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Abstract

PSP is a pathologically defined neurodegenerative tauopathy with a variety of clinical 

presentations including typical Richardson's syndrome and other variant PSP syndromes. A large 

body of neuroimaging research has been conducted over the past two decades, with many studies 

proposing different structural MRI and molecular PET/SPECT biomarkers for PSP. These include 

measures of brainstem, cortical and striatal atrophy, diffusion weighted and diffusion tensor 

imaging abnormalities, [18F] fluorodeoxyglucose PET hypometabolism, reductions in striatal 

dopamine imaging and, most recently, PET imaging with ligands that bind to tau. Our aim was to 

critically evaluate the degree to which structural and molecular neuroimaging metrics fulfill 

criteria for diagnostic biomarkers of PSP. We queried the PubMed, Cochrane, Medline, and 

PSYCInfo databases for original research articles published in English over the past 20 years using 

postmortem diagnosis or the NINDS-SPSP criteria as the diagnostic standard from 1996 to 2016. 

We define a five-level theoretical construct for the utility of neuroimaging biomarkers in PSP, with 

level 1 representing group-level findings, level 2 representing biomarkers with demonstrable 

individual-level diagnostic utility, level 3 representing biomarkers for early disease, level 4 

representing surrogate biomarkers of PSP pathology, and level 5 representing definitive PSP 

biomarkers of PSP pathology. We discuss the degree to which each of the currently available 

biomarkers fit into this theoretical construct, consider the role of biomarkers in the diagnosis of 

Richardson's syndrome, variant PSP syndromes and autopsy confirmed PSP, and emphasize 

current shortfalls in the field.

Keywords

Progressive supranuclear palsy; diagnosis; magnetic resonance imaging; positron emission 
tomography; photon emission computed tomography
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Introduction

Progressive supranuclear palsy (PSP) is a pathologic diagnosis with neurodegeneration 

characterized by abnormal tau pathology in the form of globose neurofibrillary tangles, 

tufted astrocytes, coiled bodies and threads1, with a predominance of 4-repeat (4R) tau 

isoforms2. Tau pathology is typically observed in the brainstem, basal ganglia, diencephalon, 

temporal, motor and premotor cortices1, 2, although distribution can vary3, 4. The most 

commonly recognized clinical presentation of PSP is Richardson's syndrome (PSP-RS) in 

which patients have early and notable gait and postural instability, frequent falls, and 

abnormal vertical eye movements (supranuclear gaze palsy)5, 6. However, a number of other 

clinical presentations of PSP have been increasingly recognized, including, but not limited 

to, PSP with predominant Parkinsonism (PSP-P)6, PSP with progressive gait freezing (PSP-

PGF)7, PSP with predominant frontal presentation (PSP-F)8, PSP with a predominant 

speech/language disorder (PSP-SL)9, and PSP with predominant corticobasal syndrome 

(PSP-CBS)10. We have recently developed the Movement Disorder Society-endorsed PSP 

clinical diagnostic criteria that recognize this heterogeneity and provide criteria for the 

different clinical variants of PSP11. A major challenge faced during the revision of the 

diagnostic criteria was to determine whether there was enough evidence to support the 

inclusion of neuroimaging biomarkers in the diagnosis of PSP-RS, the other variant 

syndromes of PSP (vPSP), or in the diagnosis of pathological PSP, and what role they should 

play in the diagnostic criteria.

Table 1 provides a theoretical construct to judge the utility of diagnostic neuroimaging 

biomarkers in PSP. The first step is to demonstrate abnormalities in the group of interest 

compared to matched healthy controls and other clinically overlapping disease groups (level 

1). In the context of PSP, this typically means demonstrating abnormalities in PSP-RS 

compared to other parkinsonian disorders, such as Parkinson's disease (PD), multiple system 

atrophy with predominant Parkinsonism (MSA-P) and CBS. However, if one wishes to 

ultimately develop a diagnostic biomarker for PSP pathology, it is also important not to 

ignore vPSP where neuroimaging signatures may differ from PSP-RS. A biomarker 

differentiating PSP-F, PSP-SL and PSP-CBS from other frontotemporal lobar degeneration 

spectrum disorders may also be valuable. In order for these group-level findings to translate 

into useful biomarkers, the next step is to demonstrate useful sensitivity and specificity 

(>80%) for the clinical diagnosis at the individual patient-level (level 2). Biomarkers that 

perform well at this level could be valuable to support the clinical diagnosis. However, since 

these analyses are based on comparison to clinical diagnosis, rather than gold standard of 

neuropathology, there is still no evidence at this point that the biomarker adds anything to 

clinical diagnosis, other than to increase confidence. A biomarker could surpass clinical 

diagnosis if one can demonstrate utility for early clinical diagnosis when patients have mild 

or non-specific symptoms and signs before they meet clinical criteria for the disease (level 

3), or if one can demonstrate that a biomarker has a strong relationship with the presence of 

