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Abstract

Intestinal microbiota are involved in the pathogenesis of Crohn’s disease, ulcerative colitis, and 

pouchitis. We review the mechanisms by which these gut bacteria, fungi, and viruses mediate 

mucosal homeostasis, via their composite genes (metagenome) and metabolic products 

(metabolome). We explain how alterations to their profiles and functions under conditions of 

dysbiosis contribute to inflammation and effector immune responses that mediate inflammatory 

bowel diseases (IBD) in humans and enterocolitis in mice. It could be possible to engineer the 

intestinal environment by modifying the microbiota community structure or function to treat 

patients with IBD— either with individual agents, via dietary management, or as adjuncts to 

immunosuppressive drugs. We summarize the latest information on therapeutic use of fecal 

microbial transplantation and propose improved strategies to selectively normalize the dysbiotic 

microbiome in personalized approaches to treatment.

Crohn’s disease and ulcerative colitis (UC) appear to result from overly aggressive T cell-

mediated immune responses to specific components of the intestinal microbiota in 

genetically susceptible hosts, with disease initiated and reactivated by environmental 

triggers.1–3 This hypothesis implicates reciprocal interactions between host genetics, 

environmental factors, resident microbiota, and immune responses that normally mediate 

mucosal homeostasis, but when dysregulated induce and perpetuate chronic immune-

mediated inflammation (Fig. 1). We review our rapidly developing understanding of how 

microbial composition, gene expression patterns, and metabolism regulate mucosal and 

immune homeostasis vs chronic inflammation and how host genetic and environmental 

factors influence intestinal microbial function. For additional reviews of dietary effects on 

inflammatory bowel diseases (IBD) see refs 4–13.

We emphasize major advances in understanding intestinal microbial composition, 

emphasizing not only enteric bacteria but also fungi and viruses, and extend horizons 
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beyond microbial community structure to function, as measured by microbial metagenomic, 

transcriptomic, proteomic and metabolomics profiles.

Composition and Function of Intestinal Microbiota

Intestinal bacteria

Deep sequencing of variable regions of bacterial 16S ribosomal RNA genes have 

revolutionized understanding of complex intestinal bacterial ecology, beyond the previous 

limitations of culturing only the minority of strict anaerobes. Recent advances in improved, 

more cost-effective sequencing, expanded reference databases and analytic techniques have 

provided new insights into bacterial/host interrelationships.

Mammalian intestinal bacterial communities are characterized by axial (mucosal to luminal) 

and longitudinal (proximal to distal) gradients, with large variations between individual 

subjects14. These variations are determined in part by host genetics, diet, antibiotic exposure 

and maternal colonization at birth. The concept of 2–3 mutually exclusive enterotypes 

defining human bacterial community structure15, in part defined by long-term dietary 

intake16, has evolved to overlapping dominant assemblages17. In the human intestine, the 

most abundant bacteria are Firmicutes and Bacteroidetes; less-abundant species vary greatly 

among individuals18, 19. Most humans share a core set of resident bacteria and, to an even 

greater extent, a core set of microbiome-encoded genes and metabolic functions19, 20.

The intestinal bacterial community evolves from low complexity at birth into a highly 

diverse network, following weaning and introduction of increasingly complex diets by 9–12 

months of age.21,22 This network becomes stable and resilient to environmental 

perturbations such as short-term antibiotic exposure or dietary changes16, 23. With aging, 

however, lower diversity and decreased resiliency of the enteric microbiome may contribute 

to infection and deteriorating mucosal barrier function24.

These characteristics of stability and resiliency are relevant to therapeutic strategies. Many 

studies, for example, collect only a single sample for analysis, despite uncertainties about 

the temporal stability of the intestinal microbiome. There is considerable variation in 

bacterial community structure among serial fecal samples collected from single subjects, and 

even more variation in stability among individuals25, 26. In contrast to results of Wu et al16, 

David et al found rapid alteration of bacterial communities with an extreme short-term 

dietary intervention27. Expression of bacterial genes changes rapidly with dietary 

changes27, 28. Therefore, serial samples should be collected, with optimal intervals to be 

defined, for studies of the effects of dietary factors and inflammation on the intestinal 

microbiome.

New imaging technologies can assess interactions among different types of bacteria and 

between bacteria and the intestinal mucosa 29. Earle et al30 developed a computer algorithm 

(BacSpace) that integrates data from multiple microscopic sections labeled with fluorescent 

DNA probes bound to specific bacterial species to provide a 3-dimensional image of 

bacterial interactions. The authors observed clustering of Bacteroidales and Firmicutes in 
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intestinal sections from mice fed high-fiber diets; these interactions were lost and the 

mucous layer thinned when mice were placed on low-fiber diets.

Reciprocal interactions between bacteria and intestinal cells have co-evolved; enteric 

bacteria evolved to live in specialized ecologic niches in different regions of the 

gastrointestinal tract, and mammals evolved to survive constant exposure to harmful and 

helpful bacteria. The human microbiota are constantly exposed to human proteins, anti-

microbial peptides, proteases, bile acids, antibodies, and mucus. Many of the more than 200 

genetic variants associated with risk for IBD alter production or secretion of these factors, 

affecting barrier function or autophagic clearance of intracellular bacteria31. An individual’s 

genetic profile can affect their intestinal bacterial composition and function. Studies of twins 

demonstrated associated different groups of intestinal bacteria with genes related to diet 

sensing, metabolism, and immune defense32.

