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terms to handle the heterogeneity of variance was less obvi-
ous for this particular data set.

Introduction

The papers by Rebaï and Goffinet (1993) and Muranty 
(1996) are early examples of quantitative trait locus (QTL) 
detection with populations derived from more than two 
parents. More recently, QTL mapping using multi-parent 
populations (MPPs) has increased in popularity, where 
these MPPs include nested association mapping popula-
tions (NAM) (McMullen et al. 2009), diallels (Blanc et al. 
2006) and factorial designs (Bardol et al. 2013), as well as 
more complicated MPPs created by intercrossing multiple 
founders followed by inbreeding, such as in multi-parent 
advanced generation inter-cross (MAGIC) populations 
(Cavanagh et al. 2008). Here, we consider MPPs as a col-
lection of crosses between at least three different parents 
and focus on an NAM population which involves crosses 
between a central parent and a set of peripheral ones. An 
MPP QTL analysis would, therefore, be the joint analysis 
of such a population using a common marker map. Other 
authors have sometimes called it family mapping (Wür-
schum 2012), combined cross analysis (Li et  al. 2005) or 
multiple-cross analysis (Jourjon et al. 2005).

To structure our reasoning, we present some assumptions 
on the genetic properties of specific MPPs and make plau-
sible how these properties can affect the choice of a statisti-
cal model for QTL mapping. In MPPs, the use of more than 
two parents potentially increases the allelic diversity in the 
MPP as a whole and so, increases the chance of segrega-
tion at any particular genomic position (Xu 1998). MPPs 
allow to test genetic effects within different backgrounds 
(Blanc et  al. 2006) and so extend the statistical inference 
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space for the QTL effects (Xie et al. 1998). If the addition 
of parental genotypes does not increase the allelic diversity 
at a particular locus, the use of an MPP can still be advan-
tageous with respect to a bi-parental cross, because QTLs 
representing the same ancestral locus will benefit from an 
increased sample size to estimate their effects (Li et  al. 
2005).

The allelic diversity of the population may be related to 
the genetic distance among the parents of the population. 
When parents are genetically distant, the expected number 
of segregating alleles at a particular locus increases with 
the probability that these alleles are unique to a parental 
line. On the other hand, when the parents are genetically 
closer, one expects a reduced number of alleles segregating 
at a particular locus and that the alleles are shared through-
out the population.

It seems beneficial to QTL detection and estimation that 
the statistical model for the phenotypic variation in an MPP 
takes into account the genetic properties (number of alleles 
and diversity) of the MPP. The genetic diversity contained 
in the MPP can be translated to properties of the statistical 
model via the form of the QTL effects and the structure of 
the polygenic variation. This latter variation is the natural 
variation against which to test QTL effects and determines 
statistical quantities, such as power and false-positive rate.

Models for the QTL effect If the number of segregat-
ing alleles at a particular QTL increases (e.g., in a diverse 
MPP), the statistical model can capture that diversity by 
allowing more parameters for the QTL effect. In crossing 
schemes starting from pure lines, it implies estimating a 
maximum of one effect per parental line (parental model). 
On the other hand, when MPP genetic diversity is lower, 
parental relatedness can be used to infer a reduced number 
of ancestral segregating alleles that need to be estimated, 
thereby increasing model parsimony and probably also 
QTL detection power (ancestral model). The lower bound 
will be reached when only two alleles are segregating in the 
totality of the MPP (bi-allelic model). Within fixed QTL 
effect models, the reduction of QTL parameters to be esti-
mated to improve QTL detection power has been a central 
objective (Rebaï and Goffinet 1993; Jansen et  al. 2003; 
Blanc et al. 2006; Leroux et al. 2014).

The assumption concerning the number of alleles at a 
QTL position can also be seen from a pedigree or his-
torical perspective. Indeed, when parental QTL effects 
are appropriate, it implies that the allele origin is more 
recent than that of ancestral QTLs common to several 
parents. One can also argue that bi-allelic QTL effects are 
closer to the original mutation (Powell et al. 2010). These 
different assumptions about the number of alleles corre-
spond to different ways of modelling genetic relatedness 
between lines at the QTL position. So far, QTL studies 
used models that assumed a single type of QTL effect or 

allele origin (e.g., Blanc et  al. 2006 or Würschum et  al. 
2012). We can, however, imagine that allele origin and 
the number of alleles segregating at a QTL position can 
vary along the genome. Therefore, in the present article, 
we will compare QTL models assuming a single type of 
genetic relatedness along the genome with a model that 
allows different types of allele origin.

Models for the polygenic term The genetic relationship 
between the parents of an MPP will also have an influ-
ence on the magnitude and structure of the polygenic or 
residual genetic term. The more diverse the population is, 
the more heterogeneous the residual variance is expected 
to be. The heterogeneity of the residual genetic variance 
may depend on the level of genetic relatedness between 
the parents of an MPP. Differences in genetic related-
ness between pairs of parents can induce different levels 
of polygenic effect variation, inducing heterogeneity in 
residual genetic variance. Several studies of QTL map-
ping in MPPs applied linear models assuming a homo-
geneous variance for the residual genetic term (Li et  al. 
2005; Blanc et  al. 2006; Yu et  al. 2008). Depending on 
the particular MPP, this assumption might be unrealis-
tic affecting the statistical test used to detect QTLs. To 
handle heterogeneous variances, some authors used trans-
formed phenotypic data (Walling et  al. 2000; Li et  al. 
2005; Guo et al. 2006). Others, such as Xu (1998), pro-
posed to fit the QTL model by iteratively re-weighted 
least-squares. Polygenic effects can also be directly mod-
elled for heterogeneity of variance in mixed models (Xu 
and Atchley 1995; Yu et al. 2006; Wei and Xu 2015). In 
our study, we alleviated the restriction of classical linear 
models of homogeneous polygenic variance using mod-
els with cross-specific variances for the residual genetic 
term.

We summarize our expectations for QTL detection in 
MPPs by the following propositions. We will refer to them 
to guide the discussion of the results.

Proposition 1  Models assuming common effects across 
the population, such as the ancestral or the bi-allelic mod-
els, should perform relatively better in MPPs with a nar-
rower genetic basis than in genetically diverse MPPs, since 
the probability of shared polymorphism is higher in the 
former than in the latter. In diverse populations, however, 
the opposite is expected, requiring models with more QTL 
effect terms to capture the allelic diversity.