PSP pathology regardless of clinical phenotype (level 4). The later will ideally require the 

demonstration that a biomarker is highly associated with PSP pathology not only in patients 

diagnosed with PSP-RS, but also in vPSP, thus representing utility for the entire clinical 

spectrum of PSP. Neuroimaging biomarkers that satisfy level 4 may still, however, be 
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considered only a surrogate marker of pathology, meaning that they correlate well with 

pathology but do not directly measure pathology. Thus, the Holy Grail in neuroimaging is to 

identify a biomarker that directly measures underlying pathology and hence could be 

considered a definitive pathological biomarker (level 5). We are getting closer to this goal 

with the development of PET ligands that can bind to abnormal tau in the brain, and current 

knowledge of these biomarkers will be discussed. At levels 4 and 5, the ideal biomarker 

would be one that is specific to PSP pathology, although biomarkers that could identify a 4R 

tauopathy could also be diagnostically useful. Another issue to consider when assessing the 

value of neuroimaging biomarkers is how well the proposed measures would translate into 

clinical practice; ideally they should be relatively inexpensive, convenient, safe, widely 

available and comparable across different centers.

This review will utilize the theoretical construct outlined in Table 1 to evaluate the degree to 

which different proposed structural and functional neuroimaging metrics fulfill criteria as 

diagnostic biomarkers in PSP. As part of our efforts to develop the new diagnostic criteria, a 

detailed literature search and content evaluation was performed which form the basis of this 

review (Supplemental Data).

Structural MRI

Brainstem measures

Striking midbrain atrophy is typically observed in PSP-RS, and a number of midbrain 

metrics have been proposed as potential biomarkers. These metrics include visual 

assessment of midbrain atrophy, midbrain profile or the presence of specific morphological 

markers such as the “hummingbird” sign (atrophy of dorsal midbrain resembles 

hummingbirds head and bill in midsagittal plane12), “Mickey Mouse” sign (rounded rather 

than rectangular midbrain peduncles in axial planes)13, and “morning glory” sign (concavity 

of the lateral margin of the midbrain tegmentum in axial planes14) (Figure 1). Quantitative 

measures of midbrain anterior-posterior diameter, midsagittal area or volume have also been 

assessed. Studies are in general agreement that midbrain measurements are smaller in PSP-

RS compared with MSA and PD14-31, although overlap can occur at the individual level, 

particularly between PSP-RS and MSA15, 16, 28, 30. Diagnostic sensitivity and specificity 

values (Table 2) are typically high (>90%) for differentiating PSP-RS from controls and 

from MSA and PD using midbrain area15-17, 32, although midbrain diameter15, 18-20, 22, 23, 32 

and volume15, 24, and visual assessments13, 14, 20, 21, 25, 33, 34, have been more variable, not 

always meeting the 80% cut-point required for a level 2 biomarker. Visual assessments of 

midbrain can be particularly problematic since they are not quantitative, lack objectivity, and 

can be highly dependent on image acquisition and patient positioning35, 36.

A ratio of midbrain-to-pons area (Figure 1) in the midsagittal plane has been proposed as a 

biomarker to differentiate PSP-RS from MSA-P, given that MSA-P is associated with 

atrophy of pons and sparing of midbrain; the opposite pattern to PSP-RS15. Some studies 

have found high sensitivity and specificity for midbrain-pons area ratio in differentiating 

PSP-RS from MSA-P and from PD15-17, 19, 32, 37-40, although sensitivity has been lower in 

other studies22, 23, 41 (Table 2). The superior cerebellar peduncles (SCP) are also atrophic in 

PSP42, which contrasts to a relative sparing of the middle cerebellar peduncles (MCP). This 
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has led to the development of the MR Parkinsonism index (MRPI) which takes into account 

both the midbrain-pons area ratio and the ratio of the MCP to SCP width [(P/M)*(MCP/

SCP)]38 (Figure 1). The MRPI is typically increased in PSP-RS compared to controls, MSA-

P and PD, and sensitivity and specificity values for the differential diagnosis of PSP-RS 

from MSA-P, PD and vascular parkinsonism have been excellent17, 22, 37-39, 41, 43, 44 

(typically >80% and up to 100% sensitive in a few studies that represent different 

continents37-40, 43, 44) (Table 2). A number of studies have found that the MRPI was superior 

or equivalent to the midbrain-pons ratio in differentiating PSP-RS from MSA-P and 

PD17, 37, 38, 40, 41 (Table 2). Less data are available to assess how well midbrain measures 

could differentiate PSP-RS from CBS13, 45. There is, therefore, plenty of evidence to support 

brainstem measurements as level 2 diagnostic biomarkers in PSP-RS (Table 3). However, 

proposing one specific measure for the purposes of diagnostic criteria is challenging because 

centers differ in how they perform these measurements and specific cut-points vary and will 

likely be cohort- and acquisition-specific. The MRPI appears to be less affected by aging 

compared to the midbrain-pons-ratio46 but requires detailed measurement of a number of 

structures which may be difficult to standardize. Indeed, one multi-center study found that 

the MRPI did not perform as well as midbrain-to-pons ratio in differentiating PSP-RS from 

PD and MSA-P32. However, another multi-center study showed high sensitivity/specificity 

for the MRPI in differentiating PSP-RS and PD and showed that an automated MRPI 

measurement that does not rely on rater reliability performs as well as a manual MRPI 

measurement43. Automated methods for measuring midbrain volume are also now 

available47 and may improve standardization.