The relative contributions to an individual’s microbiome of genetics and their mother’s 

microbiome are difficult to separate33, but mechanisms can be studied in mice by cross-

fostering or colonizing germ-free mice with fecal transplants or defined bacterial species 

consortia. Studies using these techniques found that genetic factors strongly affect intestinal 

bacterial profile34 and function, and that individual gene variants can have specific effects. 

Variants in genes that regulate the innate immune response and are associated with IBD 

affect interactions between immune cells and bacteria. For example, altered microbiota of 

CARD9-deficient mice do not metabolize tryptophan to protective aryl hydrocarbon receptor 

ligands. This could account for the observation that transfer of dysbiotic fecal contents from 

Card9−\− mice to germ-free Card9 wild-type mice increases the severity of colitis that 

develops following administration of dextran sodium sulfate35. Chu et al31 showed that the 

ability of outer membrane vesicles of Bacteroides fragilis to protect mice colitis and promote 

development of regulatory T cells requires autophagy, mediated by ATG16L1 and NOD2. 

However, previous studies in mice showed that the presence or absence NOD2 did not affect 

the composition of fecal bacteria36, in contrast to several studies reporting the association of 

mucosal-associated Enterobacteriaceae with NOD2 polymorphisms in patients with 

IBD37, 38. Research is needed to resolve the disparities between findings from mouse and 

human studies.

Increasingly cost-effective and rapid deep sequencing technologies, relatively complete 

reference bases, free on-line bioinformatics platforms, and 16S rRNA sequencing techniques 

have revolutionized investigation of the intestinal microbiome. However, data collected from 

these approaches are restricted to broad taxonomic profiles—users cannot distinguish 

species or strain variations that define bacterial function—believed to be more important 

than microbial composition14, 39. Expanding reference bases now support shotgun 

metagenomic, transcriptomic, proteomic, and metabolomics profiles of bacterial function. 

(Fig. 2) Deep shotgun metagenomic sequencing expands resolution to the bacterial strain 

level, well beyond the genus level reached by 16S rRNA sequencing.40, 41,42. This more 

sensitive culture-independent sequencing technique will supplant current 16S surveys, 

particularly for serial community structure and stability studies, as newer software programs 

such as metaphlan2 and Constrains are widely used.43. Furthermore, metagenomic 

sequencing has additional benefits— it allows users to determine bacterial gene 
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representation and characterize the nonbacterial microbiota (fungi, archaea, and viruses). 

Genomic characterization, together with other more functional assays such as 

transcriptomics and metabolomics, can be used to evaluate rapid responses of resident 

enteric bacteria to environmental factors, such as diet, infection, and smoking27, 28 that 

affect risk of IBD, as well as bacterial responses to the inflammatory milieu44.

Current research into the gut microbiome focuses predominantly on taxa within the 

Kingdom Bacteria. Nevertheless, as DNA sequencing technologies, computational tools, and 

annotated databases continue to improve, growing attention is being paid to other intestinal 

microbes, such as fungi and viruses.

Fungi

Fungi are generally considered to be a relatively minor component of the gut microbiota, 

accounting for approximately 0.1% of the microbes18. However, this may be a significant 

underestimation due to challenges in the annotation of fungi in current genomic databases45. 

Mis-attribution of sequences and classification of sexual and asexual forms of the same 

fungus are some of the current limitations to characterizing fungal populations (the 

mycobiome) using next-generation DNA sequencing technology. Nevertheless, sequencing 

of marker genes such as 18S and its internal transcribed spacer with comparisons to 

annotated databases has led to a more complete understanding of the mycobiome in complex 

microbial communities such as the gut46.

Fungi are ubiquitous, so we would expect that they would be found on every mucosal 

surface in the human body, varying in composition at each body site (similar to the bacterial 

microbiota). The urogenital tract, oral cavity, and gastrointestinal tract, where taxa of the 

Candida genus often predominate, contain approximately 160 species47, 48. There are 

species-specific colonization patterns of Candida in mammals; Candida tropicalis are 

common in mice whereas C albicans, C blabrata, and C parapsilosis predominate in 

humans45. In contrast to the relative stability of murine bacterial communities over time, 

cage effects have been observed in mouse gut mycobiota, which vary over time, indicating 

that the environment has strong effects on fungi in the gut49.

Diet could affect the gut mycobiota. In humans, the presence of Candida was associated with 

diets high in carbohydrates, but not with diets high in amino acids, protein, and fatty acids50. 

These associations were also observed in the fecal mycobiota in human participants of a 

controlled feeding experiment; Candida species were increased in subjects consuming a 

plant-based diet and reduced in subjects on an animal-based diet27.

Studies support the concept of a competitive relationship between bacteria and fungi in the 

gut. In humans, prolonged use of antibiotics promotes fungal infection and overgrowth, 

germ-free mice are susceptible to infection with Candida, and antibiotics lead to overgrowth 

of fungi in the gut 49, 51. Consistent with these observations, antibiotic-induced fungal 

overgrowth in the gut primes the host for the development of allergic airway responses to an 

exposure to mold spores51. These observations provided evidence for the gut mycobiota in 

development of immune-mediated diseases in other parts of the body, away from the 

intestinal mucosal.
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There is similar evidence to support a role for the intestinal mycobiota in the pathogenesis of 

IBD. Microbes can reduce immune tolerance, leading to inappropriate activation of 

pathways designed to protect against pathogen invasion. The complex and incompletely 

characterized innate immune response against molecules in fungal cell walls is reviewed 

in52. Glycoprotein cell wall components, beta-glucans, chitin, and mannans can activate 

components of the innate immune system such as toll-like receptors (TLRs 2 and 4 

predominantly), dectin-1 (also known as CLEC7A, a C-type lectin receptor), members of the 

scavenger receptor family (CD5, CD 36, and SCARF1), and components of the complement 

system. Activation of these molecules leads to immune signaling via molecules such as 

CARD9, interleukin 17 (IL17), IL22, NF-κB, NFAT, and ITAM45.

