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ABSTRACT Mycobacteriophage CrystalP is a newly isolated phage infecting Myco-
bacterium smegmatis strain mc2155. CrystalP has a 76,483-bp genome and is pre-
dicted to contain 143 protein-coding and 2 tRNA genes, including repressor and
integrase genes consistent with a temperate lifestyle. CrystalP is related to the
mycobacteriophages Toto and Kostya and to other Cluster E phages.

The large collection of phages with sequenced genomes that infect the same host
strain, Mycobacterium smegmatis mc2155, reveals substantial diversity and at least

30 separate lineages represented as clusters and singletons (1, 2). Mycobacteriophage
CrystalP was isolated from soil collected from North Huntingdon, PA, using enrichment
and M. smegmatis mc2155 as the host. CrystalP forms plaques 2 mm in diameter
with a clear center and turbid halo, and examination with electron microscopy reveals
that it is a member of the Siphoviridae, with a 70-nm-diameter capsid and a flexible,
noncontractile tail that is 240 nm in length. Double-stranded DNA was isolated and
sequenced using an Illumina MiSeq 150-bp single-end run. Trimmed reads were
assembled using Newbler, yielding a 76,483-bp contig with 500-fold coverage, and
the viral genome was determined to have 9-base 3= single-stranded extensions
(5=-CGCTTGTCA). The G�C content is 63.0%.

The CrystalP genome was annotated using DNA Master (http://cobamide2.bio.pitt
.edu/), Glimmer (3), GeneMark (4), Aragorn (5), tRNAscan-SE (6), BLASTP (7), HHPred (8),
and Phamerator (9). Annotation identified 145 protein-coding genes, 43 of which were
assigned putative functions, and 2 tRNA genes. CrystalP is a member of Cluster E, one
of the least diverse mycobacteriophage clusters, and its closest relative is mycobacte-
riophage Toto (GenBank accession number JN006061), with which it shares 99%
nucleotide identity spanning 99% of their genome lengths.

The CrystalP genome is organized with its virion structure and assembly genes in the
leftmost 30 kbp of the centrally located lysis and immunity functions and its nonstruc-
tural genes in the rightmost 35 kbp of the genome. Most of the genes are transcribed
rightward, with the exceptions of a group of 14 small (�500 bp) leftward-transcribed
genes centrally located between the lysis and immunity functions and a set of 16
leftward-transcribed genes near the right genome end; the putative immunity repres-
sor (gene 55) is also transcribed leftward. CrystalP encodes a putative recombination
system with an exonuclease (gene 66) and Erf-like DNA pairing proteins, in addition
to a RecA-like protein (gene 116). It also codes for an RNA ligase (gene 90) and a
polynucleotide kinase (gene 87) implicated in tRNA repair, along with 2 tRNAs (tRNAarg

and tRNAgly, genes 107 and 108, respectively), which collectively may play roles in
countering host defenses (10). CrystalP also encodes an adenine-specific DNA methyl-
transferase (gene 98), which is present in most but not all Cluster E genomes as well as
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in some Cluster F genomes, and which may play a role in defending against host
restriction systems.

Approximately 57% of the CrystalP-predicted protein-coding genes are not present
outside the group of 84 Cluster E phages; these include many of the putative virion
structure and assembly genes (terminase large subunit, portal, protease, capsid, head-
to-tail connectors, major tail subunit, tape measure protein, and two minor tail subunit
genes). We noted that the putative immunity repressor (gene 55) is conserved among
all 84 of the Cluster E phages and these may form a homoimmune group.

Accession number(s). CrystalP is available at GenBank with accession number

KY319168.
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