Proposition 2  The use of different types of QTL effects 
corresponding to different origins of the QTL allele at 
different positions along the genome should give a more 
adequate description of the phenotypic variation with 
increased QTL detection power.
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Proposition 3  MPP genetic diversity should be reflected 
in the genetic variance of the crosses composing the popu-
lation. Diverse MPPs present potentially more heterogene-
ity of the within cross genetic variance than less diverse 
populations. In diverse population, the use of cross-specific 
residual terms should give a better description of the data 
than a homogeneous residual term model. In more homo-
geneous populations, the difference between cross-specific 
residual terms and homogeneous residual term should be 
minor.

In our paper, we evaluate various models for QTL detec-
tion in MPPs with different types of QTL effects and resid-
ual genetic terms. Beyond the currently existing methods, 
we propose a multi-QTL effect (MQE) model that allows 
various types of QTL effects at individual loci, where loci 
can differ in the most suitable type of QTL effect. We also 
relax the assumption of constant variance for the residual 
genetic term using a cross-specific residual term (CSRT) 
model. We performed QTL detection in three subsets of 
the EU-NAM Dent population characterized by different 
degrees of genetic relatedness between the parents. The dif-
ferent models were evaluated using cross validation (CV).

Materials and methods

To ensure the transparency and the reproducibility of our 
research, all data files, scripts, and required software can 
be found in the following repository https://github.com/
vincentgarin/MPP_EUNAM. This material makes it possi-
ble to reproduce all steps of the analysis, tables, and figures 

of the article and of the supplemental material. To test the 
various models, we used the maize EU-NAM Dent panel 
(Bauer et al. 2013) and formed subsets.

Genotypic data

The Dent panel of the EU-NAM population was com-
posed of double haploid (DH) lines originating from ten 
crosses between the central line F353 and ten peripheral 
parents. This population was developed to represent the 
maize diversity in Northern Europe and also included the 
central parent of the US-NAM population, and it has been 
described in detail in Bauer et  al. (2013) and Lehermeier 
et al. (2014). The offspring lines and the 11 parental lines 
were genotyped with the Illumina MaizeSNP50 Bead-
Chip containing 56,110 single nucleotide polymorphisms 
(SNPs) (Ganal et  al. 2011). Raw genotypic data were 
obtained from: http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE50558. We used the consensus map calcu-
lated by Giraud et al. (2014) available at: http://maizegdb.
org/data_center/reference?id=9024747. From the original 
list of markers, we selected the Panzea markers to avoid 
ascertainment bias (Bustos-Korts et al. 2016).

Population subsets

In the absence of pedigree information, genetic related-
ness between parental lines can be estimated by similarity 
of molecular marker scores. We used the genetic similar-
ity coefficient defined by Nei and Li (1979) (Supplemental 
file S1), which in our situation corresponds to the simple 
matching (SM) coefficient. We composed different subsets 

Table 1   EU-NAM population 
crosses and simple matching 
coefficient (SM) between the 
central (F353) and peripheral 
parents

Average adjusted mean values (X̄), genetic variance components (σ 2
g ) and within cross heritability (h2) for 

dry matter yield (DMY) and plant height (PH), and number of sampled lines per cross in the different sub-
sets (short, heterogeneous, long)

Cross Parent SM DMY PH Short Het. Long

X̄ σ 2
g h2 X̄ σ 2

g h2

CFD11 UH304 0.761 192.5 47.8 59.4 288.5 37.4 68.9 60 65 0

CFD06 F252 0.633 178.1 120.9 78.0 285.7 65.9 79.9 76 0 0

CFD04 D09 0.618 187.4 31.3 41.9 284.5 67.3 86.5 78 85 0

CFD07 F618 0.589 194.7 20.2 31.2 291.4 45.0 79.5 79 0 0

CFD03 D06 0.586 189.9 78.2 70.9 292.2 52.8 73.8 68 90 0

CFD10 UH250 0.575 187.5 67.6 61.3 287.8 65.5 85.3 0 0 94

CFD09 Mo17 0.567 184.5 88.9 52.3 292.9 58.5 75.8 0 0 53

CFD12 W117 0.565 176.2 75.5 60.4 273.9 102.5 84.6 0 68 84

CFD05 EC169 0.558 184.2 46.5 56.4 283.5 64.8 84.7 0 0 66

CFD02 B73 0.557 193.2 95.6 64.1 294.8 60.8 81.1 0 53 64

Total 361 361 361

https://github.com/vincentgarin/MPP%5fEUNAM
https://github.com/vincentgarin/MPP%5fEUNAM
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558
http://maizegdb.org/data%5fcenter/reference?id=9024747
http://maizegdb.org/data%5fcenter/reference?id=9024747
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of the EU-NAM population (Table  1) involving parents 
with different levels of genetic relatedness between the 
central and the peripheral parents (see matrix of pairwise 
SM and PC—supplemental Table S2 and Figure S3). We 
formed: (1) a “short” subset with the five parents closest 
to the central parent; (2) a “long” subset with the five most 
distant parents from the central parent; and (3) a “heteroge-
neous” subset with a mixture of distant and close parental 
lines. The average SM between pairs of parents in the sub-
sets decreased from the short to long subsets. ¯SM is equal 
to 0.639, 0.613, and 0.573 for the short, heterogeneous, and 
long subsets, respectively.

To assure that all subsets were of equal size, we ran-
domly selected 361 lines from the crosses of the short and 
heterogeneous subsets to make their size equal to that of the 
long subset. For QTL analyses, we removed markers that 
were not segregating in any of the MPPs and that showed 
a minor allele frequency <0.01 or missing values >10% 
across the entire MPP. When multiple SNPs mapped at a 
single chromosome position, we selected the most poly-
morphic locus. After pre-processing, 5737, 5934, and 6212 
SNPs were used for the short, heterogeneous, and long sub-
sets, respectively, 3348 of which were common between 
the MPPs (see genetic maps—supplemental Figure S4).

Phenotypic data

We used the raw phenotypic data provided by Lehermeier 
et  al. (2014) http://www.genetics.org/content/198/1/3/
suppl/DC1 and calculated the adjusted means and vari-
ance components and heritability following their proce-
dure (Table  1). Christina Lehermeier kindly communi-
cated to us the list of genotypes used in her study which 
allowed us to use the same lines as in Giraud et al. (2014) 
and Lehermeier et  al. (2014). We selected the traits with 
the lowest and highest average heritability over all crosses: 
biomass dry matter yield (DMY, decitons per hectare, dt

ha
, 

h̄2 = 57%) at the whole plant level and plant height (PH, 
cm, h̄2 = 81%).