There is evidence that these biomarkers could reach level 3, and show diagnostic value in 

early PSP-RS (Table 3). Studies have found that abnormal MRPI and midbrain-pons ratios 

predate, and can predict, the development of PSP-RS in patients with clinically 

unclassifiable parkinsonism at baseline in a retrospective23 and prospective study48, with 

abnormalities detected 15 months before patients fulfill criteria for PSP-RS in the 

retrospective study23.

Given that the clinical diagnosis of PSP-RS has high sensitivity and specificity for 

pathological PSP13, 49, 50, midbrain-based measures discussed above also tend to perform 

well in autopsy-confirmed studies19, 29. However, it is less clear whether these measures add 

anything to the clinical diagnosis of PSP-RS in predicting pathology, and hence could be 

level 4 biomarkers13. Group-level studies have failed to find midbrain atrophy in patients 

with PSP pathology who presented with clinical syndromes other than PSP-RS51, including 

patients presenting with CBS52. Conversely, reduced midbrain areas were identified in PSP-

RS that had underlying corticobasal degeneration pathology51. It therefore appears that in 

many instances midbrain atrophy is related to the PSP-RS clinical presentation, rather than 

to the presence of PSP pathology, limiting its value as level 4 diagnostic biomarkers. In fact, 

midbrain area measures had a 93% sensitivity and 89% specificity in differentiating PSP-RS 

from other syndromes across a range of pathologies in the same study51, once again 

supporting midbrain measurements as level 2 biomarkers of PSP-RS. Similarly, another 

autopsy study found that midbrain atrophy was present in only 86.4% of pathologically 

confirmed PSP and the hummingbird sign was only present in 68.4% even after a disease 

duration of 4.8 years13. Midbrain atrophy has, however, been observed in speech and 
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language disorders that are confirmed or suspected of having PSP pathology53-56, as well as 

in PSP-F8 and PSP-P39, 57-59. Midbrain atrophy in vPSP is typically less severe than in PSP-

RS39, 56-58, although there is some suggestion that abnormalities on the MRPI could be an 

early feature in PSP-P59 and have some value as a level 3 biomarker.

Cortical measures

A number of group-level studies have demonstrated cortical atrophy in PSP-RS, typically 

involving the frontal lobes33, 60-74. The focus of atrophy appears to be the premotor cortex, 

but atrophy also spreads into prefrontal cortex. Studies have demonstrated that whole brain 

and frontal atrophy are greater in PSP-RS than PD24, 64, 67, 72, 75 and MSA-P72, although 

visual assessment of frontal atrophy had poor sensitivity (17% and 57%) and moderate 

specificity (75% and 83%) in differentiating PSP-RS from MSA13, 20 in two studies, 

reflecting the fact that discernible frontal atrophy is only present in approximately 60% of 

PSP-RS patients13. Frontal atrophy may be more useful if considered in addition to 

brainstem regions. One study found that adding frontal, third ventricle, and whole brain 

volumes to midbrain and SCP volumes improved the differentiation of PSP-RS from PD and 

MSA (sensitivity=88.9%, specificity=97.3%)24. Another showed that combining frontal, 

ventricular, and whole brain volumes could differentiate PSP-RS from PD and controls with 

95.2% sensitivity and 90.9% specificity64. One caveat to consider, however, is that frontal 

atrophy is unlikely to differentiate PSP-RS from CBS, given that CBS shows striking frontal 

atrophy60, 62, 68, 76. Quantitative methods for assessing frontal volume or thickness also vary 

widely across studies and may influence diagnostic utility.

Frontal atrophy also occurs in vPSP, particularly in PSP-F8, PSP-SL9, 54, 55 and PSP-

CBS52, 77 and can be greater than PSP-RS62, likely reflecting a shift in PSP pathological 

burden from brainstem to cortex78. The degree of frontal atrophy is similar in both PSP-

PGF79 and PSP-P57 compared to PSP-RS. Although no diagnostic data are available on the 

value of frontal atrophy in vPSP, the presence of frontal atrophy would be consistent with 

these diagnoses. Data are needed to determine whether cortical measures could help 

differentiate vPSP from other frontotemporal lobar degeneration disorders that are primarily 

characterized by frontal atrophy.