Viruses

Viruses are among the most diverse and abundant biological entities. A large proportion of 

viruses, bacteriophage, infect prokaryotic organisms (Bacteria and Archaea). Bacteriophage 

have a virulent (lytic) cycle, which leads to rapid viral replication and bacterial cell lysis, 

and a temperate (lysogenic) cycle, which leads to prophages that integrate their genetic 

material into prokaryotic genomes or reside as extra-chromosomal plasmids. The 

transmission of antibiotic resistance genes or virulence factors into the bacterial genome are 

2 examples of ways in which lysogeny can alter the biological function of gut bacteria and 

health of the host; 1 example is the phage origins of cholera and shiga toxins.

The dynamics of bacteriophage interaction with its bacterial host can be described as a 

predator–prey relationship.53 The abundance of bacteriophage (outnumbering bacteria by as 

much as 10 to 1) and their diversity have been proposed to affect the composition of bacteria 

communities in aquatic ecosystems,54 and in the gut. There is remarkable inter-person and 

intra-person variation in the human gut prokaryotic virome, but significant stability over 

time 55. The high inter-person variation in bacteriophage communities could be due to the 

persistence of a small portion of the global virome within the gut of each individual as well 

as the rapid evolution of some long-term members of the virome56. Additionally, the human 

prokaryotic gut virome may respond to diet, similar to the bacterial gut microbiota16, 57. As 

a defense mechanism against bacteriophage infection, bacteria and archaea have a 

mechanism, known as the clustered, regularly interspaced short palindromic repeat 

(CRISPR) system, that can lead to acquired phage resistance58. This prokaryotic mechanism 

has led to the development of the CRISPR interference technique for genome editing in both 

plants and animals.

The effects of bacteriophage on bacteria might be exploited therapeutically59. Interest in 

phage-based therapies was initially hampered by inadequately controlled trials and the 

discovery of antibiotics. However, the increase in multidrug-resistant bacteria has renewed 

interest in using phages as antimicrobial agents. Additionally, the prokaryotic virome might 

directly affect the mammalian immune system60. Additional technologies and resources are 

needed to address the myriad of challenges to studies of the prokaryotic virome and its 

effects on mammals, including better annotated databases of viral DNA sequences and 

techniques to deeply characterize RNA viruses.
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Although humans carry a variety of enteric viruses, it has been hard to study viruses in fecal 

samples from healthy individuals or patients with Crohn’s disease using shotgun 

metagenomic sequencing technologies61. Nevertheless, studies in mice indicated that the 

eukaryotic virome can affect mammalian health (recently reviewed in62). For example, 

norovirus supports intestinal homeostasis and shapes mucosal immunity in germ-free mice, 

similar to the beneficial function of commensal bacteria63. Interestingly, intestinal bacteria 

can promote viral infection. Transmission of mouse mammary tumor virus from mother to 

offspring via milk requires gut bacteria64. This virus binds to bacterial lipopolysaccharide 

(LPS) leading to an alteration in host immune tolerance thereby promoting virus replication 

and transmission65.

Microbiota in Development and Progression of IBD

There is considerable clinical and experimental evidence that dysbiosis of the intestinal 

bacteria, with developing evidence for fungi and viruses, contributes to development of 

Crohn’s disease, ulcerative colitis, pouchitis, and chronic experimental intestinal 

inflammation 1, 4–8, 10, 12, 31, 66–68. Studies with new technologies, testing subsets of 

microbes with specific functions in gnotobiotic mice, have revealed important interactions 

between microbes and host cells that define mucosal homeostasis vs inflammation, and 

disease progression and resolution.

Bacteria in pathogenesis

Dysbiosis is a cause as well as an outcome of IBD. Characteristic compositional changes 

observed in patients with IBD include decreased bacterial diversity, with expansion of 

putative aggressive groups (such as Proteobacteria, Fusobacterium species, and 

Ruminococcus gnavus) combined with decreases in protective groups (such as 

Lachnospiraceae, Bifidobacterium species, Roseburia, and Sutterella) (Table 

1)4, 6, 10, 13, 69–73. This dysbiosis is present at early stages of disease progression, before 

patients have been treated, but is affected by prior use of antibiotics61, 69, 73.

