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ABSTRACT: An approach to the validation of a linker
strategy for the epothilone family of microtubule-stabilizing
agents is reported. An analogue of epothilone B in which the
C(6) methyl group has been replaced with a 4-azidobutyl
group has been prepared by total chemical synthesis, and
amides derived from the azido group have been shown to
retain the activity of the parent compound. These results set
the stage for an evaluation of the potential of the epothilones
to serve as the drug component of antibody−drug conjugates
and other selective tumor cell-targeting conjugates.
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Among the large group of microtubule-stabilizing agents
(MSAs) known to exert their antimitotic activity by

binding to the luminal taxane binding site on the β-tubulin
subunits of microtubules, the epothilone family of natural
products1−3 constitute perhaps the most promising (Figure 1).

Ixabepilone,4,5 the lactam analogue of epothilone B, was
approved by the FDA in 2007 for use in the treatment of
particularly aggressive and otherwise unresponsive forms of
metastatic breast cancer, while several other fully synthetic
analogues (e.g., sagopilone,6−8 iso-fludelone9) have recently
undergone or are currently undergoing clinical evaluation.
Because epothilone B, sagopilone, and iso-fludelone, among
others, are possessed of subnanomolar potencies against a

variety of cell lines including some taxol-resistant cell lines, we
have become interested in establishing a validated linker
strategy for this family of anticancer agents. Such a linker
strategy would allow investigation of the potential of these
compounds to serve as the drug component of antibody−drug
conjugates (ADCs)10−12 and other selective tumor cell
targeting conjugates.
In order to prepare conjugates, the most basic requirement

for the drug is that it must have a functional group (most
straightforwardly an unhindered alcohol, a thiol, or an amine)
that may be used selectively in synthetically mild and efficient
conjugation reactions. With a traceless or self-immolative linker
strategy this may be the only requirement, and two potent
semisynthetic epothilone analogues equipped with a suitably
reactive alcohol or amine (e.g., 113 and 2,14 Figure 2a) have
been reported and usefully employed in simple conjugation
(acylation) reactions by the Bristol-Myers Squibb group in the
course of their efforts to develop an epothilone−folic acid
conjugate.14,15 An important additional design consideration for
us, however, was to leave open the possibility of exploring
conjugates wherein some portion of the linker may be retained
(for example, to allow for the incorporation of additional
functionality into the drug) in the active drug entity that is
released from the conjugate following lysozomal degradation of
the antibody. This adds the rather more stringent requirement
that the conjugatable functionality must be located in a region
of the drug that is solvent-exposed when the drug is bound in
the receptor such that relatively large groups may be
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Figure 1. Potent MSAs epothilone A and B, ixabepilone, sagopilone,
and iso-fludelone.
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incorporated in the drug structure without any deleterious
impact on its potency. So as to accomplish this while also
perturbing the steric and electronic structure of the drug as
little as possible, we decided to use the “methyl extension”
strategy that we reported recently,16 which entails the
identification of a solvent-exposed methyl group and the de
novo synthesis of the analogue wherein the methyl group is
replaced with a functional group-equipped linear alkyl group.
To identify a suitable methyl group, we examined the recently
reported high-resolution structure of epothilone A bound in the
taxane binding site of an (αβ-tubulin)2-RB3-tubulin tyrosine
ligase complex (Figure 2b).17 This structure reveals that the
C(6) methyl group is solvent exposed and uninvolved in any
interactions with the receptor, consistent with the observation
that sagopilone, with an allyl group at C(6), is approximately
equipotent with epothilone B.6 In this way, we decided to
synthesize the C(6)-4-azidobutyl epothilone B analogue 3
(Figure 2c) and evaluate it and amides derived therefrom for
potency.
We have developed two conceptually related syntheses of the

C(1)−C(9) fragment of the epothilone family of natural
products18,19 based on our silylformylation/crotylsilylation/
Tamao oxidation methodology20 we developed for the step-
economical and efficient syntheses of complex polyketide
fragments. The requisite starting material for the synthesis of
the C(6)-4-azidobutyl analogue, homopropargyl alcohol 4, was
prepared using our recently reported synthesis19 (see the
Supporting Information file for details), and we began by
examining our second-generation approach in which the three
parts of the sequence were carried out in a stepwise fashion