Other subcortical measures

Atrophy of subcortical structures, including caudate nucleus, putamen, globus pallidus, 

subthalamus and thalamus, has also been observed in group-level studies of PSP-RS either 

using visual assessment or volumetric measurements13, 28, 62, 63, 74, 80-82. There is evidence 

that volumes of putamen, thalamus and globus pallidus are smaller in PSP-RS than PD82, 

with thalamus volumes also being smaller than MSA-P28. However, studies have found that 

visual assessments of putamen and globus pallidus atrophy are not diagnostically useful in 

differentiating PSP-RS from MSA or PD13, 20. The caudate nucleus, putamen and thalamus 

have also been reported to be atrophic in CBS13, 62, 83, and are unlikely to be diagnostically 

useful in differentiating PSP-RS and CBS. Basal ganglia structures have been reported to be 

atrophic in patients with PSP-P57, PSP-CBS52, 77, and PSP-SL9, with thalamic atrophy 

reported in PSP-PGF79. The diagnostic value of these findings is, however, unclear and 

limited to level 1 (Table 3). Abnormalities suggesting the presence of iron deposition have 
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been observed in the putamen, globus pallidus and thalamus in PSP-RS84-87, with some 

evidence for differences from PD and MSA84, 85, 87, although diagnostic performance was 

sub-optimal85, 86. Results regarding signal increase or decrease of these structures on T2-

weighted MRI in PSP-RS have been variable, with signal changes observed in less than 50% 

of patients13, 20, 88-90. Signal alterations in the SCP have also been observed in PSP-RS, but 

not in MSA-P or PD91, 92.

Pattern approaches to diagnosis

A number of studies have proposed that the assessment of multiple regions of the brain will 

optimize sensitivity and specificity for PSP-RS. These studies typically develop optimal 

prediction models93, or utilize automated machine-learning techniques to identify diagnostic 

patterns94-100. A number of these studies have found that assessment of multiple regions, 

including midbrain, basal ganglia95, 97, 98, 100, cerebellum98, 100 or thalamus99 provided 

excellent sensitivity and specificity to differentiate PSP-RS from PD and MSA-P. One study 

found that a prediction model using midbrain, putamen and cerebellar grey matter volumes 

could differentiate PSP-RS from MSA and PD with 90% sensitivity and 100% specificity in 

an early stage of the disease when not all patients had yet fulfilled clinical diagnostic criteria 

for these diseases100. It has also been suggested that volumetric white matter measurements 

may show greater diagnostic utility than grey matter measures94, 96. There is also some 

evidence that a pattern-based approach utilizing brainstem and cortical grey and white 

matter measures could be used in the differential diagnosis of autopsy-confirmed PSP and 

CBD93. Generally, assessing the pattern of atrophy, rather than focusing on specific regions, 

appears to be a sensible and sensitive and specific approach to differential diagnosis, 

although there is currently a lack of agreement across studies on which specific regions 

should be used and further validation of these results in independent cohorts is necessary. In 

addition, no data are yet available on how well these approaches perform in vPSP. There is 

further work needed before these approaches can be incorporated into clinical criteria.

Diffusion imaging

Measurements of microstructural damage using diffusion-weighted imaging (DWI) show 

some promise as biomarkers of PSP-RS. Apparent diffusion coefficient (ADC) 

measurements from DWI have been assessed in grey and white matter structures in PSP-RS, 

showing elevated ADC values in putamen, caudate, globus pallidus, midbrain, SCP and 

prefrontal and precentral white matter101-107. PSP-RS patients typically show higher ADC 

values in putamen, caudate nucleus, globus pallidus, SCP and midbrain compared to 

PD102, 106-108, with one study obtaining high sensitivity (90%) and specificity (100%) to 

differentiate PSP-RS from PD using values from the putamen107 and another obtaining 

100% sensitivity and specificity using the SCP103. In comparison to MSA-P, PSP-RS has 

higher ADC values in the caudate nucleus106 and SCP103, 106 but lower values in the 

MCP105, 109, cerebellum110, and putamen101. Sensitivity and specificity values for 

differentiating PSP-RS from MSA-P are high using DWI of the SCP (sensitivity=96.4%, 

specificity=93.3%103). The diagnostic performance of DWI measurements is, therefore, 

excellent, supporting these measurements as level 2 biomarkers (Table 3). There is no 

consensus regarding the best structure to assess, although the SCP appears promising.
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Diffusion tensor imaging (DTI) allows for the assessment of directional water diffusion and 

the interrogation of specific white matter tracts. White matter tract degeneration has been 

demonstrated to be a striking feature of PSP-RS, with abnormalities observed predominantly 

in SCP, cerebellum, body of the corpus callosum, cingulum, white matter laminar of the 

thalamus and premotor aspects of the superior longitudinal fasciculus63, 111-124. The 

majority of these white matter tracts show greater degeneration in PSP-RS compared to 