It is important to determine whether these alterations are the cause or consequence of 

inflammation for development of therapeutics, diagnostic and prognostic tests, and strategies 

to monitor response to treatment. There is evidence for dysbiosis as a cause IBD and T cell-

mediated chronic experimental colitis74, 75. For example, mice develop colitis following 

transfer of microbiota from feces of mice with colitis compared with mice without colitis 

(controls)76, fecal transplants reduce symptoms in some patients with UC, and patients with 

pouchitis respond to antibiotics and certain probiotic combinations.77

In contrast, there is also compelling evidence that dybiosis is the response of a complex 

microbial community to inflammation, as well as antibiotics or diet61. Active IBD and 

experimental ileocolitis directly alters bacterial composition and gene expression44, 78–81, 

luminal (fecal) and mucosal dysbiosis in various intestinal regions correlates with disease 

activity, being less abnormal in unaffected regions69, 70, 79. Proposed mechanisms for 

inflammation-induced reduction of strict anaerobes, such as Clostridium groups IV or XIVA, 

with parallel expansion of aerobic and facultative anaerobic taxa belonging to the 

Proteobacteria phylum such as Enterobacteriacea, include increased ambient oxygen 
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concentrations with hyperemia and increased vascular and mucosal permeability82 

disruption of physiologic epithelial NA+/H+ exchange causing dysregulated electrolyte 

concentrations80, and the production of alternative electron acceptors that promote anaerobic 

respiration of facultative anerobes83. In mice, colitis alters enteric bacterial gene expression, 

whereas targeted disruption of E coli genes that are most highly induced by inflammation 

affects the severity of colitis44, 84. Furthermore, inflammation alters epithelial defenses, 

mucus thickness, and viscosity; this could account for increased association of bacteria such 

as E coli with the mucosa in patients with IBD85. Severe tissue damage with ulceration 

likely provides easy access for invasive, oxygen-tolerant bacteria86.

Bacteria affect mucosal immune responses and bacterial function that determine mucosal 

homeostasis vs inflammation. Recent reviews highlight the effects of resident intestinal 

bacteria on differentiation and function of mucosal T cells, innate immune cells, innate 

lymphoid cells and IgA87–91. Many bacterial species that are selectively altered in the 

dysbiosis that accompanies active IBD have functional activities that mediate experimental 

intestinal homeostasis vs inflammation. This is particularly well documented for immune 

functions mediated by a Clostridium species subset, and Faecalibacterium prausnitzii, which 

might protect against IBD. These species are specifically decreased, whereas levels of 

aggressive E coli are increased, in the intestinal microbiota of patients with IBD (Fig. 2A). 

Seventeen strains of Clostridium have immune suppressive activities that inhibit acute and 

chronic experimental colitis92. These strains induce T-regulatory cells (Treg cells) mediated 

by IL10, ICOS,92 and butyrate93 and activate the epigenetic DNA methylation adapter 

UHR1, which affects differentiation and proliferation of Tregs94. These effects require a full 

T-cell receptor repertoire to maintain Treg cell-mediated immunologic tolerance to the 

intestinal microbiota95. Mice with restricted T cell receptor repertoires developed 

spontaneous colitis and IL17 production driven by intestinal microbiota, likely as a 

consequence of defective regulatory T cell function..

A single bacterial species might protect against disease pathogenesis where its abundance 

may have utility as a biomarker. F prausnitzii is decreased in patients with CD whereas low 

mucosal abundance predicts post-resection disease relapse96. From a functional standpoint, 

this species or its supernatant suppressed experimental colitis and the supernatant decreased 

NFκB activation and inflammatory cytokines while stimulating IL10 production96. 

Additionally, various F prausnitzii isolates have differential abilities to simulate IL10 

secretion by dendritic cells97.

Secretion of a 15 kDa anti-inflammatory molecule inhibits NFκB activation and prevents 

development of colitis in mice98 and induces production of protective metabolites, including 

salicylic acid, which inhibits colitis99. Finally F prausnitzii can induce a unique CD4CD8αα 
Treg-cell subset that secrets IL10: these F prausnitzii-responsive regulatory cells are 

decreased in patients with IBD100. Likewise, a capsular polysaccharide from Bacteroides 
fragilis secreted within outer membrane vesicles activates Treg cells and reduces the severity 

of colitis in mice via TLR2 signaling101–103. These protective activities of B fragilis require 

proper ATG16L1- and NOD2-mediated autophagy31, and provide mechanisms for defects in 

immune regulation in patients with CD. Together, commensal enteric bacterial species that 

are reduced in patients with IBD selectively induce well-defined immune regulatory 
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pathways; this should guide development of therapies. Multiple searches for additional 

immunoprotective commensal species are underway, including screening human strains for 

regulatory activity in gnotobiotic mice104.

Alternatively, aggressive functionally altered resident strains (pathobionts) expand in the 

intestine of patients with IBD to promote pathogenic immune responses (Fig. 2B). 

Mechanisms by which adherent and invasive E coli (AIEC) and Enterococcus faecalis 
activate disease-promoting immune responses and epithelial damage have been particularly 

well characterized. AIEC are found in the mucosa of approximately 30%–40% of patients 

with ileal Crohn’s disease85, 105. These functionally altered E coli adhere to and invade 

intestinal epithelial cells and persist and replicate within epithelial cells and macrophages. 

AIEC strains isolated from mice and a patient with Crohn’s disease induced colitis in mono-

associated gnotobiotic IL10-deficient mice and promoted development of E coli antigen-

specific interferon gamma (IFNG)- and IL17-producing CD4+ cells; lack of disease in mice 

with wild-type Il10 indicates that this strain is not a pathogen106.

When gnotobiotic Il10−\− mice were colonized with 8 bacterial species associated with 

IBD, AIEC and Ruminococcus gnavus antigens specifically elicited secretion of IFNG and 

IL1778. Mechanisms by which AIEC adhere to, invade, and persist within cells have been 

characterized107, 108. Unique AIEC gene products determine epithelial attachment via long 

polar fimbria and mutated FimH to human epithelial CEACAM 6, biofilm formation, mucus 

penetration, epithelial cell invasion and persistence within epithelial cells and 

macrophages109–113. Variants in genes associated with risk for Crohn’s disease that regulate 

autophagy promote AIEC intracellular persistence; AIEC modulate autophagic 

clearance114, 115. These pathways provide opportunities for novel therapeutic approaches to 

block attachment or promote clearance108, 116. Unfortunately, current molecular signatures 

cannot distinguish AIEC from non-pathogenic E coli strains, although sequencing of broad 

panels of clinical isolates have identified enriched pathways, such as propanediol utilization 

and iron acquisition117, 118. These observations, along with identifying AIEC genes most 

highly expressed under inflammatory conditions44 may help to identify specific inhibitors of 

AIEC pathogenicity.

