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ABSTRACT Outer membrane vesicles (OMVs) are proteoliposome nanoparticles
ubiquitously produced by Gram-negative bacteria. Typically bearing a composition
similar to those of the outer membrane and periplasm of the cells from which they
are derived, OMVs package an array of proteins, lipids, and nucleic acids. Once con-
sidered inconsequential by-products of bacterial growth, OMVs have since been
demonstrated to mediate cellular stress relief, promote horizontal gene transfer and
antimicrobial activity, and elicit metazoan inflammation. Recently, OMVs have gained
appreciation as critical moderators of interorganismal dynamics. In this review, we
focus on recent progress toward understanding the functions of OMVs with regard
to symbiosis and ecological contexts, and we propose potential avenues for future
OMV studies.
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We live in a world in which chemical cues produced by bacteria influence the
cellular behavior of neighboring organisms (1). Identifying the modes for material

exchange between organisms will inform our understanding of how long-term rela-
tionships are established and maintained. Gram-negative bacteria use diverse mecha-
nisms to secrete compounds, ranging from simple systems (e.g., type I and V secretion)
to multiprotein complexes (type III, IV, and VI secretion) (2). However, much less
attention has been devoted to the role of outer membrane vesicles (OMVs) in inter-
species interactions.

OMVs are nanoparticles composed of lipid bilayers originating from the outer
membrane of Gram-negative bacteria (3), ranging in diameter from 20 to 200 nm (4).
These spherical bodies are produced by all Gram-negative bacteria across a broad
spectrum of conditions and environments (5–9). OMV biogenesis is constitutive, but the
production rate and composition of OMVs are sensitive to stress and environmental
fluctuations (10–14). First described half a century ago as membrane sacs that enable
the excretion of cell wall material (15), OMVs are a generalized secretion system for
complex combinations of compounds. In addition to material from the outer mem-
brane and periplasm, OMVs frequently contain other materials in either the vesicle
lumen or incorporated into the membrane bilayer, including cell wall components,
nucleic acids, toxins, and labile carbon (16–20). Protected within a lipid bilayer from
degradation, OMV contents may persist longer in extracellular environments than
exposed macromolecules released through other means.

OMV content is diverse, enabling these abiotic spheroids to have a broad range of
activities. They serve as effectors, agents of genetic exchange, or shared resources and
can be deployed as a defense against competing organisms or as building blocks for
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biofilms (7, 21–24). The contributions of OMVs to host colonization and disease have
been characterized (18, 25–27). In contrast, the roles of OMVs in beneficial partnerships
have been far less studied.

OMVs distribute materials between organisms, circumventing the need for direct
cell-cell contact. In aqueous environments, these nanoparticles may migrate from the
OMV producer to surprisingly distant sites within a host or ecosystem (28). For example,
orally administered OMVs from Bacteroides thetaiotaomicron were capable of passing
though the gut mucosal barrier in order to reach underlying epithelia and macro-
phages (29). Additionally, Salmonella enterica residing within the Salmonella-containing
vacuole (SCV) of epithelial cells produces OMVs that escape the SCV, as well as the
infected host cell, and enter neighboring cells (30). Delivery to other Gram-negative
bacteria seems fairly permissive; OMVs can directly attach and fuse to the outer
membrane of recipient cells (31–34). After attachment, the luminal contents of the
OMVs are delivered into the periplasmic space of the recipient. OMVs enter eukaryotic
cells through a variety of mechanisms: direct membrane fusion (28, 34, 35), lipid rafts
(36), receptor-mediated endocytosis (19, 37), and caveolin-mediated endocytosis (38–
42). These modes of entry potentially constrain the functions of OMVs as public goods
in interdomain contexts.

Here, we evaluate the role of OMVs in mediating interspecies communication,
cooperation, and conflict. We examine the benefits of OMV production for both the
bacterial producer (symbiont in host contexts) and neighboring cells. Microbial sym-
bionts compete with other symbionts and experience antagonistic host responses, and
OMVs may help to reduce these burdens in mutualistic relationships, enabling microbes
to attain a net benefit from their association with the host (43). We review recent
findings regarding the physiological and ecological benefits of OMVs as molecular
couriers in cooperative interactions and environmental settings, and we draw attention
to potential lines of research on the beneficial role of OMVs.

