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Abstract

We demonstrate that closure tables are an effective data structure for developing database-driven 

applications that query biomedical ontologies and that require cross-querying between multiple 

ontologies. A closure table stores all available paths within a tree, even those without a direct 

parent-child relationship; additionally, a node can have multiple ancestors which gives the 

foundation for supporting linkages between controlled ontologies. We augment the meta-data 

structure of the ICD9 and ICD10 ontologies included in i2b2, an open source query tool for 

identifying patient cohorts, to utilize a closure table. We describe our experiences in incorporating 

existing mappings between ontologies to enable clinical and health researchers to identify patient 

populations using the ontology that best matches their preference and expertise.

I. Introduction

Biomedical ontologies, such as those available through the Unified Medical Language 

System (UMLS) [1] or through BioPortal [2], are driving an increasingly larger proportion 

of modern biomedical applications for both research and clinical operation tasks and the 

need for efficient and effective data structures and modeling techniques is apparent [3]. The 

i2b2 (Informatics for Integrating Biology and the Bedside) query tool is a successful 

example of an open-source project that relies directly upon publicly available ontologies [4].

The goal of i2b2 is to assist clinical and health informatics researchers in identifying patient 

cohorts for clinical research or trials [4]. Users drag-and-drop concepts from an ontology 

cell that visualizes the concepts as a tree and form Boolean queries of inclusion and 

exclusion criteria that pinpoint a necessary population for the researcher’s study. i2b2 is 

open-source and is made available world wide for adoption. i2b2 is reported to be used by 

over half of all institutions receiving a Clinical and Translational Science Award (CTSA), 
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over 60 academic medical centers, and over 10 international medical centers [5]. We have 

demonstrated that i2b2 can bootstrap rural health analytics and learning networks [6] and 

quickly give infrastructure to institutions that otherwise lack the resources to support clinical 

and health informatics research [7].

In this paper we demonstrate that closure tables are an effective data structure for developing 

database-driven applications and share our experience with improving the open-source i2b2 

project by providing extensions that support closure table adoption. Using ICD9 and ICD10 

as an example [8], we will show that closure tables enable cross-querying of ontologies 

within i2b2 in order for users to interact with the ontology that bests matches their 

preference and expertise, allowing clinical research to be expedited. We compare our 

solution to the native path-to-root structure found within i2b2 and show that closure tables 

offer a solution that is more manageable and optimized for relational databases.

II. Closure Tables

A closure table is a data structure that represents a tree as a table of ancestor and descendant 

pairs; specifically, it stores both direct and indirect ancestor-descendant relationships [9]. For 

the small graph in Figure 2, direct relationships between nodes 1 and 2 and between nodes 2 

and 3 exist; the indirect relationship between node 1 and node 3 is also recorded in the table. 

Each node has a self-referential link to itself as well. This data is summarized in Table 1.

Additionally, the flexibility of closure tables allow a node to have more than one ancestor. 

For example, if a new node was introduced in the example illustrated in Figure 2, it could be 

the ancestor of node 2, even if node 2 already has node 1 as an ancestor. We will use this 

flexibility to insert linkages between ontologies later.

Mapping ontologies into relational databases is an open area of research [10] where a 

cohesive partnership between relational databases and semantic web technologies, such as 

OWL, must manifest in order for database-driven applications to leverage semantic 

knowledge [11]. For example, curation and interchange of ontologies through standards such 

as OWL have a long record of success [11], but the proliferation of database-driven web-

applications must also integrate semantic knowledge natively. In the next section, we discuss 

how to natively support ontologies as closure tables in i2b2.

III. Integrating Closure Tables with i2b2

We recommended the adoption of closure tables as future work in an unrelated contribution 

to the i2b2 project [12] which was followed up and independently shown to perform well for 

SNOMED-CT, a commonly-used polyhierarchy with millions of components [13]. The 

types of ontologies integrated into i2b2’s ontology cell varies, ranging from simpler ICD9 

and ICD10 light-weight ontologies to fuller, more expansive ontologies such as the Gene 

Ontology (GO) [14].