E faecalis are also involved in IBD pathogenesis. These bacteria can activate bacterial 

antigen-specific T cells induce chronic colitis in mono-associated Il10−\− mice106. The co-

colonization of E faecalis and AIEC strain dramatically accelerate and potentiate 

experimental colitis, indicating inflammatory bacterial reciprocal interactions119. 

Mechanisms by which E faecalis induce injury include metalloprotease damage of epithelial 

barrier integrity through protease-activated receptor 2120, 121 and activation of innate 

immune pathways via TLR2 ligation by membrane lipoproteins122. One caveat is that E 
faecalis has not been shown to be consistently increased in IBD patients.

Metagenomic, transcriptomic, proteomic, and metabolomic profiles integrated from 

microbial and mammalian sources have considerable potential for providing insights into 

regulation of mucosal homeostasis vs inflammation, developing improved biomarkers of 

disease activity, and differentiating clinically important disease subsets (Fig. 3). However, 

these technologies have not yet been widely used in studies of IBD, so reference data sets 
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are incomplete7, 123–126. Metagenomic sequencing has distinct advantages over imputed 

(inferred) information from 16S sequences because actual gene content within the 

microbiota can be characterized. Analysis of the meta-transcriptome goes even further—this 

technique examines expression patterns of genes under conditions of inflammation44.

Metabolomic data provide exceptionally important information regarding small molecules 

that are either produced or modified by the gut microbiota that affect mucosal responses. 

These molecules include short-chain fatty acids (SCFAs), which stimulate mucosal 

protection and immune regulatory functions, bile acids, and injurious hydrogen sulfide. 

Levels of volatile organic metabolites are increased in stools and exhaled breath samples 

from patients with active IBD, whereas fecal levels of SCFAs are decreased72, 127–129. 

Decreased SCFA is consistent with lower concentrations of butyrate-producing commensal 

bacterial species, such as Lachnospiraceae, Roseburia, and F prausnitzii,72, 96, 130 and the 

poor outcomes of persons with low dietary fiber intake131. Likewise, fecal levels of medium-

chain fatty acids were reported to be decreased in patients with UC, Crohn’s disease, or 

pouchitis; fecal concentrations of hexanoate correlated inversely with disease activity123. 

Levels of trimethylamine-N-oxide, produced by bacterial metabolism of dietary carnitine 

and phosphatidylcholine followed by hepatic metabolism, are decreased in plasma samples 

from patients with IBD vs controls and correlate with activity of UC but not Crohn’s 

disease132.

Altered fecal bile acid profiles (such as increased conjugated and sulfated bile acids and 

decreased secondary bile acids)133 can be used in diagnosis and assessment of patients with 

IBD. Secondary bile acids have anti-inflammatory properties, and bacterial release of sulfide 

from sulfated bile acids can induce colitis in mice134. Although bacterial transcriptome 

profiles are incompletely studied, ileal gene expression in untreated pediatric patients with 

Crohn’s patients correlate with bacterial community structure135. Increases in antimicrobial 

dual oxidase were associated with increased Proteobacteria, whereas decreased expression 

of apolipoprotein A1 (APOA1) correlated with low levels of Firmicutes.

The non-bacterial gut microbiota in pathogenesis

Some evidence supports a functional role for fungi in the pathogenesis of IBD and a 

comprehensive review on this topic has recently been published136. CLEC7A knockout mice 

have increased susceptibility to chemically induced colitis due to their altered responses to 

indigenous fungi137 (CLEC7A recognizes β-glucans in the fungal cell wall). Furthermore, a 

polymorphism in the gene encoding dectin-1 is associated with a severe form of UC in 

humans137. A recent report shows that prolonged treatment of mice with antifungal drugs 

worsen colitis as well as allergic airway disease and led to altered bacterial microbiota as 

well as mycobiota with reduced representation of Candida spp. and increased Aspergillus, 

Wallemia, and Epicoccum spp.138 The administration of the latter three fungal organisms 

recapitulated the development of airway disease.

Observations from mice parallel the role for fungi in the pathogenesis of IBD in humans. 

Antibodies against Saccharomyces cerevisiae, a marker of CD, react with mannan, a yeast 

cell wall polysaccharide139. Multiple studies have shown that patients with IBD have 

alterations to the gut mycobiota; increases in specific fungal taxa have been associated with 
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bacterial dysbiosis, increased human DNA in feces, and antibiotic use61, 140, 141. There is 

preliminary evidence that the anti-fungal agent fluconazole reduces inflammation mice with 

colitis and patients with IBD142. A recent study reported expansion of fecal Candida 
tropicalis levels in patients with CD, which correlated with fecal E coli and Serratia 
marcescens concentrations as well as serum anti-S cerevisiae titers. These 2 bacterial species 

and the fungus C tropicalis formed enhanced interkingdom biofilms in cultures.143

The composition of complex bacterial communities may be, in part, determined by the 

dynamics of relationships between bacteriophage and bacteria, so there is interest in 

characterizing the prokaryotic virome in patients with IBD. Recently, Norman et al 

described the enteric virome of 3 independent cohorts of patients with IBD individuals 

without IBD in the same households (controls)144. Shotgun metagenomic sequencing of 

fecal virus-like particles showed significant expansion of Caudovirales bacteriophage in 

patients with CD or UC, disease- and cohort-specific viromes, and increased virome 

diversity in patients with IBD, compared with controls; this is in contrast to the reduced 

diversity and richness of the bacterial microbiota in patients with IBD. However, the virome 

was not altered over time as disease activity changed. These results support a model in 

which bacteriophage contribute to development of bacterial dysbiosis associated with IBD. 