Statistical methodology

Let us start with the general single locus model for an MPP 
following the notation of Rebaï and Goffinet (1993):

where yijk represents the phenotypic adjusted mean for the 
kth individual from the cross between parents i and j. µij is 
the cross mean and αi and αj represent the additive effects 
associated with the QTL alleles coming from parent i and 
j, respectively. gij is the random polygenic effect due to 
QTLs elsewhere in the genome with distribution N(0, σ 2

g ) . 

(1)yijk = µij + αi + αj + gij + eijk

Finally, eijk represents the random micro-environmental 
effect (plot error) having distribution N(0, σ 2

e ).
Model 1 can be rewritten in matrix notation:

where y is the [N × 1] vector of phenotypic values. 
X = [Xc|XQ] is the fixed effect incidence matrix and 
β ′ = [βc

′|βQ
′] is the vector of cross intercepts and QTL 

effects. X is composed of a part that links observations to 
the particular cross it belongs to (Xc an [N × nc] matrix 
with nc representing the number of crosses) and XQ is the 
part related to the QTL effects. XQ is a matrix of dimen-
sions [N × nal] with nal the number of QTL alleles that are 
assumed to segregate for the particular QTL locus. The 
individual elements of XQ take values between 0 and 2 and 
represent the number of allele copies received by genotype 
n at locus m. The number of columns nal varies with the 
number of alleles assumed at the QTL position. We pro-
pose three models.

Parental model This first model assumes that each par-
ent contributes a unique allele to the MPP. In an NAM 
population, peripheral parents are used only once, so that 
their QTL effects are nested within the crosses between 
central and peripheral parents. In the parental model, the 
individual elements of XQ are the expected numbers of 
QTL alleles received from the parents given the genotypes 
of the flanking markers, which were estimated using iden-
tity by descent (IBD) probabilities computed with the calc.
genoprob() function from the R package qtl (Broman et al. 
2003). The parental model corresponds to the connected 
model in Blanc et al. (2006).

Ancestral model A second option uses relatedness 
between parents to cluster them into a reduced number 
of ancestral groups, so nal ≤ P. Under this model, par-
ents belonging to the same cluster are assumed to transmit 
the same allele (Jansen et  al. 2003; Leroux et  al. 2014). 
For our analyses, the clustering of the parental lines was 
done at each marker position using a 2 cM window around 
the position with the R package clusthaplo (Leroux et  al. 
2014). The grouping is a function of the local similarity 
score defined by Li and Jiang (2005) and a global similarity 
defined by kinship coefficients. The results were stored in 
an ancestral matrix A that allows to modify IBD relation-
ship of the parental model to account for ancestral related-
ness (Fig. 1). The ancestral model uses, therefore, both IBD 
and parental marker score information. This model corre-
sponds to linkage disequilibrium linkage analysis (LDLA) 
models in Bardol et al. (2013) and Giraud et al. (2014).

Bi-allelic model The simplest model assumes that 
genotypes with the same SNP score transmit the same 
allele. Genetic relatedness is, therefore, defined based on 
marker identity by state (IBS) information. In this model, 

(2)y = Xβ + r

http://www.genetics.org/content/198/1/3/suppl/DC1
http://www.genetics.org/content/198/1/3/suppl/DC1
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XQ becomes a vector with values 0, 1, or 2 correspond-
ing to the number of copies of the least frequent allele. 
For the bi-allelic model, missing marker genotypes were 
imputed by the software package Beagle (Browning and 
Browning 2013) via the synbreed R package (Wimmer 
et  al. 2012). This model is used in genome-wide asso-
ciation studies (GWAS), and corresponds to model B 
in Würschum et  al. (2012) and the association mapping 
model in Liu et al. (2012).

The Wald test was used to test the global null hypoth-
esis of all allele QTL effects equal to 0 (McCulloch and 
Searle 2001, 5.39). The choice between the three models 
can be seen as a search for an optimum between parsi-
mony and goodness of fit. If the allelic series are com-
plex, such as in a diverse population, then the parental 
model will be more suitable. On the other hand, if QTL 
effects are shared through the population, then the ances-
tral or the bi-allelic model will allow to gain in power 
by estimating a reduced number of parameters (for more 
detail, see supplemental file S5).

If cofactors are included when searching for QTLs, 
X is augmented to [Xc|Xq|XQ], where Xq is the cofactor 
incidence matrix and β ′ = [βc

′|βq
′|βQ

′] is the vector of 
fixed effects, with βq′ representing the cofactors’ effects. 
In all our models, the QTL genetic effects were estimated 
by setting the most frequent allele as a reference. In the 
parental and ancestral models, it corresponded to the cen-
tral parent F353 or the ancestral group containing F353.

Multi-QTL effect (MQE) model The parental, ances-
tral, and bi-allelic models have already been used in other 
papers (e.g., Bardol et  al. 2013 or Giraud et  al. 2014). 
These studies restricted the model to a single type of 
QTL effect, keeping the same type of incidence matrix 
across all loci. However, allelic effects in an MPP may 
vary across loci (Bardol et  al. 2013), so a more flexible 
modelling approach would allow the incidence matrix to 
change from locus to locus. As an alternative, we propose 
a procedure to build multi-QTL effect models in which 
different loci can be modelled by different types of QTL 
effect (parental, ancestral, or bi-allelic).

For the residual term r in Model 2, we propose two mod-
els concerning the residual variance R. The simplest model 
assumes constant variance (homogeneous variance residual 
term, HRT) R = Iσ 2

r . This is the model used for the resid-
ual polygenic and environmental variances in the original 
paper by (Rebaï and Goffinet 1993). A different model 
allows cross-specific variance residual terms (CSRT), 
which is more appropriate when heterogeneous polygenic 
effects are expected due to heterogeneous genetic dis-
tances among parents. In this case, R =

⊕nc
c=1 σ

2
rc

, where 
c = 1, . . . , nc is the cross index. This model is similar to the 
one used by Xu (1998). From a theoretical perspective, the 
use of a single residual genetic variance component will 
lead to under and overestimation of this variance, depend-
ing on the cross, and, therefore, to an increase of the num-
ber of false positives and false negatives when heterogene-
ity of the polygenic effect is indeed high (for more detail, 
see supplemental file S5).

Fast CSRT model

The estimation of an exact solution for the CSRT model at 
each marker position during the CV procedure is computa-
tionally too demanding. Therefore, we propose a fast CSRT 
(f-CSRT) algorithm to compute approximate solutions. To 
calculate such an approximation, we estimated first the 
residual term R in a model without QTL term and then 
used it in the Wald test to estimate the significance of the 
QTL effects along the genome (for more details, see sup-
plemental file S6).