We provide an i2b2 closure table toolkit [15] to assist system administrators in adopting 

closure tables for the ontology cell of i2b2. This requires an additional table to hold the 

ancestor and descendant pairs that we call metatree; within this table, we have added some 
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additional columns to simplify future expressions, such as including the text label of the 

concept corresponding to the ancestor and descendant. We also track the depth of the tree at 

this particular relationship and the length of the path between the ancestor and descendant. 

Knowing depth assists in drawing the actual meta-data because one can query for any given 

node with any given offset. For example, if an ontology has a large number of concepts, an 

interactive visualization of the concept tree may wish to load smaller sub-trees dynamically 

within its web interface to avoid loading delays. The table also contains a column that 

represents the paths as arrays for quick expansion.

By default, the meta-data in i2b2 is constructed dynamically by specifying a concept table 

and a concept column; the closure table is enabled simply by replacing the default concept 

table with a join between the i2b2 meta-data tables and the newly-constructed metatree table 

of ancestor and descendant pairs. The keys of the metatree table are unique pairs of integers 

that represent ancestors and descendants. We add an additional column to the default meta-

data table to hold the meta-id from the metatree; our metatree holds foreign key relationships 

between the meta-data in i2b2 and the ancestor and descendant pairs. The result of having 

unique integer keys is that joins and look-ups are easily optimized; the foreign key 

relationships ensure referential integrity between the metatree and i2b2 meta-data.

IV. Augmenting Ontologies

Recall that i2b2 enables researchers to develop queries via dragging-and-dropping from an 

ontology cell that illustrates the concepts available as a tree; concepts can include facets of 

patients and visits, such as demographics, diagnoses, lab results, and so on. As an example, 

we focus on the ICD9 and ICD10 [8] components of our implementation of i2b2.

A. Issues with Retrospective Analysis

In 2015, a mandated switch from the ICD9 standard to ICD10 complicated the ability of 

researchers to query diagnostic codes in i2b2. As seen in Figure 3, patient visits within our 

data that were coded between 2004 and 2013 have only ICD9 codes for diagnoses, and 

patient visits that were coded between 2013 and 2015 have either ICD9 or ICD10 codes. 

After October 2015, patient visits in our data are only coded with ICD10. This switch in 

standards complicates a clinical researcher’s ability to query for patient populations with 

i2b2. In our experience, many clinical researchers have little knowledge or training with 

medical coding, while others have become familiar with common groups of codes over time 

from conducting and coordinating studies and have not had time to adjust to the new 

standards.

Without familiarity with ICD10 and without our proposed cross-querying solution, it is 

difficult for i2b2 users to create drag-and-drop queries to target patients in the most recent 

years of data. Furthermore, ICD10 contains particularly specific codes yet researchers tend 

to categorize patients into abstract buckets that more closely resemble higher-level, non-

specific codes. These higher-level codes in ICD10 are not suitable for billing due to 

regulations that require specificity to the fifth digit; consequently, these concept codes do not 

appear naturally in our data sources despite being available in the ontology. In the next 
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section, we describe how closure tables can enable cross-querying of ontologies in order for 

researchers to search patients using standards that best fit their preference and expertise.

B. Cross-Querying Ontologies

General Equivalence Mappings (GEMs) between the ICD9 and ICD10 standards were 

developed and made publicly available for assisting in analysis of data generated before and 

after the transition to ICD10 [16]. These equivalence mappings pose known challenges in 

data analysis because there is rarely an exact match between new and old concepts [16]. 

Simply adding the GEMs as additional synonyms of concepts within i2b2 is insufficient due 

to i2b2 being based largely upon aggregation of concepts and the fidelity of ancestor and 

descendant pairs require the ability to roll up and aggregate as needed. For example, 

querying for ICD9:250 would also query for ICD9:250.00, ICD9:250.01, and so on. 

Additionally, the native path-to-root meta-data method that i2b2 uses is known to be slow 

for overly large ontologies [13]; adding synonyms per every concept (and child concept for 

aggregation) is not feasible without radically increasing the size of the meta-data table.