BEING A GOOD NEIGHBOR: BENEFITS PROVIDED BY OMVs

As OMVs can be utilized by neighboring cells, they might be considered public
goods (44). For instance, OMVs may facilitate cross-feeding, enabling the maintenance
of complex communities in nutritionally dilute environments despite patchy resource
distribution. OMVs from the cyanobacterium Prochlorococcus contain labile carbon that
can be used as the sole carbon source for the heterotrophs Alteromonas and Halomonas
(7). Similarly, gut-residing members of the Bacteroides genus distribute hydrolases and
polysaccharide lyases via OMVs (45, 46); by making these enzymes publicly available,
the microbiome can communally break down complex polysaccharides that are immu-
table to individual species. The exact benefit to the producer of providing these
services in each of these circumstances is unclear, but it is assumed to provide a net
benefit, such as a higher survival rate (44). To test this, the fitness of the OMV-producing
Prochlorococcus sp. should be compared when grown alone (monoculture) or in
coculture with heterotrophs from pelagic ecosystems. Specifically, varying the ratios of
Prochlorococcus to consumer may more clearly illuminate the sociality of these inter-
actions by displaying the relative effects of direct and indirect relationships between
organisms.

In contrast, scavenging scarce resources has clear direct benefits for the OMV
producer, as well as other “cheating” organisms. Metal ions are one such resource that
OMVs may concentrate for microbial communities. Proteomic studies of OMVs from
diverse bacterial species have revealed a number of metal-ion-binding proteins (47).
Recent work by Lin et al. (48) elucidated a mechanism that enables Pseudomonas
aeruginosa to access metal-rich OMVs via a type VI secretion system (T6SS). TseF is
secreted by the T6SS and associates with the Pseudomonas quinolone signal (PQS) as
well as P. aeruginosa receptors OprF and FptA. PQS has high affinity for iron, contrib-
uting to the sequestration of this ion in OMVs, which can then be utilized by P.
aeruginosa under iron-limiting conditions. Thus, these proteins provide a means of
scavenging and concentrating freely diffusing ions, offering a rich nutrient source to

Meeting Review Journal of Bacteriology

August 2017 Volume 199 Issue 15 e00012-17 jb.asm.org 2

http://jb.asm.org


organisms able to process them. In this manner, OMVs can modulate ecosystem
production and diversity within these niches.

OMVs influence interactions between members of surface-associated polymicrobial
communities, as well as regulate the ability to colonize different habitats, provide
structure for growth, and promote dispersal. OMVs stimulate bacterial aggregation on
substrates by trafficking quorum-sensing molecules (24, 33, 49, 50). For example,
Porphyromonas gingivalis OMVs promote the aggregation of other species frequently
found in the oral cavity, including Staphylococcus aureus, Streptococcus, Actinomyces
spp., and even the opportunistic eukaryotic pathogen Candida albicans (51). In addition
to providing stimulatory cues, bacteria may secrete OMVs to enhance and reinforce the
physical structure of polymicrobial biofilms (21, 22, 50). Conversely, OMVs may enable
bacterial cells to transition from sessile to planktonic lifestyles, as in the case of Xylella
fastidiosa OMVs that inhibit attachment to plant cells (23). Ionescu et al. hypothesize
that this confers a potential dispersal benefit to bacteria. Dispersal has been proposed
be a social trait, potentially by reducing competition with nondispersing relatives (52).
By mediating intraspecies and interspecies social behaviors on surfaces, OMVs are key
modulators within complex communities.

Finally, OMVs are likely to play a role in life history transitions in eukaryotes. As the
closest living relatives of animals, a group of free-living bacterivorous microbial eu-
karyotes called choanoflagellates have served as a key point of comparison for under-
standing animal origins (53–55) and the influence of bacteria on eukaryotic biology.
The choanoflagellate Salpingoeca rosetta switches from a unicellular swimmer to a
multicelled rosette upon exposure to lipid-based compounds produced by the marine
Bacteroidetes organism Algoriphagus machipongonensis (56, 58). The morphogenic cues
are highly hydrophobic sulfonolipids and are nearly insoluble in seawater, yet A.
machipongonensis OMVs contain these bioactive compounds and directly fuse with
unicellular S. rosetta (R. Alegado, A. Woznica, S. Cao, C. Beemelmanns, H. Turano, J.
Clardy, and N. King, unpublished data). It remains unclear what benefit, if any, A.
machipongonensis receives from S. rosetta as a result of this interaction; however, these
data suggest that the bioactive compounds triggering multicellular development in S.
rosetta may be perceived through OMVs. Thus, OMVs may be a general system for the
trafficking of hydrophobic bioactive molecules, such as lipids. Indeed, OMVs are one of
the only means by which bioactive lipids can be trafficked. Larval settlement and
metamorphosis in several basal metazoans have been shown to require uncharacter-
ized factors released into the water column and produced by benthic biofilms (59–63),
and OMVs may be the vehicle by which signals are carried. We anticipate that
additional cases of OMVs exerting influence on animal biology will be discovered.