QTL detection procedure

The combination of the four QTL effects (parental, ances-
tral, bi-allelic, and MQE) with the two residual terms (HRT 
and CSRT) gives eight possible models for QTL detection. 
For the parental, ancestral, and bi-allelic HRT models, the 
significance thresholds were determined by 1000 genome-
wide permutations taking the −log10(p value) of the upper 
95% Wald statistic under the empirical null distribution as 
the critical value for rejection (Churchill and Doerge 1994). 
The determination significance thresholds for the CSRT 
models were computationally too demanding. Therefore, 
we used the same threshold values as the one of the cor-
responding HRT model. The significance thresholds of the 
MQE models were obtained by averaging the thresholds of 
parental, ancestral, and bi-allelic models.

For the QTL detection methods based on QTL mod-
els with a single effect, a first run of simple interval map-
ping (SIM) was followed by two runs of composite 
interval mapping (CIM) by adding markers as cofactors 
(Zeng 1993, 1994). We took care that QTLs (and cofac-
tors) were spaced by a minimum distance of 20 cM. A 

Fig. 1   Example of ancestral QTL incidence matrix formation. Paren-
tal matrix XQ is transformed by ancestral matrix A. Let us assume 
two crosses with a shared central parent: cross 1 (PA × PB) and cross 
2 (PA × PC). Parents A and C are related to the same ancestral source
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multi-QTL model was created from the full list of QTLs 
detected after CIM by a backward elimination procedure 
with confidence level set at α = 0.01. We used the same 
procedure as Han et  al. (2016) to compute the proportion 
of genetic variance explained by the QTLs in the train-
ing set (TS): pTS = R2

adj/h
2. For the HRT model, we used 

R2
adj = 1−

RSSfull/dffull
RSSred/dfred

. RSSfull and dffull are the residual 
sum of squares and degree of freedom of a model includ-
ing QTLs, while RSSred and dfred come from a model with-
out QTLs. Note that both models contained a cross-specific 
intercept term that removes the between cross variation.

For the CSRT model, we used the likeli-
hood R2 defined by Cox and Snell (1989): 
R2
LR = 1− exp(− 2

n
(logLfull − logLred)), where Lfull 

and Lred represent the likelihood statistic of the full and 
reduced models, respectively. For the CSRT model, fol-
lowing the recommendations of Sun et al. (2010), we esti-
mated the likelihood of the reduced and full model using 
maximum likelihood estimation (not REML). We adjusted 
the likelihood R2 using formula 2 from Utz et  al. (2000): 
R2
adj = R2 − [(

dfQTL
dffull

)× (1− R2)].
To build the multi-locus MQE models, we used a forward 

selection approach, where at each step, a new QTL was added 
that was allowed to have either a parental, an ancestral, or a 
bi-allelic effect. To identify a new QTL, we computed three 
genome-wide profiles using the same type of QTL effect for 
the tested position (parental, ancestral, or bi-allelic). Then, we 
selected in each profile the most significant position based on 
the −log10(p value) with its type of QTL effect. From these 
candidate positions (and effects), we selected the one that 
increased the most the model R2

adj. The selected position with 
its type of QTL effect entered the model, and the process was 
repeated until no more significant positions could be added 
(for more detail, see supplemental file S7).

HRT models were fitted by least-squares (lm() func-
tion in R), and CSRT by restricted maximum likelihood 
(REML) using the asreml-R package (Butler et  al. 2009). 
For the computation of the likelihood R2, we used the R 
package nlme (Pinheiro et  al. 2017). The results of the 
f-CSRT models were obtained using the Wald statistics 
as described in S6. All procedures in this study have been 
compiled in R packages and are available in the repository 
(https://github.com/vincentgarin/MPP_EUNAM/software/
mppR_1.0.tar.gz).

Cross validation

We adapted the CV procedure described by Utz et  al. 
(2000) to the MPP context. For each of the 48 combinations 
of QTL model and scenario, we performed 100 CV runs by 
replicating 20 times a fivefold CV procedure. One run of 
CV was composed of the following steps: (1) the full data 

set was partitioned at within-cross level into a training set 
(TS) and a validation set (VS); (2) QTL detection was per-
formed using the TS and the proportion of genetic variance 
explained in the TS was computed by pTS = R2

adj.TS/h
2; 

and (3) the proportion of genetic variance predicted in the 
VS was calculated by pVS = cor(yVS, ŷVS)/h

2, represent-
ing the Pearson correlation between the observed values 
(yVS) and the predicted values ( ŷVS = XVSβ̂TS). The pVS 
were computed within crosses. An estimate at the full MPP 
level was obtained by taking a weighted average of the 
within cross values (pV̄S) accounting for the cross sizes. 
We evaluated the relative bias of a model by looking at the 
difference between (pTS) and (pV̄S).

To reduce the computational time for CV, we thinned the 
set of markers by selecting the most polymorphic marker 
at every 1, 1.05, and 1.05 centi-Morgan for the long, het-
erogeneous, and short subsets, respectively. For each CV 
scenario, we determined the significance threshold running 
1000 permutations on the full data set. The threshold of the 
MQE model was again determined by averaging the values 
obtained for the parental, ancestral, and bi-allelic models. 
For the CV procedure, we used the f-CSRT approximation 
for threshold computation and QTL detection in all scenar-
ios using cross-specific residual terms.

Results

Subset properties

For both traits, DMY and PH, the estimated genetic vari-
ance per cross tended to increase when the genetic relat-
edness between the peripheral and the central parent 
decreased (Table 1; supplemental Figure S8). However, as 
in other studies (e.g., Hung et  al. 2012), this relationship 
was not significant. The degrees of relatedness based on 
the allele clustering from clusthaplo resulted in 4.02, 4.09, 
and 4.56 ancestral alleles on average for the short, hetero-
geneous, and long subsets, respectively. This means that the 
difference in diversity between subsets was not high. The 
−log10(p value) significance thresholds that were computed 
increased according to our expectation from the parental to 
the bi-allelic model, probably due to the reduction of test 
degrees of freedom (supplemental Table S9).