(Figure 3a).19 As shown, this sequence was successful in
delivering the desired C(1)−C(9) fragment 10 with a 4-

chlorobutyl group installed at C(6). Unfortunately, however,
the aldehyde crotylation step (7 + 8 → 9),21 which had worked
well in the C(6)-methyl series, proceeded with low (3.5:1)
diastereoselectivity and was inefficient, presumably due to the
extreme steric hindrance of aldehyde 7. As a result, we were
able to isolate the desired product (9) in only 37% yield. Given
that one of the primary intended benefits of the second-
generation stepwise sequence was to allow for high levels of
diastereoselectivity in the crotylation event, we decided to
evaluate the first-generation tandem and one-pot version of the
sequence (Figure 3b). This was carried out according to our
previous report18 and produced 10 as the major product of a
7:1.3:1 mixture of diastereomers in 44% combined yield from 4.
Though due to the added steric hindrance of the C(6)-4-
chlorobutyl group this sequence, too, proceeded with reduced
efficiency relative to the version with the C(6)-methyl
substrate, it also proceeds in just two pots, and because of
this extraordinary step-economy, we were able to rapidly
produce multigram quantities of 10 using this route.
To complete the synthesis of the target compound 3, we

adapted the chemistry22 pioneered by the Danishefsky team in
the course of their development of the fludelone family of
epothilone analogues.23 As shown in Figure 4, coupling of acid

Figure 2. (a) Two previously described analogues of the epothilones
that may be used in conjugation reactions with a traceless or self-
immolative linker strategy. (b) The crystal structure of epothilone A
bound in the taxane binding site reveals that the C(6) methyl group is
solvent exposed, consistent with available SAR data. Reprinted with
permission from ref 17. Copyright 2013 AAAS. (c) C(6)-methyl
extended analogue 3 is predicted to be approximately equipotent with
the parent natural product.

Figure 3. (a) Synthesis of the C(1)−C(9) fragment of the epothilones
with a 4-chlorobutyl group installed at C(6) using our second
generation approach (ref 19). (b) Synthesis of the C(1)−C(9)
fragment of the epothilones with a 4-chlorobutyl group installed at
C(6) using our first generation approach (ref 18).
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12 and alcohol 13 proceeded smoothly and was followed by
ring-closing metathesis with the second generation Grubbs
catalyst24 and Wittig reaction to install the thiazole side chain.
Removal of the triethylsilyl (TES) protecting groups was
followed by selective reduction of the C(9)−C(10) alkene and
displacement of the chloride with azide. Finally, epoxidation of
the macrocyclic alkene with dimethyldioxirane according to
Danishefsky’s procedure25 gave the C(6)-4-azidobutyl epothi-
lone B analogue 3.
With access to 3 secured, we explored various linking/

conjugation strategies. While strain-accelerated azide−alkyne
cycloaddition reactions with cyclooctynes26,27 proved straight-
forward and efficient, we also found that the azide could be
reduced using the classical Staudinger reaction,28 and the
derived amine (19) smoothly acylated with N-hydroxysuccinate
esters (Figure 5). This was judged to be the more convenient
and straightforward approach, and in short order, amides 20
and 21 were produced as models for linker equipped analogues
of epothilone B. Amides 20 and 21 were assayed for cell growth
inhibition against the PC3 (prostate) and A549 (lung) cell lines
along with paclitaxel and epothilone B as positive controls, and
gratifyingly, they were found to be approximately equipotent
with epothilone B (Figure 5b).
Guided by the high-resolution structure of epothilone A

bound in the taxane binding site (Figure 2b), we applied the
methyl extension approach16 to design the C(6)-4-azidobutyl
epothilone B analogue 3 and synthesized it using our previously
developed routes to the C(1)−C(9) fragment of the

epothilones18,19 and Danishefsky’s fragment coupling and
end-game strategies.22,23,25 Amides 20 and 21 were then
produced and evaluated in an in vitro cell growth inhibition
assay and found to be approximately equipotent with
epothilone B. These results thus constitute a proof-of-concept
result toward a validated linker strategy for the epothilone
family of MSAs, and set the stage for a full exploration of linker
structure−activity relationships and ultimately an evaluation of
the potential of these clinically validated compounds to serve as
the drug component of ADCs and other selective tumor cell-
targeting conjugates. Current efforts are focused on those
objectives, as well as on a streamlined and more efficient and
selective method for the synthesis of the C(1)−C(9) fragment
of the epothilones with a 4-chlorobutyl group installed at C(6).
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Figure 4. Completion of the synthesis of the C(6)-4-azidobutyl
epothilone B analogue 3 according to the Danishefsky strategy.

Figure 5. (a) Synthesis of C(6)-4-aminobutyl epothilone B (19) and
conjugation reactions to produce model linker-epothilone B constructs
20 and 21. (b) Cell growth inhibition GI50 values for 20 and 21
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(28) Staudinger, H.; Meyer, J. Über neue organische Phosphorver-
bindungen III. Phosphinmethylenderivate und Phosphinimine. Helv.
Chim. Acta 1919, 2, 635−646.

ACS Medicinal Chemistry Letters Featured Letter

DOI: 10.1021/acsmedchemlett.7b00131
ACS Med. Chem. Lett. 2017, 8, 701−704

704

http://dx.doi.org/10.1021/acsmedchemlett.7b00131