PD112, 118, 122, 125-127 and MSA-P72, 118, 126. Little data are currently available on the 

diagnostic utility of DTI measures, although the corpus callosum113 and SCP125 show high 

sensitivity and specificity in differentiating PSP-RS and PD. There is also evidence that 

adding DTI measures to the MRPI may help in the differentiation of PSP-RS from 

controls128. The diagnostic value of DTI measures to differentiate PSP-RS and MSA-P is 

unclear. It is also unclear whether DTI measures could differentiate PSP-RS and CBS, 

particularly given that patterns of DTI abnormalities overlap to a large degree between these 

two syndromes112, 129-131. A few studies have assessed DTI measures in PSP-P which 

appears to show similar, although slightly less severe, patterns of tract abnormalities in 

comparison with PSP-RS128. Some studies have found regions with greater abnormalities in 

PSP-P compared to PSP-RS, although the results have not been consistent across 

studies117, 120, 128. In summary, DTI abnormalities are striking in PSP-RS and have the 

potential to be useful diagnostic biomarkers (Table 3). Data are, however, needed on the 

utility of both DWI and DTI measures in vPSP and autopsy-confirmed PSP. The issue of 

whether DWI and DTI measurements can be translated into clinical practice is also unclear, 

since there is little standardization of methods across studies and no established diagnostic 

cut-points for these measurements.

PET/SPECT

[18F]FDG-PET

[18F]-fluorodeoxyglucose PET (FDG-PET) studies have shown hypometabolism in 

midbrain, basal ganglia, thalamus and frontal lobes in PSP-RS132-145, with frontal 

involvement particularly targeting premotor, precentral and prefrontal regions134 and 

anterior cingulate146 (Figure 2A). In an autopsy cohort including seven PSP patients (all 

PSP-RS), the most common FDG-PET findings were hypometabolism of thalamus (100%), 

caudate (86%), midbrain (86%), and frontal lobes (71%)145. PSP-RS tends to show greater 

frontal hypometabolism than PD and MSA146, with visual assessments of frontal 

hypometabolism producing good sensitivity (76%) and specificity (98%) for PSP-RS in one 

study147. Visual assessments of midbrain hypometabolism have performed modestly, with 

one study finding 79% sensitivity and 69% specificity in differentiating PSP-RS from MSA 

and CBS144. Consideration of the pattern of hypometabolism may hold more diagnostic 

promise. Visual assessment of the pattern of hypometabolism associated with PSP-RS (e.g. 

anterior cingulate, midbrain, basal ganglia) gave 93% sensitivity and 90% specificity to 

differentiate PSP-RS from PD, MSA and CBS in one study147. Automated pattern detection 

techniques have given mixed results148-152. Differentiating PSP-RS from CBS can be 

challenging, given that patterns of hypometabolism overlap between these two syndromes to 

a large degree138, 145, 152 although there is some suggestion that PSP-RS may have greater 

hypometabolism in midbrain and thalamus136, 153 and CBS patients have greater 
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hypometabolism in parietal lobes135, 138, 153. The presence of hemispheric asymmetry in 

CBS may further help differentiate it from PSP-RS145, 152. Current evidence, therefore, 

provides some support for frontal and midbrain hypometabolism, or the combination of 

both, as potential level 2 biomarkers of PSP-RS (Table 3). There is some evidence that 

hypometabolism in striatum and cortex can be present before the development of clinical 

PSP-RS (level 3 biomarker), although this has only been observed in familial PSP154.

Some FDG-PET findings have been reported in vPSP. One study found that PSP-P was 

associated with slightly greater hypometabolism of the putamen than PSP-RS, with less 

severe involvement of the thalamus, and that a putamen-to-thalamus ratio differentiated PSP-

RS from PSP-P and PD with 100% sensitivity and 75% specificity155. The PSP-P patients in 

that study did not show much frontal hypometabolism155. Frontal hypometabolism has also 

not been observed in PSP-PGF, with midbrain hypometabolism only observed in 25% of 

patients156. Patients with PSP-SL have shown frontal, basal ganglia and midbrain 

hypometabolism9, 157, 158, although only one of these studies had autopsy confirmation9. 

Taken together, these studies show that neither frontal nor midbrain hypometabolism are 

present consistently across the vPSP syndromes. The presence of these features could, 

therefore, be supportive of PSP, but the absence does not preclude underlying PSP.

There is, however, a lack of standardization in the quantitative methods used across FDG-

PET studies, particularly in regards to the choice of reference regions used to standardize 

regional uptake values which vary across studies, including cerebellum, pons, cortical 

regions or global mean values; each of which may have different limitations in PSP.