Full subsets’ QTL detection

Table  2 presents the results of QTL detection using the 
full (non-partitioned) subsets for the different combina-
tions of QTL effect and type of residual variance. For the 
type of QTL effect, we noticed that for DMY, the QTL 
detection results are similar in the short subset across the 

https://github.com/vincentgarin/MPP%5fEUNAM/software/mppR%5f1.0.tar.gz
https://github.com/vincentgarin/MPP%5fEUNAM/software/mppR%5f1.0.tar.gz
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different models. In the heterogeneous and long subsets, 
however, the more parsimonious models (ancestral and 
bi-allelic) detected more QTLs and explained a larger 
percentage of genetic variation. For PH, this tendency 
was inversed. For example, the parental CSRT model 
explained 50.4% of the genetic variance, while the ances-
tral and bi-allelic models explained 40.1 and 38.3%, 
respectively. The MQE models detected more QTLs 

and explained a larger part of the genetic variance (see 
also Fig. 2). This was especially true for the MQE CSRT 
model, because, except for PH in the heterogeneous sub-
set, it explained the largest part of the genetic variance. 
Concerning the residual term, the results of the HRT and 
CSRT models were similar for DMY. For PH, we could 
observe, based on the explained genetic variance, that the 
CSRT models generally outperformed the HRT models.

Table 2   QTL detection results of the full subsets analyses (short, heterogeneous, and long) per trait (DMY, PH) for the different QTL effects 
(parental, ancestral, bi-allelic, and MQE) and types of residual term (HRT, CSRT)

a Number of detected QTLs. – for no QTL detected
b Global adjusted R2 in %
c Number of detected QTLs per incidence matrix type (parental/ancestral/bi-allelic)

DMY PH

Parental Ancestral Bi-allelic MQE Parental Ancestral Bi-allelic MQE

Short

 HRT 3
a (20.6)b 3 (20.6) 3 (18.7) 3 (1/2/–)c (20.5) 7 (43.6) 6 (40.2) 7 (39.7) 6 (3/1/2) (41.6)

 CSRT 3 (19.4) 4 (21.9) 4 (20.3) 4 (1/2/1) (22.6) 8 (50.4) 6 (40.1) 8 (38.3) 9 (5/1/3) (52)

Het.

 HRT – 3 (13.2) 3 (15.3) 3 (1/–/2) (18.5) 7 (46.5) 9 (47.9) 6 (39.1) 10 (4/2/4) (55.3)

 CSRT 1 (8.9) 3 (15.4) 3 (14.5) 4 (1/1/2) (20.8) 10 (57.3) 11 (58) 8 (46.6) 9 (3/3/3) (53.1)

Long

 HRT 2 (11.3) 1 (5.9) 5 (22.2) 7 (1/–/6) (32) 8 (42.8) 7 (38.7) 8 (38.5) 5 (1/3/1) (35.3)

 CSRT 2 (10.4) 2 (9.1) 5 (22.1) 8 (3/–/5) (37) 8 (43.5) 8 (43) 9 (38.8) 10 (1/4/5) (49.3)

Fig. 2   Example of MQE QTL profile result for PH in the heterogeneous subset. The colours drawn 40 cM around the detected positions repre-
sent the type of QTL effect at that locus (red parental, green ancestral, and blue bi-allelic) (colour figure online)
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Cross validation

The plots in Fig. 3 contain the CV results and show the 
similarity between the HRT and CSRT models. Further-
more, the MQE model had the largest pTS in all configu-
rations. The MQE pVS was also the highest or equal to 
the highest single type of QTL effect model for DMY 
but not for PH. For PH, the different types of QTL effect 
model tend to give similar results in terms of pVS.

In the short subset for DMY, we observe that pVS 
increased with the parsimony of the model, since the 
ancestral and bi-allelic models obtained larger scores. For 
PH in the same subset, the results were opposite with the 
parental model having a larger average pVS. In the long 
subset, for DMY, we could not notice any difference 
in terms of pVS between the parental, ancestral, and bi-
allelic models. For PH, however, the bi-allelic model per-
formed better.

A final noteworthy result is that the difference between 
pTS and pVS (bias) was often reduced for the more par-
simonious models especially for the bi-allelic model. 
This is, for example, the case in the short subset for both 
traits.

Discussion

Subset properties

The results of parental clustering of the different subsets 
showed that the genetic diversity was high in the three 
subsets, because the average clustering results showed a 
number of ancestral alleles that was close to the theoreti-
cal maximum number of six, being the number of parental 
alleles. This is consistent with the fact that this maize popu-
lation was designed to reflect Northern European genetic 
diversity. The limited amount of difference between the 
subsets can be explained by the relatively reduced range 
of genetic similarities across the crosses as reflected in SM 
coefficients between the parents of the crosses (Table 1).

Model performance given population diversity and type 
of QTL effect

Our first proposition implied that the relative performance 
of QTL models in terms of QTL detection would increase 
with model parsimony when the MPPs are derived from 
genetically close parents. The underlying reasoning is that 

Fig. 3   Cross-validation results over 100 runs. Average proportion of 
explained and predicted genetic variance (±2 × standard deviation) in 
the training and validation sets for each combination of trait (DMY 

and PH), subset (short, heterogeneous, and long), type of QTL effect 
(parental, ancestral, bi-allelic, and MQE), and residual term (HRT 
and CSRT)
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higher genetic proximity allows reducing the number of 
parameters needed to model the QTL effect, producing a 
gain in power for QTL detection. We expected that the pVS 
would increase with model parsimony in the short subset. 
On the other hand, in the long subset, models with a higher 
number of parameters, such as the parental model, would 
help to model the assumed increased diversity and give bet-
ter results in terms of pVS.

We did not observe these trends in the CV results 
(Fig.  3). The increase of pVS from the parental to bi-
allelic models in the short subset for DMY is conform to 
our expectation. However, for PH in the short subset, we 
observed the opposite trend with pVS decreasing with 
model parsimony. In the long subset, we expected that 
the pVS would decrease with more parsimonious models. 
However, for PH, we noticed that the bi-allelic model gave 
the best result. Various reasons can be mentioned to explain 
that we did not observe the pattern expected from proposi-
tion 1. The first is that the difference in genetic diversity 
between the short and long subsets was not pronounced 
enough to have different QTL effects’ models performing 
differently. A second reason is that increased genetic dis-
tance between parents will not automatically translate into 
increased genetic variance. Third, the sample sizes may 
have been too small to show the expected patterns with not 
enough QTLs being detected and insufficient power to dis-
tinguish between QTL effect models and between homoge-
neous and heterogeneous residual genetic variances.