ERECTING GOOD FENCES: OMVs AS SELF-PROTECTION

OMV biogenesis is constitutive in growing cells, yet the assumed metabolic cost of
producing diverse OMVs as public goods would diminish the benefits for producers
(64). OMV-producing cells could limit cheaters within their ecological niche by specif-
ically targeting competitors with destructive OMVs while directing beneficial goods to
mutualistic partners, but the most likely scenario is that these goods are concurrently
delivered to both friends and foes.

Notably, bactericidal OMVs can act against both Gram-positive and Gram-negative
cells (31). Determining whether bacteria produce OMVs that are more effective against
closely related competitors would implicate a role in niche competition (65). The
composition of stress-induced OMVs indicates that they are specialized to compete for
key resources. For example, Myxococcus xanthus OMVs have significantly higher con-
centrations of alkaline phosphatase and other lytic enzymes than the M. xanthus cell
envelope, suggesting that these particles lyse cellular prey and scavenge their phos-
phate (66, 67).

Conversely, OMVs may also serve as a defense mechanism for producers. These
abiotic particles act as decoys for phage by increasing the available membrane surface
area for attachment, reducing their potential infectivity (7, 67). Infection by T4 phages
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was shown to increase OMV vesiculation in Escherichia coli (68), and phage PHM-2 has
been shown to bind purified Prochlorococcus OMVs (7). Li et al. recently proposed that
OMV-mediated phage defense may be a resilience mechanism by maintaining func-
tional diversity of the host microbiota (24). However, the extent to which OMV decoys
benefit species unrelated to the OMV-producing cell is an open question, as phage
attachment is highly species specific. If it were the case that OMV phage decoys
conferred a survival advantage to related bacterial species, these abiotic particles would
serve as a mechanism of kin discrimination. Together, these findings suggest that
bacteria produce OMVs with either positive or negative effects on closely related cells,
emphasizing the complex role that OMVs play in interorganismal dynamics.

In the context of interbacterial competition and host monitoring, OMVs play key
protective roles for resident microbes (69–71). Supplementing E. coli or Pseudomonas
syringae cultures with OMVs or a hypervesiculating mutant protected cells from a
number of antimicrobial peptides that interact with negatively charged phospholipids,
including polymyxin B, colistin, and melittin (67, 72). There is evidence that OMVs
sequester these compounds, decreasing the effective concentration to which recipient
bacterial cells are exposed. Likewise, OMVs may be capable of specifically sequestering
other antagonistic molecules, such as antibodies, thereby modulating host immunity
against resident microbes. OMV secretion may enhance virulence in vivo (73). Some
pathogens preferentially package virulence factors in their OMVs (73–75). Other patho-
genic bacteria secrete more OMVs than their nonpathogenic congeners (3, 76), evi-
dence that increased production increases individual competitive advantage.

REACHING A DÉTENTE: ROLE OF OMVs IN STABILIZING COOPERATIVE
RELATIONSHIPS

The ubiquitous and versatile nature of OMVs suggests that OMVs could act at the
interface of host and microbe. These particles mediate a variety of interorganismal
interactions (Table 1), likely dependent on recipient cell type and OMV composition (37,
77). Furthermore, OMVs have been shown to influence a number of homeostatic
processes in animals, including cell proliferation (78), apoptosis (79), and autophagy
(80). Despite the physiological and evolutionary significance of mutualisms (1), there is

TABLE 1 Examples of OMV cargo with roles in intercellular interactions

Class Compound(s) (bacterial producer[s])a Recipient(s) Reference(s)

Proteinaceous Cytolethal distending toxin (Campylobacter jejuni) Human small intestine epithelial cell lines 18
Bacteroides fragilis toxin 2 (B. fragilis) Human colon epithelial cell lines 104
CFTR inhibitory factor/Cif (Pseudomonas aeruginosa) Human airway epithelial cell lines 28
OmpU (Vibrio fischeri) Euprymna scolopes phagocytic immune cells? 11
Glycoside hydrolases and polysaccharide lyases that

degrade dietary polysaccharides (Bacteroides
thetaiotaomicron, Bacteroides ovatus)