Additionally, the disease-specific nature of the enteric virome indicates the potential value of 

characterizing the composition of bacteriophage in patients with IBD, which could lead to 

new biomarkers.

Studies in mice have shown that eukaryotic viruses might be involved in IBD pathogenesis. 

Humans with a polymorphism in the CD susceptibility autophagy gene ATG16L1145 have 

alterations in Paneth cell morphology that is phenocopied in mice with a hypomorphic allele 

Atg16L1 but only in mice infected with murine norovirus146. Interestingly, although the 

Paneth cell phenotype in these mice depends on infection with murine norovirus, the 

development of colitis in this model can be ameliorated by antibiotic treatment showing that 

viral-induced pathology can be driven by transkingdom interactions with bacteria62.

Finally, reduced immune surveillance associated with immune suppression in patients 

receiving treatment for IBD might lead to alterations in the eukaryotic virome that could be 

used as biomarkers. This concept has been demonstrated in solid organ transplant recipients. 

In these patients, the plasma viral load of anellovirus correlated inversely with graft 

rejection147; similar observations were made in recipients of lung transplants, based on 

analysis of broncoaveolar lavage fluid148. Further studies are needed to support this model 

for patients receiving immunosuppression for IBD, since no significant anellovirus signature 

was observed in the feces of pediatric patients receiving treatment with a tumor necrosis 

factor antagonist61.

THERAPY

Differences in profiles of protective vs detrimental microbiota, and their genes and 

metabolic functions, could be used to discover therapeutic targets for IBD. Analyses of 

individual microbial profiles and activities could be used to develop personalized treatments.
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Targeting dysbiosis

Antibiotic and probiotic therapies have only modest effects in patients with IBD; these are 

far less impressive than initially anticipated (see Fig. 4). The exception is pouchitis, for 

which antibiotics are the preferred approach—perhaps in combination with probiotic 

cocktails to maintain remission149, 150. Single antibiotics provide some benefit to patients 

with Crohn’s colitis or septic complications, such as abscesses and fistulae; they might 

prevent post-resection recurrence, but have provided no demonstrable benefits to patients 

with UC. Broad antibiotic combinations might improve outcomes151, 152, although long-

term efficacy is likely limited by development of antibiotic resistance. Traditional probiotics 

have a limited role in treatment of UC, whereas E coli Nissle and the probiotic combination 

VSL#3 can maintain remission and possibly reduce active inflammation. However, these 

agents do not benefit patients with CD.

These modest results may be due to reliance on non-native probiotic species, which are 

unable to colonize the intestine and are rapidly cleared. Therapeutic strategies might be 

developed to restore levels of certain clostridium groups that are decreased in patients with 

IBD, including F prausnitzii, which protects the gut, as well as immunosuppressive and 

barrier-enhancing SCFAs, which stimulate Treg cells and production of IL10. F prausnitzii, 
17 strains of clostridium, and B fragilis reduce the severity of colitis multiple mouse 

models 92, 96, 102. Moreover, molecules secreted by these species can be screened for 

efficacy in vivo, and might provide new sources of therapeutic agents. Although prebiotic 

formulations have not been well studied, the concept of providing dietary substrates such as 

fiber and prebiotic oligosaccharides to selectively increase the abundance of SCFA-

producing commensal species seems attractive.

Alternatively, recently discovered pathogenic mechanisms of putative aggressive bacterial 

species that expand during inflammation provide highly selective therapeutic targets. For 

example, blocking AIEC epithelial adherence by glycopolymers or FimH antagonists, or 

inducing blocking antibodies to flagellin might inhibit AIEC epithelial invasion and 

translocation116, 153. Likewise, blocking the protease activity of E faecalis, or protease 

receptor binding, might inhibit the mucosal permeability mediated by these 

molecules120, 121. Similarly, specifically blocking expression of virulence gene products or 

their activity could diminish the pathogenic activity of aggressive bacterial populations that 

expand in the dysbiotic inflammatory environment.

Management of IBD is limited by our inability to predict its aggressiveness or response to 

therapeutic agents, leading clinicians to adopt either bottom-up or top-down treatment 

approaches. Either approach is inefficient, with under treatment of some patients leading to 

disease complications or, conversely, overaggressive treatment resulting in unnecessary 

medication side effects and expense. Rapidly improving 16S deep sequencing, metagenomic 

profiling, and metabolomic databases should lead to rational microbial profile analyses. 