Dopamine imaging

Striatal presynaptic dopamine binding, measured using dopamine active transporter (DAT) 

imaging utilizing [123I]-FP-CIT SPECT or [18F]FP-CIT-PET, is consistently decreased in 

PSP-RS compared to controls159 (Figure 2B). However, decreased DAT binding is also 

observed in PD, MSA-P and CBS160-164, without differences in the degree of general striatal 

binding observed across groups160, 162, 165. However, studies have found that the caudate 

nucleus is affected to a greater degree in PSP-RS compared to PD161, 163, 166, 167, and that 

regional patterns of binding, such as ratio of caudate-to-ventral striatum (sensitivity=94%, 

specificity=92%)163, ratio of caudate-to-putamen166, or ratio of anterior-posterior 

putamen167, could help differentiate PSP-RS from other parkinsonian disorders; however, 

diagnostic performance has not always been consistent with these measures164, 167. It has 

also been shown that PSP-RS shows more symmetric striatal binding than PD168, although 

the diagnostic value of this finding is unclear. Overall the finding of reduced striatal DAT 

binding is highly supportive and sensitive for a diagnosis of PSP-RS, but heterogeneity 

across studies and lack of diagnostic data limits its value in differentiating across 

parkinsonian disorders (Table 3). Midbrain DAT binding is also decreased in PSP-RS, with 

lower binding than PD but a similar degree of binding to MSA160, 169. Brainstem DAT levels 

could differentiate PSP-RS and MSA from PD with 89.7 % sensitivity and 94.1% specificity 

in one study169. Little is currently known about the diagnostic utility of DAT findings in 

vPSP, although there is evidence from a few studies that both PSP-PGF and PSP-P are 
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associated with striatal DAT reductions similar to those in PSP-RS156, 170-172, with similar 

putamen-to-caudate ratios171, 172.

Imaging using D2 receptor ligands, most commonly [123I]-IZBM SPECT, to assess post-

synaptic dopaminergic function also appears to be sensitive in PSP-RS, with the majority of 

patients showing striatal reductions172-176. However, the value of D2 receptor ligand 

imaging in the differential diagnosis from other parkinsonian disorders is unclear162, 175, 176. 

In addition, there is some evidence that striatal uptake may not be reduced in PSP-P172.

Tau-PET imaging

The development of PET ligands that can bind to aggregated tau inclusions in the brain has 

been an exciting recent advance in the field with the potential of becoming a biomarker of 

tau pathology. A number of tau-PET ligands have been developed177, but the [18F]AV-1451 

(previously known as T807) ligand178, 179 has been the most widely utilized to date. Studies 

have demonstrated relatively consistent patterns of increased [18F]AV-1451 uptake in PSP-

RS compared to controls in globus pallidus, putamen, caudate nucleus, thalamus, 

subthalamic nucleus, midbrain and dentate nucleus of the cerebellum180-184 (Figure 2C). 

The cortex has typically shown less striking uptake in PSP-RS183 with measures from 

subcortical structures showing the most promise as potential diagnostic 

biomarkers180, 182, 183. Quantification of globus pallidus retention provided sensitivity and 

specificity of 93% in differentiating PSP-RS from controls, and 93% sensitivity and 100% 

specificity in differentiating PSP-RS and PD in one study180, although the thalamus 

provided the best separation between PSP-RS and controls in another182. There is also 

evidence that the pattern of uptake in PSP-RS differs from Alzheimer's disease (AD), with 

many of the PSP-RS related regions showing greater uptake in PSP-RS than AD despite the 

fact that AD showed greater cortical [18F]AV-1451 uptake183, 184. There is, therefore, some 

evidence to support [18F]AV-1451 as a level 2 biomarker of PSP-RS. A caveat is that overlap 

in [18F]AV-1451 signal is observed between PSP-RS and controls182 with one study failing 

to observe differences between PSP-RS and controls185, and so more work is needed to 

confirm these results. Standardization of methods will also be required, including optimizing 

scan time and quantitative outcomes. Current studies have analyzed SUVR values referenced 

to cerebellar grey matter180, 182, 183 or binding potentials184.

While early studies are certainly encouraging, several limitations of [18F]AV-1451 need to 

be considered. One caveat is that regions that show [18F]AV-1451 uptake in PSP, including 

basal ganglia, thalamus, midbrain and dorsal cerebellum also show some degree of “off-

target” binding in normal subjects which increases with age186, 187. The nature of this 

binding is unclear. While age correction in quantitative studies may go some way to correct 

for this “off-target” binding, it will likely limit the value of [18F]AV-1451 in differential 

diagnosis of individual patients. Furthermore, it is unknown whether the “off-target” signal 

may also be altered by the disease in PSP, confounding any potential true signal of tau. 

Another caveat comes from an apparent disconnect between in-vivo and ex-vivo studies. 