Bacteroidales common in human intestinal
microbiota (e.g., Bacteroides vulgatus)

45, 46

Ef-Tu (Xanthomonas campestris) Arabidopsis thaliana leaves 103

Carbohydrate Polysaccharide A (B. fragilis) Murine dendritic cells 29
Peptidoglycan (Helicobacter pylori) Human gastric epithelial cells 105

Nucleic acid eDNA (Pseudomonas aeruginosa) P. aeruginosa biofilms 106
Virulence-conferring DNA (Escherichia coli O157:H7) E. coli JM109, Salmonella enterica serovar

Enteritidis
107

Antibiotic resistance genes (Neisseria gonorrhoeae) Penicillin-sensitive N. gonorrhoeae 108
Small RNAs (Vibrio cholerae) Unknown 109
Small RNAs (P. aeruginosa) Human bronchial epithelial cells 20

Small molecule C16-homoserine lactone (Paracoccus denitrificans) Self 33
Pseudomonas quorum signal (P. aeruginosa) Self 49
Labile carbon (Prochlorococcus marinus) Halomonas, Alteromonas 7

Lipid Rosette inducing factor 1 (Algoriphagus machipongonensis) Salpingoeca rosetta Alegado et al.,
unpublished

aCFTR, cystic fibrosis transmembrane conductance regulator; eDNA, extracellular DNA.
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a dearth of research on the functions of OMVs in mutualistic symbioses involving
multicellular organisms.

Bacteroides fragilis is a prominent member of the human intestinal microbiota and
has various capsular polysaccharides that it differentially displays. Some of these
polysaccharides, such as polysaccharide A (PSA), are zwitterionic molecules that can be
released into the intestinal lumen. PSA is taken up by host cells and shifts the host’s
immune system to a less inflammatory and regulatory T-cell-mediated state, which may
ameliorate inflammatory disorders of the host (81–83). Immunoeffective PSA was
detected in B. fragilis OMVs, implicating them as an in vivo delivery mechanism (29).
This finding highlights the potential of OMVs to positively influence host health and the
need for further exploration of OMVs isolated from microbial communities from
different host sites. To that end, OMVs from probiotics, such as the E. coli Nissle 1917
strain, have recently been surveyed in an attempt to scour their contents for beneficial
molecules (84), and they have been found to contain factors, such as the kinase-altering
protein TcpC, that can positively affect intestinal health (85, 86).

The symbiosis between the marine bacterium Vibrio fischeri and the Hawaiian
bobtail squid Euprymna scolopes is mediated by compounds produced by both part-
ners. In the juvenile squid light organ, planktonic bacteria first attach and aggregate
before proceeding through a series of chemical challenges produced by the host,
ultimately colonizing the lumen of the deeper crypts of the light organ for the
remainder of the squid’s life (87). The development of this symbiosis drives physiolog-
ical responses from the squid, such as migration of blood cells and reshaping of light
organ tissue to more closely resemble that of an adult (87). Recently, nonproteinaceous
contents from V. fischeri OMVs were found sufficient to stimulate a subset of these
developmental responses, despite a lack of compounds known to stimulate light organ
development (88). Examining hyper- and hypovesiculating mutants, as well as nonve-
siculators, is complicated by pleiotropic consequences on other pathways, but these
mutants may still provide insight into how OMVs shape symbioses.

IMPLICATIONS OF OMVs AS MATERIAL GOODS AND MISSILES IN
MICROBIAL INTERACTIONS

Experimental approaches for investigating functions of OMVs. OMVs are con-
stitutively released, yet they vary with environment and can promote survival for the
bacterial producer (13, 67). Since OMVs benefit the producer, yet can exert a variety of
effects on recipient organisms across spatial and temporal scales, they may be critical
shapers of the economies between organisms and may act as currency or poison.
Development of multispecies models as well as specialized host models (e.g., ex vivo
studies and immunodeficient hosts) where bacteria reside in a niche with fewer host
interactions will be valuable for untangling these complications. Although such models
will lack a wild-type microbiota, these approaches may provide microbe-centric data
that inform more natural situations.

