first a distribution of the fibers toward the anterior—posterior
direction followed by a progressive separation of the bundles
toward the left and right directions respectively.

The curvature of the white matter tracts presented signifi-
cant biological variability. Generally, the variability increased
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with the distance from the seed point, where the track esti-
mation was started. This could indicate that the effects of
the biological variation may have summed up with propa-
gation errors of the tracking algorithm. In particular, from
Figs. 9 and 10 it can be noticed that the callosal fibers of the
genu showed the highest curvature with respect to the other
tracts of the corpus callosum (marked u shape). Meanwhile,
the tracts from the body presented the highest curvature vari-
ability. Moreover the callosal fibers showed significant lower
mean curvature variability than the average among all the
regions (0.016). This result is in agreement with the highest
percentage of overlap of the callosal fibers reported in Biirgel
and Amunts (2006) and Schotten et al. (2011). The cortico-
spinal bundles did not present significant differences in the
curvature between the right and left tracts. It is worth noting
that the inter-subject variability was significant within the
seed point (i.e., the brainstem) and at 40 mm after the origin,
around the midbrain.

The 3D orientation of the white matter bundles also
showed considerable biological variability. The coefficient
of variability of the orientation angles varied between 20 and
45%. The standard deviation typically increased with the dis-
tance from the seed point, where the track estimation was
started. A major limitation of the statistical analysis of white
matter tract was the error introduced by the reference fiber-
based correspondence criterion used for clustering of tracts.
The comparison of the fibers was indeed done by aligning
all the fibers in a ROI with the reference fiber, seeded from
the center of the ROI. The procedure assumed similarity of
fiber shapes in a ROI. Indeed, the labels of the JHU atlas
were defined on the base of the principal diffusion eigen-
vector (Jenkinson 2015); therefore, white matter fibers in a
region should have had similar spatial distribution. However,
it was noticed that, for bigger ROIs, few tracts with different
three-dimensional shape were forced to correspond indepen-
dently of their shape. In future studies, more precise result
may be obtained by including clustering of different families
of fibers before alignment to the reference.

4.2 Traumatic brain injury prediction

Computational models incorporating anisotropic features of
brain tissue have become a valuable tool for studying the
development of TBI. The tissue deformation in the direction
of white matter tracts (axonal strain) was repeatedly shown
to be an appropriate mechanical parameter to predict injury
(Sahooetal.2015; Giordano and Kleiven 2014). In particular,
when anisotropic metrics are promoted as injury predictors,
the uncertainty of the predictions due to biological varia-
tion should be carefully investigated. As a matter of fact, a
variation in white matter tract orientation would affect the
orientation of the fiber reinforcement in the anisotropic FE
model, the value of diffusion parameters based on which
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mechanical parameters are determine and, ultimately, the
model responses and injury prediction results. This means
that, on top of the modeling uncertainties due to the approx-
imation of the geometry and material properties, the FE
analysis will be affected by an extra source of uncertainty.
This is important to consider when assessing the reliability
of axonal strain to predict TBI in a population.

The present study investigated the sensitivity of axonal
strain to biological in DTI data of a population of 485
healthy subjects. It was observed that the biological vari-
ability affected the mechanical response of the white matter
subject-specific FE models. According to Giordano et al.
(2014), the separation of brain tissue into gray and white mat-
ter was based on FA values from diffusion tensor images. As
expected, the biological variability of FA (Table 4) affected in
cascade the coupling procedure generating subject-specific
models with a different percentage in volume of white mat-
ter and different alignment of the fibers (Figs. 11, 12). The
volume percentage of gray matter in the model showed a
coefficient of variation equal to 3.8% with gray matter vari-
ating from 55.55% of the total brain volume to the 70.75%.
Also, the orientation of the fiber reinforcements in the FE
model had a coefficient of variation of 39.41% for the eleva-
tion angle and 29.31% for the azimuth angle (Eq. 9). Finally,
the coefficient of variation of 9.86% for mean FA in medical
images turned into a coefficient of variation of 8.26% for the
correspondent finite elements in the models (Tables 4 vs. 5).
This variability reduction was likely due to the usage of an
averaging procedure to map the diffusion information to the
model (Giordano et al. 2014). Finite elements with a mean
length of 5.8 mm were indeed associated to DTI voxels with
a length of 1 mm. A consequence of applying such a voxel
mean calculation was a smoothing of the diffusion parame-
ters between elements. Given the coarse mesh of KTH model,
this procedure was necessary and was the biggest limitation
of this study. Nevertheless, although some smoothing effects
were visible (typically the FA mean values were lower in the
model than in the medical images), the subject-specific mod-
els still differed importantly from one another and the model
inter-subject variability was found to be representative of the
medical images (similar coefficients of variation).