Because i2b2 generates aggregate counts of patient populations, specificity is not typically a 

priority and over-specifying diagnostic criteria can limit results unnecessarily. Without the 

closure table, if the GEMs were simply used as additional facts, aggregation potentially 

misses concepts. We use diabetes as an example in Figure 5 and illustrate an abbreviated 

closure table for a small subsection of ICD9 (orange boxes) and ICD10 (blue boxes) 

standards. Due to space considerations, we omit self-referential and indirect links within 

each ontology and draw only direct or derived links from the GEMs. The GEMs map 

ICD10CM:E1129 onto ICD9CM:25040. Using the closure table, i2b2 queries for ICD9CM:
250 would consider all descendants of ICD9CM:250 and return matches for 

ICD10CM:E1129. Suppose instead that we had an ICD9 concept mapped to 

ICD10CM:E112, only adding ICD10CM:E112 as a synonym in the default i2b2 meta-data 

would not cover its relationship with ICDCM:E1129 unless it was also added as a synonym. 

The closure table enables us to bridge the gap between ICD9 and ICD10 by simply adding 

one link between the corresponding codes and also allows us to avoid enumerating synonym 

or child relationships.

The potential downside to closure tables is that they create long tables as a result of storing 

indirect relations; however, this is not a true concern because ancestor and descendant pairs 

are unique integers that can be easily indexed for fast retrieval. Once the structure is created, 

bridging and manipulating sub-trees is as simple as inserting or modifying a single link. 

Additionally, scale is not of concern because the metatree is dwarfed by the actual patient 

data being described by the included ontologies.

The benefits of closure tables extend beyond ICD9 and ICD10. The Agency for Healthcare 

Research and Quality (AHRQ) released the Clinical Classifications Software (CCS) as a 

way of clustering patient diagnoses [17] and mappings exist for both ICD9 and ICD10; we 

leave implementing this as future work, but propose that a closure tree could unify CCS 

groups to simplify patient selection without redundant copies of concepts from the related 

ontologies.
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V. Conclusion

In terms of making ontology management easier for database-driven applications, we wish 

to explore the impact that closure tables could have in federated configurations of i2b2, such 

as those constructed with the Shared Health Research Information Network (SHRINE) 

extension of i2b2 [18]. In particular, we wish to explore how closure tables can help 

overcome the shortcomings of rural networks [7] and assist in boostrapping i2b2 for rural 

health analytics and learning networks [6]. We have shown that closure tables are an 

effective and efficient data structure for developing database-driven applications that 

leverage ontologies and that require cross-querying between multiple ontologies. Although 

designed with i2b2 in mind, our closure table toolkit [15] can assist developers in generating 

closure tables for any database-driven application that needs to integrate standardized 

ontologies.
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Fig. 1. 
We arrange our meta-data for i2b2 to enable users to construct queries using either ICD9 or 

ICD10 diagnosis codes.
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Fig. 2. 
This basic example of a closure table shows three nodes; direct ancestor and descendant 

relations are represented by solid lines and indirect descendants are represented by dashed 

lines.
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Fig. 3. 
In our implementation of i2b2, patient data is tagged with ICD9 concepts for a 10 year 

period and later tagged with ICD10 concepts for nearly a three year period; a small period of 

time contains concepts from either ontology.
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Fig. 4. 
From within i2b2, users select from either the ICD9 ontology (A above) or the ICD10 

ontology (B above) to identify patients with a history of a particular concept, such as 

diabetes.
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Fig. 5. 
We give an abbreviated closure table for the ICD9/ICD10 concepts corresponding to 

diabetes; ICD9 codes (orange boxes) and ICD10 codes (blue boxes) appear as two children 

of the diagnoses node, which are not connected by definition. The solid red arrow is taken 

directly from the GEMs and bridges ICD9 and ICD10 at a leaf node; the dotted red arrows 

are indirect links from the closure table structure. At this point, the ICD10CM:E1129 

concept is considered part of the ICD9CM tree as a direct descendant of ICD9CM:25040, an 

indirect descendant of ICD9:250, and so on. The reverse holds true when an ICD9 concept is 

treated as a descendant of its ICD10 equivalent.
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TABLE I

A closure table corresponding to the example in Figure 2.

Ancestor Descendant

1 1

1 2

1 3

2 2

2 3

3 3
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