Mechanisms underlying OMV-driven processes are difficult to unravel, due in part to
the potential for OMVs to simultaneously and distinctly impact the host and other
members of the microbiota. Proteomics has been frequently used to assess the
functional capacity of OMVs, but additional omics approaches, particularly lipidomics,
may reveal novel information about the OMV-cell interface. Recent work has demon-
strated that lipid remodeling may occur prior to OMV formation (12, 13). This informa-
tion can be incorporated into interaction networks that may reveal whether specific
lipids are sorted into OMVs with characteristic functions as the producing cell responds
to changing conditions. Synthetic liposomes that retain the chemical properties and
topology of native membranes can then be employed to test biochemical necessity and
sufficiency of compounds in OMV-cell interactions. OMVs from a variety of bacteria
have broad effects on animal immune responses (reviewed in reference 89). Native and
modified OMVs have been implemented as vaccines against pathogens, such as
Salmonella enterica serovar Typhimurium and Vibrio cholerae, in animal models (26, 90,
91) and have reached clinical usage against Neisseria meningitidis (92–94). Due to the

Meeting Review Journal of Bacteriology

August 2017 Volume 199 Issue 15 e00012-17 jb.asm.org 5

http://jb.asm.org


size of OMVs, visualizing them in situ has generally required electron microscopy of
fixed material, but improvements in superresolution techniques hold promise for
tracking OMVs, their contents, and their interactions in living environments.

Accounting for OMVs in ecological community dynamics. Gram-negative bacte-

ria have the capacity to release prodigious amounts of OMVs, but a precise measure of
how much material is being released into the extracellular milieu has not been
undertaken. Recent studies demonstrating high levels of OMVs in marine environments
have illuminated the global nature of these abiotic environmental factors (7). Biller et
al. raised the question of how these findings may affect our calculation of nutrient
budgets across the biosphere (7). With recently improved estimates of microbial
abundance, we can use V. fischeri as a model to estimate the mass of certain elements
locked into OMVs to approximate the global elemental impact of OMVs. A culture of V.
fischeri isolate ES114 grown in rich lysogenic broth with salt (LBS) saturates around 109

CFU · ml�1 and produces approximately 10 pg of OMV protein · ml�1 of culture in 24
h, a rate of 10�17 g of protein · cell�1 · 24 h�1. Although the growth rate of V. fischeri
is likely higher when grown in vitro than for bacteria in the marine environment, it
enables the following back of the envelope calculation. With the estimated 9.2 � 1029

prokaryotic cells (combining Bacteria and Archaea) in Earth’s oceans (95) and applying
a conservative estimate of 10% Gram-negative bacteria, we estimate that roughly
�1,000,000 metric tons of protein will be released in the ocean via OMVs every day.
Assuming these proteins contain equal ratios of each of the 20 major amino acids, every
24 h, Gram-negative bacteria in the ocean release approximately 3.92 � 1011 g of
carbon, 1.24 � 1011 g of nitrogen, and 1.96 � 1010 g of sulfur in OMV proteins alone.
While this is a very rough estimate, it is interesting to note that it loosely matches an
estimate of Prochlorococcus vesicle production (7). Although this is a small fraction
compared to the oceanic reservoir of 4 � 1019 g of carbon (96) and is an overestimation
of total mass being packaged into OMVs globally, even a fraction of this amount of
organic material could alter marine carbon budgets in oligotrophic environments.
Furthermore, the inclusion of nucleic acids, small molecules, and lipids packaged into
OMVs would increase these values and present a more a sizable contribution to global
elemental stores. While these estimates are based on simplistic assumptions, they
illustrate the sheer potential of OMVs as a nutritional sink, or, if these materials are
presented in bioaccessible forms, a nutritional bounty for organisms that can metab-
olize them, especially in highly competitive environments with varied access to nutri-
ents.

Considering that isolation methods for viruses also result in enrichment of OMVs,
estimates of viral abundance may be conflated with OMV abundance (97). This is a
legitimate concern, as vesicles contain various amounts of DNA derived from
bacterial, eukaryotic, and viral sources (98), which adds complexity to calculations
describing the global impact of either group. Thus, to understand the ecological
impacts of OMVs, we need to elucidate the mechanisms by which these particles are
consumed, recycled, or otherwise turned over to release their molecular contents to
the environment.

CONCLUDING REMARKS

OMVs have the capacity to facilitate beneficial outcomes across symbioses. In
particular, OMVs shape metazoan microbiotas and promote interactions between
partnered organisms by mediating physical proximity, temporal stability, and access to
privileged niches within the host. On evolutionary time scales, public goods provided
by OMVs may select for cooperative behavior, driving the establishment of mutualisms.
Finally, we note that the preponderance of research has examined OMVs in the context
of animal symbioses; to date, only a few studies have focused on OMV-plant interac-
tions (23, 99–103). Extending the role of OMVs in the biology of other multicellular
lineages is a budding area for future investigation.
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