Knowledge of which protective microbes are absent, decreased, or expanded will guide 

selection of therapy to optimize an individual’s microbial balance and function. This 

selective approach will depend on the availability of highly individualized mixtures of 

various protective species154 and effective ways to target expanded aggressive species.
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This ambitious therapeutic approach requires clinically available, cost-effective diagnostic 

tests to rapidly determine a patient’s microbial structure and function. We also need markers 

that can predict which patients are likely to have a benign vs aggressive course, to optimize 

use of available therapies. There is evidence that microbial profile analyses could provide 

these types of prognostic markers. For example, level of APOA1, combined with data on 

microbial structure, can predict steroid-free remission in children newly diagnosed with 

Crohn’s disease135. Pre-operative ileal concentrations of F prausnitzii can determine risk for 

post-operative recurrence of Crohn’s disease96. Bacterial profiles can determine risk of 

pouchitis after colectomy in patients with UC155. Microbiome signatures have been 

associated with response to therapy156 and dysbiosis has been associated with relapse in 

patients who stopped taking infliximab157.

Fecal microbiota transplantation (FMT)

It is ironic that during a time of rapid technological advances in DNA sequencing and 

computational tools, which have increased our understanding of the gut microbiome, there 

has been renewed interest158 in FMT—a highly effective therapy for recurrent Clostridium 
difficile infection (CDI)159. From a scientific standpoint, the success of FMT in treating CDI 

provides important proof for the concept that dysbiosis can be modified to treat a human 

disease. This approach has been extended to studies of other disorders, such as IBD160 and 

metabolic syndrome161. There are currently 68 clinical studies involving FMT for 

indications other than CDI, including 5 for patients with Crohn’s disease and 15 for UC 

(Clinicaltrials.gov 06/02/16).

Evidence for the efficacy of FMT in patients with IBD is equivocal; initial evidence has been 

based on small case reports or studies that were under-powered, open-label, lacked 

uniformity in treatment protocols and delivery approaches, or did not include control groups 

(reviewed in162). A systematic review and meta-analysis of 18 studies that included 122 

patients with IBD found that 45% of patients achieved clinical remission, but only 36.2% of 

patients in cohort studies163. Results have been reported from 2 placebo-controlled trials of 

FMT for patients with UC; only 1 achieved its primary endpoint for clinical effficacy164,165. 

Although there were significant differences in the design of these 2 studies that may have 

contributed to the divergent outcomes166, together with the lack of consistent efficacy in 

uncontrolled studies, it is clear that additional studies are needed before FMT can be 

recommended as a treatment for IBD. Caution is required because there is evidence that 

some patients with UC developed fevers and increased levels of c-reactive protein after 

FMT 167. Furthermore, disease flares in patients with UC or Crohn’s disease after FMT for 

the treatment of CDI have been described 168–170, raising important questions around the 

potential to worsen disease in some patients.

There is no strong evidence for the efficacy of FMT for diseases other than CDI, so FMT 

should be considered an experimental procedure for non-CDI indications. The effects of 

FMT in patients with IBD should be studied only in well-designed clinical studies, with 

approval from the Food and Drug Administration via submission of an investigational new 

drug application. Findings from these studies can be used to determine efficacy, based on 

rigorous evidence, and to document adverse outcomes171. Even for patients with CDI, in 
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whom FMT has been shown to be efficacious with little evidence for significant short-term 

adverse outcomes, there are unclear long-term consequences of transferring an 

uncharacterized complex and dynamic consortium of bacteria, fungi, arachaea, and viruses 

from another person. Thirty percent to 50% of the donor’s bacterial microbiota persists in 

the recipient after FMT42 and bacteriophage transfer from donor to recipient as also been 

documented172. The American Gastroenterological Association, together with the Infectious 

Diseases Society of America, the North American Society for Pediatric Gastroenterology, 

Hepatology and Nutrition, and the Crohn’s and Colitis Foundation of America, will be 

developing a National FMT Registry, with funding from the National Institutes of Health. 

This registry can be used to determine the short- and long-term safety of FMT, gather 

information on practice in the United States, and assess its effectiveness; it should promote 

further studies of microbial transfer.

Ultimately, it is likely that FMT will be replaced by the use of defined microbial consortia 

prepared under laboratory conditions. Defined combinations of microbes would have more 

predictable responses and reduce adverse outcomes, including the risk for pathogen 

transmission. Results from studies of mice with colitis indicate that such a targeted approach 

might be feasible for treatment of IBD92.

FUTURE DIRECTIONS

The incidence of IBD is increasing globally, associated with industrialization. Changing 

environmental factors are likely to affect the human intestinal microbiota and contribute to 

the pathogenesis of IBD. The composition and function of luminal and mucosal bacterial, 

fungal, and viral communities are reproducibly altered in IBD and models of ileocolitis; this 

dysbiosis promotes aggressive mucosal immune responses and injury that perpetuate 

disease. It is not clear whether dysbiosis is a primary initiator of IBD, but genetic variants 

associated with IBD affect bacterial composition and alter immune responses to resident 

microbiota. The interactions between the dysbiotic microbiota and a dysregulated immune 

response as fundamental pathogenic elements strongly supports selective targeting of the gut 

microbiota as a therapeutic approach for IBD. This would be most effective if it is selected 

based on an individual’s microbial, genetic, and immunologic factors. Although traditional 

antibiotics, probiotics, and prebiotics have limited efficacy, findings that gut bacteria affect 

chronic inflammation in animal models provide a rationale to discover agents that alter the 

intestinal microbiota in patients with IBD and microbial markers that can predict patient 

outcome. These can be identified using available genomic, transcriptomic, and metabolomic 

technologies and rapidly developing computational and biostatistics tools.