The magnitude of principal and axonal strain in the brain
was larger for the concussed player than for the unharmed
player. This confirmed a positive correlation between the risk
of injury and the magnitude of deformation of the tissue.
For the unharmed player, areas of large principal strain were
observed in the superior parts of the cortex (Fig. 15). The
maximum axonal strain was mostly located in the cingulus
gyrus (Fig. 16). In the concussive case, areas of large prin-
cipal strain were observed in the posterior part of the corpus
callosum close to the right lateral ventricle (Fig. 17). A sim-
ilar strain patter was seen for the axonal strain (Fig. 18).
These findings were in agreement with the centripetal theory
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Fig. 16 Location of maximum axonal strain for the unharmed player
(Case NFL57H1). On the top: scatter plot representing the nodes where
the maximum axonal strain was observed. The diameter of the markers
(red) is proportional to the frequency of occurence of a certain location.
For spatial reference, the mesh of the corpus callosum is plotted in gray.

of concussion (Gennarelli 2015) stating that, during a concus-
sion, the disruption of the brain always begin at the surfaces
and extend inwards to affect the diencephalic—-mesencephalic
core at the most severe levels of trauma.

As expected, the biological variability of white matter
tracts affected the model predictions. The mean coefficient
of variation across the whole white matter was 11.91% for
MAS and 2.33 % for MPS (Figs. 15, 16, 17, 18). Being an
orientation-dependent parameter, MAS was typically more
sensitive than MPS to variation of fiber alignment or orien-
tation. As a matter of fact, the variation reported in Figs. 15
and 17 was merely a result of the constitutive anisotropy
while the variation reported in Figs. 16 and 18 was the
result of both the constitutive anisotropy and the projec-
tion of the strain onto different fiber directions. To test the
capability of principal and axonal strain to discern between
non-injurious and concussed populations, the ¢ test for equal-
ity of means was performed. A statistical difference (¢ test,
p <0.05) was found all areas of the brain meaning that,
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On the bottom distribution of the coordinates of the points where maxi-
mum axonal strain was found. X-axis, Y-axis and Z-axis correspond to
the lateral, anterior—posterior, and inferior—superior directions, respec-
tively

although the prediction of MAS and MPS were affected
by biological variability, the mean values of the two pop-
ulations (unharmed/ concussed) were still different within
the 5% confidence interval. Interestingly, despite biologi-
cal variation, the localization of the maximum axonal strain
was consistent for most of the subjects (Figs. 16, 17, 18).
Disregarding some outliers, perfectly normal in a healthy
population, the MAS was typically located in a 2 cm? volume
with most of the variation occurring in the anterior—posterior
direction.

Considered all the sources of uncertainty of such complex
FE models, it was concluded that axonal strain is an appropri-
ate mechanical parameter to predict traumatic brain injury.
MAS indeed distinguishes between injured and healthy pop-
ulations and the variability of 11.91% in the numerical
solution is comparable to the uncertainties in the calculations
due to head geometry approximations (Kleiven and Holst
2002; Ho and Kleiven 2009) or modeling choices in material
properties (Ji et al. 2014).
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Fig. 17 Location of maximum principal strain for the concussed player
(Case NFL57H2). On the top scatter plot representing the nodes where
the maximum principal strain was observed. The size of the markers
(blue) is proportional to the frequency of occurence of a certain loca-
tion. For spatial reference, the mesh of the corpus callosum is plotted in

5 Conclusion

In the present study, diffusion parameter values for a healthy
state of the brain tissue were defined by the analysis of
DTIs of 485 subjects. The normalization of the images to
the MNI152 template and the adoption of the JHU labeled
atlas enabled the comparison of the results with other stud-
ies. The study showed the importance of adopting a common
spatial refence for the tissue analysis. An accurate alignment
between the ROIs and the white matter structures is manda-
tory, especially for regions nearby the ventricles.