While regions that show elevated binding typically show tau deposition at autopsy, 

autoradiographic studies have found little or no binding of [18F]AV-1451 to tau in autopsied 

brains of PSP patients182, 187-192 casting doubt on whether the signal identified by 
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[18F]AV-1451 reflects tau pathology and whether it could be considered a level 5 biomarker 

of tau. This kind of disconnect is not uncommon for PET tracers and the utility of such in-

vitro studies has been questioned193. However, a recent paper found that tau pathology 

found post-mortem in a patient with PSP correlated with antemortem FDG-PET but not with 

[18F]AV-1451 signal190. Another caveat is that elevated [18F]AV-1451 uptake has also been 

observed in non-tau diseases187, 194 which again questions the specificity of the ligand to 4R 

tau. Another chemically distinct tau PET ligand, THK-5351195, was found to have high 

affinity for PSP tau lesions in an autoradiographic study196, and has shown uptake in the 

globus pallidus and midbrain196 in patients with PSP-RS (Figure 2D). However, the degree 

of “off-target” THK-5351 binding in PSP-related regions is at least as high, if not higher, 

than that observed with [18F]AV-1451197. Overall, much more work needs to be done to 

evaluate these PET tracers. It is likely that different tau-PET ligands may bind to tau 

conformers with differing sensitivity and specificity and show different off-target binding 

and hence head-to-head and indirect comparisons of the currently available tau imaging 

agents is needed.

Other Biomarkers

There are a number of other neuroimaging biomarkers that have been assessed in PSP-RS 

with less data available to assess diagnostic value. MR modalities that demonstrate 

abnormalities in PSP-RS include magnetic resonance spectroscopy and magnetization 

transfer imaging73, 198,199-205, although the ability of these modalities to differentiate PSP-

RS from other parkinsonian disorders is unclear181, 184, 185205. Resting state (task-free) 

functional MRI has also been used to demonstrate abnormalities in functional connectivity 

in PSP-RS across the network of PSP-RS associated regions63, 206, 207, but the loss of 

cortical connectivity is not specific to PSP-RS vs PD208. Longitudinal MR studies have 

shown increased rates of whole brain, cortical and midbrain atrophy, and SCP diffusivity, in 

PSP-RS compared to controls209-218, with some evidence for greater rates than PD, but 

similar rates of whole brain and midbrain atrophy as MSA-P212, 215. Cortical and whole 

brain rates of atrophy are, however, greater in CBS than PSP-RS209, 213. Cerebral blood flow 

single-photon emission computed tomography studies have demonstrated frontal219-225, and 

less commonly thalamic220 and striatal222, hypoperfusion in PSP-RS221, 226. Findings 

concerning differential diagnosis from other parkinsonian disorders are lacking here, 

although PSP-RS may show greater frontal hypoperfusion than PD224, 227. Abnormalities in 

other neurotransmitter systems, such as the cholinergic228-230 and serotoninergic231 systems, 

have also been demonstrated in PSP-RS.

Conclusions

Neuroimaging research over the last several decades has improved our understanding of the 

neurobiology of PSP but has not yielded many confirmed diagnostic biomarkers (Table 3). 

The most mature research area is the assessment of midbrain measurements which has 

yielded a number of measures that have good sensitivity and specificity for PSP-RS versus 

other parkinsonian disorders, such as midbrain-pons area and the MRPI which appear to be 

the most reliable biomarkers for diagnosis of PSP-RS. The presence of frontal atrophy and 

hypometabolism are also prominent features of PSP-RS, and may improve diagnosis when 
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considered together with midbrain atrophy. It is clear that PSP-RS is associated with striking 

damage to the white matter, with DWI measures of the SCP providing good sensitivity and 

specificity for PSP-RS diagnosis, although data supporting this measure comes from only a 

couple of studies. DTI measures could prove to be very valuable, although more work is 

needed to provide and validate standardized measures of the kind that could be used in 

diagnostic criteria. Measures of dopamine function are highly sensitive to PSP-RS and many 

of the vPSP syndromes, but specificity is low, and thus they are less useful in ruling out 

other parkinsonian syndromes. Data so far only supports neuroimaging biomarkers as level 2 

biomarkers for PSP-RS. Only a handful of studies have assessed patients early in the disease 

course to suggest level 3 biomarkers. More work is needed to assess the value of these 

measures in vPSP, and in autopsy-confirmed cases to determine whether they could be 

useful level 4 biomarkers. Capturing the disease in its earliest phase will also be critical to 

develop well validated level 3 biomarkers. Lastly, tau-PET imaging techniques are exciting 

but more work is needed to truly understand the biological underpinnings of the tau-PET 

signal in PSP. These are, however, early days in tau-PET imaging and we expect our 

understanding of these biomarkers to increase exponentially over the coming years.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structural MRI demonstrating the morphological characteristics of PSP-RS and 
brainstem measurements
Top left sagittal slice shows the hummingbird sign with atrophy of the dorsal midbrain and 

relative preservation of the pons. Top right axial slice through the midbrain shows rounded 

midbrain peduncles (Mickey Mouse sign) and concavity of the lateral margin of the 

midbrain tegmentum (Morning glory sign, arrow). Bottom images show example 

measurements of the midbrain anteroposterior (AP) diameter, midbrain and pons area, 

superior cerebellar peduncle width and middle cerebellar peduncle width (modified from32).
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Figure 2. FDG-PET, DAT and tau PET findings in PSP-RS
Panel A shows a statistical stereotactic surface projection map of an FDG-PET scan for a 

PSP-RS patient where Z score values represent differences from a normal cohort and are 

color coded as indicated in the color scale (0 = normal; 7 = most abnormal). 