Agents or dietary changes that alter the intestinal microbiota might be effective alone as 

treatments of IBD, or as adjuncts to current immunosuppressive drugs. Profiles of a patient’s 

microbiome and metabolome could be used to determine the optimal composition and diet 

for treatment. Whether this personalized normalization of disrupted microbiomes will 

effectively treat active inflammation, or more likely maintain remission induced by 

traditional anti-inflammatory or immunosuppressant therapies, remains to be determined. 

The ambitious goal of using personalized targeted therapy to optimize microbial function 

will require improved diagnostic techniques, improved metabolomic databases, and large 
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investments in prospective serial profiling techniques to define individual microbiota 

community structure and function during various phases of IBD disease activity.
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Figure 1. Genetic and Environmental Factors that affect the Intestinal Microbiota
Key commensal microbes regulate activity of the immune response, including Treg cells, 

and mucosal homeostasis. Antigens from certain dysbiotic microbes activate T-helper 1 

(TH1) and TH17 cells, leading to tissue injury. This mucosal injury leads to further uptake 

of microbial antigens, toll-like receptor (TCR) ligands and viable organisms that perpetuate 

immune responses.
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Figure 2. Mechanisms of Barrier Function and Immune Regulation by the Intestinal Microbiota
A. Commensal bacterial and fungal species produce SCFAs and TLR ligands that activate 

protective epithelial and lamina propria innate cells, while microbial antigens, 

immunoregulatory proteins and secreted SFCAs stimulate adaptive regulatory cells. B. 

Products of microbial species expanded during dysbiosis injure epithelial cells and activate 

effector cells. Adherent and invasive E coli penetrate epithelial cells, proliferate within 

epithelial and antigen-presenting cells and produce antigens that stimulate TH1 and TH17 

cells. These bacteria proliferate in the presence of ethanolamine, propanediol and iron 

liberated by the inflammatory process. Production of hydrogen sulfide by Bilophilia 
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wadsworthia stimulate TH1 cells and segmented filamentous bacteria (SFB) specifically 

activate TH17 cells. Mucolytic enzymes and proteases produced by E. faecalis injure the 

mucosal barrier, which promotes uptake of injurious microbial products and viable 

organisms.

Ag; Antigen, MHC; major histocompatibility complex, LPFA1; long polar fimbria A1, Fe; 

iron.
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Figure 3. Microbial Profile, Genome, Transcriptome, Proteome, and Metabolome Features of 
Individuals With vs Without IBD
Arrows indicate whether these features are increased or reduced in patients with IBD 

compared to persons without IBD. Extensive data are available for bacterial 16S rRNA 

profiles of normal subjects and patients with IBD, however fungal 18S or ITS sequencing, 

shotgun metagenomic sequencing and metabolomic studies are only now beginning to be 

performed. Fecal metatranscriptome and proteomic studies of microbes and IBD are 

rudimentary. The sequence of 16S and ITS profiles leading to metabolomic studies is 

depicted because of timelines of applications of these –omic technique to intestinal bacteria 

and because microbial composition determines the genes present (metagenomic results). The 

available microbial genetic pattern, along with the environment and diet, help to determine 

which microbial genes are transcribed (metatranscriptomic profiles), the proteins produced 

and metabolites secreted under homeostatic vs. inflammatory conditions.
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Figure 4. Treatment of IBD by Altering Microbial Composition or Function
A sustained remission of IBD might be achieved by sequential induction of remission using 

traditional corticosteroids and/or biologic therapies, followed by less toxic and more 

physiologic therapies that specifically target the microbiota. Alternatively, it may be possible 

to primarily treat inflammation by targeting the microbiota. The goal of this microbiota-

centric therapy is to correct dysbiosis and restore normal microbial function, normalize the 

immune dysfunction and repair barrier defects. These goals could be accomplished by using 

traditional approaches (probiotics, antibiotics, diets, combinations of the above), developing 

methods (fecal microbial transplants; synthetic mixtures of defined microbes, perhaps 

personalized for an individual’s specific microbiota profile; highly selective antibiotics 

targeting key aggressive microbial species; and personalized diets), and still hypothetical 

novel approaches (bacteriophages targeting key aggressive bacteria; inhibiting bacterial 

attachment, promoting a more anaerobic environment; blocking bacterial receptors; 

stimulating protective mammalian pathways; using synthetic microbial metabolites or 

recombinant bacterial species).
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Table 1

Protective and Aggressive Bacteria in Patients with IBD and Mice with Colitis

Expanded in IBDPotentially inflammatory Contracted in IBDPotentially protective

Proteobacteria* Bifidobacterium sp.

Escherichia coli – adherent/invasive* Groups IV & XIVA Clostridium**

Fusobacterium species Faecalibacterium prausnitzii**

Ruminococcus gnavus* Roseburia species

Pasteurellaceae Suterella species

Veillonellaceae Bacteroides***

Caudovirales Saccharomyces cerevisiae

Clavispora lusitaniae

Kluyveromyces marxianus

Candida albicans, Candida tropicalis

Cyberlindnera jadinii

*
Documented ability to induce experimental colitis

**
Documented ability to ameliorate experimental colitis

***
A Bacteroides species, B. fragilis, has protective ability in experimental colitis.

Resident bacteria, fungi and viruses that are altered in IBD patients or mice with colitis. This balance is unique in each individual host and each 
individual responds differently to various bacterial species.

Those with aggressive functions in experimental models are indicated with an asterisk; those with protective functions are indicated with double 
asterisks. One Bacteroides species, B. fragilis, has protective ability in experimental colitis.
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