An important result was that in three scenarios out of six 
(short DMY, heterogeneous DMY, and long PH), the bi-
allelic model gave the largest pVS. From a general point of 
view, more parsimonious models, especially the bi-allelic 
model, gave results with a reduced bias (difference between 
pTS and pVS). The improvement of QTL detection in MPP 
using more parsimonious models based on shared polymor-
phism has been an important topic in MPP QTL analysis. 
While simulation studies have supported this idea (Rebaï 
and Goffinet 1993; Jansen et al. 2003; Leroux et al. 2014), 
only few real data analyses have confirmed it (Blanc et al. 
2006; Bardol et al. 2013). Of course, the superiority of the 
bi-allelic model depends on the sample size. With larger 
sample sizes, the bi-allelic model will be more often infe-
rior to more complex QTL effect models.

Other real data analyses did not support the idea that a 
power gain could be achieved by integrating relatedness 
between crosses or parents into the analysis (Li et al. 2005; 
Coles et  al. 2010; Steinhoff et  al. 2011, 2012; Liu et  al. 
2012; Würschum et  al. 2012; Giraud et  al. 2014). In all 
these studies, the reference cross or parent specific model 
yielded the best results. For the full subset analysis of PH 
(Table 2), we also noticed that the parental model explained 
a higher proportion of the genetic variation. Cross or par-
ent specificity of the QTL effects seems, therefore, to be 

important in MPP QTL mapping. Several factors can 
explain the presence of complex allelic series in an MPP 
context: (1) multiple alleles; (2) different allele frequencies 
per cross; (3) difference of linkage disequilibrium between 
markers and QTLs per cross; (4) cross-specific dominance 
ratio; and/or (5) interaction with the genetic background 
(Steinhoff et al. 2012; Blanc et al. 2006). For example, the 
simulation study of Li et al. (2016) demonstrated that the 
parental model outperformed the bi-allelic model only in 
case of strong interaction between the QTL and the genetic 
background.

Many of these studies did, however, not use CV to vali-
date their results (e.g., Coles et  al. 2010). In the paper of 
Han et al. (2016), CV was used to evaluate the model per-
formance and no differences were found in terms of bias 
between the different tested models. Other authors using 
CV, such as Liu et al. (2012) and Würschum et al. (2012), 
did find a reduced bias for the bi-allelic model with respect 
to the cross-specific model, as we did. For the reduction of 
bias by more parsimonious models, statistical and biologi-
cal arguments can be formulated.

From a statistical perspective, the inclusion of multiple 
QTL effects, such as in the parental model, will make the 
procedure susceptible to overfitting (Friedman et al. 2001). 
Therefore, parental effects may model variation that is spe-
cific to the TS but that will not necessarily be typical for the 
VS. Genetically, it has been shown that an important part of 
the polymorphic variation in maize was cross or even geno-
type specific (Myles et al. 2009). In contrast, the bi-allelic 
model contains just two parameters and assumes that these 
are present across the whole MPP, and so will be shared 
between TS and VS.

From a biological perspective, we interpret the parental 
model as being based on more recent sources of related-
ness, whereas the bi-allelic model is closer to the original 
mutation (Powell et al. 2010). Since SNPs represent older 
polymorphisms, they tend to be better distributed across the 
whole population (Nicholson et al. 2002; Speed and Bald-
ing 2015). Therefore, QTLs detected with the bi-allelic 
model may be better spread throughout the whole popula-
tion and be more easily transmitted to the next generation.

Multi‑QTL effect (MQE) model

As mentioned in the result section, the MQE model per-
formed better in terms of pTS than the models assuming 
a single type of QTL effect along the genome (Fig.  3). 
The larger proportion of genetic variance explained in 
the TS by the MQE model in comparison with the VS 
may be explained by the greedy forward regression strat-
egy used to build the MQE model. Indeed, this strategy 
includes many genome scans as at each QTL detection 
step, a genome-wide scan is performed for each type of 
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QTL effect conditional on all earlier identified QTLs. The 
increased number of scans can lead to an overfit to the data 
present in the TS, while the variation modelled in the TS is 
not necessarily typical of the VS, as we noticed for the trait 
PH. However, for DMY, the MQE method did obtain larger 
pVS, which supports our second proposition that the inclu-
sion of different types of QTL effects in the same model 
can lead to a better description of the phenotypic variation.

The MQE model seems, therefore, to be a useful strat-
egy to model phenotypic variations in MPPs. The MQE 
model is aims at finding the most adequate type of QTL 
effect for each QTL position. In philosophy, it is simi-
lar to a Bayesian approach proposed by Jannink and Wu 
(2003) who treated the number of alleles at a QTL posi-
tion as a random parameter. The MQE model is probably 
computationally less demanding. It may require improve-
ments on the correction for multiple testing to avoid 
overfitting by taking into account the number of scans 
performed. Alternatively, it may be better to take the 
maximum observed threshold across the three threshold 
values corresponding to the three types of QTL effects in 
place of the mean threshold, as we did now.

Model performance under different assumptions for the 
residual term

Our Proposition 3 implied that heterogeneity of genetic 
distance between the central and the peripheral par-
ent would require an elaborate model to accommodate 
the heterogeneity of variance for the polygenic effects. 
Cross-specific residual terms should give an improved 
description of the residual genetic variance against which 
to test for the QTL effects in comparison with a sim-
pler model based on a single residual variance compo-
nent (supplemental file S5). We expected the difference 
between the HRT and CSRT models to be largest in the 
heterogeneous subset. The CV results (Fig.  3) did not 
show any difference between the HRT and CSRT mod-
els, maybe due to too small population sizes. In the full 
subset analysis (Table 2), we could, however, notice that 
in several cases, the CSRT model outperformed the HRT 
model. For example, the MQE CSRT model explained a 
larger proportion of genetic variance than the MQE HRT 
model in five scenarios out of six.

The absence of difference between the HRT and CSRT 
models for the CV results can be caused by the use of the 
f-CSRT approximation. Alternatively, the sample sizes for 
the crosses may have been too small to allow HRT and 
CSRT to be tested as being different. The f-CSRT seems 
to have less QTL detection power than the exact solu-
tion, because the correction for heterogeneous residual 
term only reflects the general level of heterogeneity. In 
the exact solution, however, the residual genetic variance 

is calculated at each genomic position conditional on the 
estimated QTL effects. In that case, the Wald statistics 
can truly benefit from the within cross-variance reduc-
tions following from the included QTL effects. Therefore, 
given the full subsets results (Table  2), we still consider 
that the CSRT model can improve QTL detection in MPP.

Perspective

The result presented in this study illustrates the potential 
of using different types of QTL effect models and also 
represents different ways to model genetic relatedness 
in an MPP. We demonstrated that it can be interesting 
to integrate multiple assumptions about the origin of the 
QTLs in the same multi-locus QTL model. The question 
of genetic relatedness definition is one of the most impor-
tant ones in genetics (Fisher 1918). We know that statis-
tical dependence between haplotypes is the result of a 
complex evolutionary/selection process, where mutation, 
recombination, and coalescence of lineage act jointly 
(Rosenberg and Nordborg 2002). We think that the use 
of relatedness and shared polymorphisms, through a bet-
ter modelling of genetic relationships, can improve QTL 
detection in MPPs.