The main objective of the study was to evaluate the sen-
sitivity of axonal strain to biological variability in DTI data
of a population of 485 healthy subjects. It was found that
the biological variability of white matter tracts affected the
orientation of the fiber reinforcement in the anisotropic FE
models, the value of diffusion parameters based on which
mechanical parameters were determined and, ultimately, the
injury prediction results. Despite a quite significant biolog-
ical variability, for a sport concussion between two players

@ Springer

y coordinate (m)

z coordinate (m)

gray. On the bottom: distribution of the coordinates of the points where
maximum axonal strain was found. X-axis, Y-axis, and Z-axis corre-
spond to the lateral, anterior—posterior, and inferior—superior directions
respectively

(Case NFL57, Newman et al. 2000), MAS was capable to
discern between non-injurious and concussed populations in
several areas of the brain. The strain patterns predicted by
the FE models were consistent and the maximum deforma-
tion was typically located in a 2 cm® volume of the brain. It
is concluded that axonal strain is an appropriate mechanical
parameter to predict traumatic brain injury.

Nevertheless, the importance of subject-specific geom-
etry and material properties, including the subject-specific
white matter tract distribution, cannot be neglected. The
subject-specific FE models generated in this study differed
importantly from one another in terms of white matter vol-
ume and fiber reinforcement orientation. Although the same
kinematics was applied to all the 485 models, the strain pre-
dictions varied with coefficients of variation of 11.91% for
MAS and 2.33% for MPS. These variations underlines the
incapability of an average FE model to represent the whole
population and the necessity to develop families of mod-
els to cover specific, maybe vulnerable, populations. This is
especially true for anisotropic models where the biological
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Fig. 18 Location of maximum axonal strain for the concussed player
(Case NFL57H2). On the top scatter plot representing the nodes where
the maximum axonal strain was observed. The diameter of the markers
(red) is proportional to the frequency of occurence of a certain loca-
tion. For spatial reference, the mesh of the corpus callosum is plotted in

variation affects the orientation of the preferential directions
and, in turn, the mechanical response of the model.
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Appendix 1

The following appendix reports detail about the FE model
validation.

y coordinate (m)

z coordinate (m)

gray. On the bottom distribution of the coordinates of the points where
maximum axonal strain was found. X-axis, Y-axis, and Z-axis corre-
spond to the lateral, anterior—posterior and inferior—superior directions,
respectively

The KTH aniosotropic model has been extensively com-
pared to intracranial pressure experiments (Giordano and
Kleiven 2016), relative skull-brain motion experiments (Gior-
dano and Kleiven 2014; Giordano et al. 2014; Giordano and
Kleiven 2016) and brain deformation experiments (Giordano
and Kleiven 2014, 2016). The experimental data were taken
from Hardy et al. (2001, 2007). In these experiments, the
intracranial pressure were measured by implanting trans-
ducers at the coup and countercoup location, while the
motion between the skull and the brain was measured using
a high-speed biplane X-ray and polystyrene neutral den-
sity targets (NDTs). The NDTs were implanted into the
occipitoparietal and temporoparietal regions of the brain
and the cadaver head was suspended in a fixture that per-
mitted rotation and translation. Following, experimental
results from impacts C755-T5 and C383-T1 are reported
(Figs. 19, 20).
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Fig. 19 Simulation of relative skull-brain motion for the occipital impact C755-T5. For marker locations and coordinate system directions, see
Hardy et al. (2001). Experimental data (full lines) are plotted together with the GOH anisotropic model responses (dashed lines)
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Fig. 20 Simulation of relative skull-brain motion for the frontal impact C383-T1. For marker locations and coordinate system directions, see
Hardy et al. (2001). Experimental data (full lines) are plotted together with the GOH anisotropic model responses (dashed lines)

Appendix 2

The following appendix reports detailed plots of the inter-

rior, superior, and posterior corona radiata (ACR, SCR, PCR)
and posterior thalamic radiation (PTR) (Figs. 21, 22, 23, 24,

25).

subject variability of the white matter tract 3D orientation.
Fibers were seeded from the medial lemniscus (ML), ante-
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Fig. 21 Inter-subject variability of the 3D orientation of the medial lemniscus (ML). On the left evolution of the components of the average tangent
unit vector along the reference fiber. On the right average curvature along the reference fiber. The origin of the plot corresponds to the center of
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