Hypometabolism is observed in the frontal lobes, midbrain and caudate nucleus. Panel B 

demonstrates absent putamen DAT binding and reduced caudate binding in a patient with 

PSP-RS compared to a control subject. Panels C and E show [18F]AV-1451 results. Panel C 

shows [18F]AV-1451 tau-PET scans in a patient with PSP-RS and an age-matched control. 

The control shows some uptake in midbrain and basal ganglia, although uptake in these 

regions is greater in the PSP-RS patient. In addition, the PSP-RS patient shows uptake in the 

dentate nucleus of the cerebellum and thalamus. Panel E shows group-level [18F]AV-1451 

findings in 10 patients with PSP-RS compared to healthy controls. Increased uptake in PSP-

RS compared to controls is identified in dentate nucleus of the cerebellum, midbrain, 

thalamus, and basal ganglia (Modified from183). Panels D and F show THK-5351 results. 

Panel D shows a THK-5351 tau-PET scan in a patient with PSP-RS and a healthy control. 

The control and PSP-RS patient show uptake in the midbrain, thalamus, and basal ganglia, 

although the degree of uptake is greater in PSP-RS. Panel F shows group-level THK-5351 

findings in 10 patients with PSP-RS compared to healthy controls. Increased uptake in PSP-

RS compared to controls is identified in midbrain, thalamus, basal ganglia and posterior 

lateral and medial frontal lobe. Modified from232.
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Table 1

Levels of evidence for neuroimaging biomarkers in PSP

Level Utility PSP-RS vPSP

1 Research tool Group-level evidence that a biomarker is abnormal 
in PSP-RS

Group-level evidence that a biomarker is 
abnormal in vPSP

2 Supportive of clinical 
diagnosis

Individual-level data showing diagnostic value 
(high sensitivity + specificity) for PSP-RS

Individual-level data showing diagnostic value 
(high sensitivity + specificity) for vPSP

3 Supportive of early 
clinical diagnosis

Evidence for abnormalities before patients meet 
clinical criteria for PSP-RS

Evidence for abnormalities before patients meet 
clinical criteria for vPSP

4 Supportive of 
pathological diagnosis

Individual-level data showing diagnostic value for PSP pathology, regardless of syndrome

5 Definitive Biomarker of actual pathology
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Table 3

Currently available neuroimaging biomarkers that fulfill each level of evidence in PSP

Level Utility PSP-RS vPSP

1 Research tool • Basal ganglia and thalamic atrophy

• DTI abnormalities in the dentatorubrothalamic tract

• THK-5351 uptake in midbrain and globus pallidus*

• MRS metabolites

• Rates of whole brain and midbrain atrophy

• Resting state fMRI*

• SPECT frontal hypoperfusion

• Midbrain atrophy (PSP-SL, 
PSP-F, PSP-P)

• Frontal atrophy (PSP-F, 
PSP-SL, PSP-CBS, PSP-
PGF, PSP-P)

• Basal ganglia atrophy (PSP-
SL, PSP-CBS, PSP-PGF, 
PSP-P)

• Reduced striatal DAT (PSP-
PGF, PSP-P)

2 Supportive of 
clinical diagnosis

• Midbrain area

• Midbrain-pons area ratio

• MRPI

• Frontal atrophy in addition to midbrain atrophy*

• DWI striatum*

• DWI/DTI superior cerebellar peduncle*

• FDG-PET frontal and midbrain hypometabolism*

• [18F]AV-1451 uptake in midbrain, thalamus, basal 

ganglia, dentate nucleus of the cerebellum*

• Reduced striatal DAT/D2 receptor (sensitive only)

• Reduced brainstem DAT*

3 Supportive of 
early clinical 
diagnosis

• Midbrain-pons area ratio/MRPI

• FDG-PET frontal hypometabolism*

• MRPI (PSP-P)*

4 Supportive of 
pathological 
diagnosis

None

5 Definitive None

DTI = diffusion tensor imaging; DWI= Diffusion weighted imaging; MRS = magnetic resonance spectroscopy; fMRI = functional magnetic 

resonance imaging; SPECT = Single-photon emission computed tomography; FDG-PET = [18F] fluorodeoxyglucose positron emission 
tomography; MRPI = MR Parkinsonism index; DAT = dopamine transporter

*
Level of evidence is supported by ≤3 published studies, suggesting lower level of reliability
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