A first way to improve the estimation of genetic relat-
edness modelling is using SNP markers in place of pedi-
gree information. According to Powell et al. (2010), this 
represents a more unified way to measure relatedness 
and allows to solve the apparent conflict between IBD 
and IBS methods, because when marker density is high, 
the different categories of ancestors merge. A genetic 
relationship matrix (GRM) has been widely used in 
GWAS analysis to control for population structure and/
or model polygenic effect within mixed models (Yu et al. 
2006; Malosetti et  al. 2007). This technique was also 
employed with success to estimate genetic effects (Yang 
et al. 2010; Speed et al. 2012). The extension of such a 
methodology to MPP QTL detection represents a prom-
ising option.

A second, more challenging option is to use methods 
for IBD computation using ancestral lines higher up in the 
MPP pedigree as a reference like in Zheng et  al. (2015). 
Finally, Bayesian methods have also great potential to deal 
with complex pedigrees. In this framework, efforts have 
been made to model more appropriately the relationships 
between lines. For example, Jannink and Wu (2003) pro-
posed to treat the number of ancestral alleles as a random 
parameter in an attempt to estimate the most probable 
relatedness scheme between MPP parents. In the same 
vein, Ter  Braak et  al. (2010) developed an algorithm to 
infer latent ancestral class origins of population’s founders 
allowing to sample parent origin in a Bayesian context.



1763Theor Appl Genet (2017) 130:1753–1764	

1 3

From a general point of view, we would like to empha-
size the main motivation for our QTL mapping approach: 
try to make as explicit as possible the connection between 
the biological assumptions and the properties of the statisti-
cal model that is used. A constant dialogue between these 
two dimensions is certainly a promising way to make pro-
gress in both the understanding of biological processes 
occurring in MPPs and their statistical modelling.
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Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: Qtl mapping 
in experimental crosses. Bioinformatics 19(7):889–890

Browning BL, Browning SR (2013) Improving the accuracy and 
efficiency of identity-by-descent detection in population data. 
Genetics 194(2):459–471

Bustos-Korts D, Malosetti M, Chapman S, Biddulph B, van, Eeu-
wijk F, (2016) Improvement of predictive ability by uniform 

coverage of the target genetic space. G3 Genes Genomes Genet 
6(11):3733–3747

Butler D, Cullis BR, Gilmour A, Gogel B (2009) Asreml-r refer-
ence manual. The State of Queensland, Department of Primary 
Industries and Fisheries, Brisbane

Cavanagh C, Morell M, Mackay I, Powell W (2008) From muta-
tions to magic: resources for gene discovery, validation and 
delivery in crop plants. Curr Opin Plant Biol 11(2):215–221

Churchill GA, Doerge RW (1994) Empirical threshold values for 
quantitative trait mapping. Genetics 138(3):963–971

Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB 
(2010) Genetic control of photoperiod sensitivity in maize 
revealed by joint multiple population analysis. Genetics 
184(3):799–812

Cox DR, Snell EJ (1989) Analysis of binary data, 2nd edn. Chap-
man and Hall, London

Fisher RA (1918) The correlation between relatives on the supposition 
of mendelian inheritance. Trans R Soc Edinb 52(02):399–433

Friedman J, Hastie T, Tibshirani R (2001) The elements of statisti-
cal learning, vol 1. Springer series in statistics Springer-Ver-
lag, Berlin

Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Char-
cosset A, Clarke JD, Graner EM, Hansen M, Joets J et  al 
(2011) A large maize (Zea mays l.) snp genotyping array: 
development and germplasm genotyping, and genetic map-
ping to compare with the b73 reference genome. PLoS One 
6(12):e28,334

Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Baul-
and C, Camisan C, Campo L, Meyer N, Ranc N et  al (2014) 
Linkage disequilibrium with linkage analysis of multiline 
crosses reveals different multiallelic qtl for hybrid perfor-
mance in the flint and dent heterotic groups of maize. Genetics 
198(4):1717–1734

Guo B, Sleper D, Sun J, Nguyen H, Arelli P, Shannon J (2006) Pooled 
analysis of data from multiple quantitative trait locus mapping 
populations. Theor Appl Genet 113(1):39–48

Han S, Utz HF, Liu W, Schrag TA, Stange M, Würschum T, Miedaner 
T, Bauer E, Schön CC, Melchinger AE (2016) Choice of mod-
els for QTL mapping with multiple families and design of the 
training set for prediction of fusarium resistance traits in maize. 
Theor Appl Genet 129(2):431–444

Hung H, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, 
Melia-Hancock S, Oropeza-Rosas M, Salvo S et  al (2012) The 
relationship between parental genetic or phenotypic divergence 
and progeny variation in the maize nested association mapping 
population. Heredity 108(5):490–499

Jannink JL, Wu XL (2003) Estimating allelic number and iden-
tity in state of qtls in interconnected families. Genet Res 
81(02):133–144

Jansen RC, Jannink JL, Beavis WD (2003) Mapping quantitative trait 
loci in plant breeding populations. Crop Sci 43(3):829–834

Jourjon MF, Jasson S, Marcel J, Ngom B, Mangin B (2005) Mcqtl: 
multi-allelic qtl mapping in multi-cross design. Bioinformatics 
21(1):128–130

Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, Campo 
L, Flament P, Melchinger AE, Menz M, Meyer N et  al (2014) 
Usefulness of multiparental populations of maize (Zea mays l.) 
for genome-based prediction. Genetics 198(1):3–16

Leroux D, Rahmani A, Jasson S, Ventelon M, Louis F, Moreau L, 
Mangin B (2014) Clusthaplo: a plug-in for mcqtl to enhance 
qtl detection using ancestral alleles in multi-cross design. Theor 
Appl Genet 127(4):921–933

Li J, Jiang T (2005) Haplotype-based linkage disequilibrium mapping 
via direct data mining. Bioinformatics 21(24):4384–4393

Li J, Bus A, Spamer V, Stich B (2016) Comparison of statistical mod-
els for nested association mapping in rapeseed (Brassica napus 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1764	 Theor Appl Genet (2017) 130:1753–1764

1 3

l.) through computer simulations. BMC Plant Biol 16(1):26. 
doi:10.1186/s12870-016-0707-6

Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) 
Combining data from multiple inbred line crosses improves the 
power and resolution of quantitative trait loci mapping. Genetics 
169(3):1699–1709

Liu W, Reif JC, Ranc N, Della Porta G, Würschum T (2012) Com-
parison of biometrical approaches for qtl detection in multiple 
segregating families. Theor Appl Genet 125(5):987–998

Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) 
A mixed-model approach to association mapping using pedigree 
information with an illustration of resistance to phytophthora 
infestans in potato. Genetics 175(2):879–889

McCulloch CE, Searle SR (2001) Generalized, linear, and mixed 
models. Wiley, New York

McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun 
Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C et  al 
(2009) Genetic properties of the maize nested association map-
ping population. Science 325(5941):737–740

Muranty H (1996) Power of tests for quantitative trait loci detec-
tion using full-sib families in different schemes. Heredity 
76(2):156–165

Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, 
Buckler ES (2009) Association mapping: critical considera-
tions shift from genotyping to experimental design. Plant Cell 
21(8):2194–2202

Nei M, Li WH (1979) Mathematical model for studying genetic vari-
ation in terms of restriction endonucleases. Proc Natl Acad Sci 
76(10):5269–5273

Nicholson G, Smith AV, Jónsson F, Gústafsson Ó, Stefánsson K, Don-
nelly P (2002) Assessing population differentiation and isolation 
from single-nucleotide polymorphism data. J R Stat Soc Ser B 
(Statistical Methodology) 64(4):695–715

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: 
Linear and Nonlinear Mixed Effects Models. https://CRAN.R-
project.org/package=nlme,rpackageversion3.1-131. Accessed 24 
May 2017

Powell JE, Visscher PM, Goddard ME (2010) Reconciling the 
analysis of ibd and ibs in complex trait studies. Nat Rev Genet 
11(11):800–805

Rebaï A, Goffinet B (1993) Power of tests for qtl detection using rep-
licated progenies derived from a diallel cross. Theor Appl Genet 
86(8):1014–1022

Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent 
theory and the analysis of genetic polymorphisms. Nat Rev 
Genet 3(5):380–390

Speed D, Balding DJ (2015) Relatedness in the post-genomic era: is it 
still useful? Nat Rev Genet 16(1):33–44

Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved her-
itability estimation from genome-wide snps. Am J Hum Genet 
91(6):1011–1021

Steinhoff J, Liu W, Maurer HP, Würschum T, Friedrich C, Longin 
H, Ranc N, Reif JC (2011) Multiple-line cross quantita-
tive trait locus mapping in European elite maize. Crop Sci 
51(6):2505–2516

Steinhoff J, Liu W, Reif JC, Della Porta G, Ranc N, Würschum T 
(2012) Detection of qtl for flowering time in multiple families of 
elite maize. Theor Appl Genet 125(7):1539–1551

Sun G, Zhu C, Kramer M, Yang S, Song W, Piepho H, Yu J (2010) 
Variation explained in mixed-model association mapping. 
Heredity 105(4):333–340

Ter Braak CJ, Boer MP, Totir LR, Winkler CR, Smith OS, Bink MC 
(2010) Identity-by-descent matrix decomposition using latent 
ancestral allele models. Genetics 185(3):1045–1057

Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error 
of the estimated proportion of genotypic variance explained 
by quantitative trait loci determined from experimental data in 
maize using cross validation and validation with independent 
samples. Genetics 154(4):1839–1849

Walling GA, Visscher PM, Andersson L, Rothschild MF, Wang L, 
Moser G, Groenen MA, Bidanel JP, Cepica S, Archibald AL et al 
(2000) Combined analyses of data from quantitative trait loci 
mapping studies: chromosome 4 effects on porcine growth and 
fatness. Genetics 155(3):1369–1378

Wei J, Xu S (2015) A random model approach to qtl mapping in 
multi-parent advanced generation inter-cross (magic) popula-
tions. Genetics 202(2):471–486

Wimmer V, Albrecht T, Auinger HJ, Schön CC (2012) synbreed: a 
framework for the analysis of genomic prediction data using r. 
Bioinformatics 28(15):2086–2087

Würschum T (2012) Mapping qtl for agronomic traits in breeding 
populations. Theor Appl Genet 125(2):201–210

Würschum T, Liu W, Gowda M, Maurer H, Fischer S, Schechert A, 
Reif J (2012) Comparison of biometrical models for joint link-
age association mapping. Heredity 108(3):332–340

Xie C, Gessler DD, Xu S (1998) Combining different line crosses for 
mapping quantitative trait loci using the identical by descent-
based variance component method. Genetics 149(2):1139–1146

Xu S (1998) Mapping quantitative trait loci using multiple families of 
line crosses. Genetics 148(1):517–524

Xu S, Atchley WR (1995) A random model approach to interval map-
ping of quantitative trait loci. Genetics 141(3):1189–1197

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt 
DR, Madden PA, Heath AC, Martin NG, Montgomery GW et al 
(2010) Common snps explain a large proportion of the heritabil-
ity for human height. Nat Genet 42(7):565–569

Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, 
McMullen MD, Gaut BS, Nielsen DM, Holland JB et  al 
(2006) A unified mixed-model method for association map-
ping that accounts for multiple levels of relatedness. Nat Genet 
38(2):203–208

Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design 
and statistical power of nested association mapping in maize. 
Genetics 178(1):539–551

Zeng ZB (1993) Theoretical basis for separation of multiple linked 
gene effects in mapping quantitative trait loci. Proc Natl Acad 
Sci 90(23):10,972–10,976

Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 
136(4):1457–1468

Zheng C, Boer MP, van Eeuwijk FA (2015) Reconstruction of 
genome ancestry blocks in multiparental populations. Genetics 
200(4):1073–1087

http://dx.doi.org/10.1186/s12870-016-0707-6
https://CRAN.R-project.org/package=nlme,rpackageversion3.1-131
https://CRAN.R-project.org/package=nlme,rpackageversion3.1-131

	How do the type of QTL effect and the form of the residual term influence QTL detection in multi-parent populations? A case study in the maize EU-NAM population
	Abstract 
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Genotypic data
	Population subsets
	Phenotypic data
	Statistical methodology
	Fast CSRT model
	QTL detection procedure
	Cross validation

	Results
	Subset properties
	Full subsets’ QTL detection
	Cross validation

	Discussion
	Subset properties
	Model performance given population diversity and type of QTL effect
	Multi-QTL effect (MQE) model
	Model performance under different assumptions for the residual term

	Perspective
	Acknowledgements 
	References




