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Abstract

The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode 

sound, head motion and gravity. Gene expression programs under the control of transcription 

factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its 

sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an 

additional layer of gene regulation, both in inner ear development and disease. In this review, we 

provide an overview on how epigenetic modifications and non-coding RNAs, in particular 

microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight 

their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In 

contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear 

mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and 

miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration.
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1. Introduction

The development of the inner ear is a dynamic process, eventually leading to a complex 

tissue enabling hearing and balance, represented by the auditory and vestibular systems, 

respectively. In the auditory system, the sensory epithelium embedded within the cochlea 

contains the organ of Corti responsible for hearing. The vestibular system contains five 

organs, including the three semicircular canals with cristae sensory epithelia that detect 
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angular acceleration by fluid motion and the saccule and the utricle, which contain the 

macula sensory epithelium that detects linear acceleration due to gravity.

The inner ear sensory apparatus and its innervating sensory neurons originate from the otic 

placode, a thickening of surface ectoderm adjacent to the hindbrain. Otic induction and its 

regionalization occur in a series of steps that requires the reiterative interplay of inductive 

signals and the action of transcription factors [1]. Once formed, the otic vesicle grows in size 

and undergoes extensive morphological changes, forming the auditory and vestibular 

apparatus and the endolymphatic duct. The first cell lineage specified within the developing 

otic placode is the neuronal lineage. As early as the otic cup stage, neuroblasts begin to 

delaminate from a broad anteriorly located neurogenic domain and differentiate into sensory 

neurons of the auditory-vestibular ganglion. The auditory and vestibular hair cells, sensory 

receptors of the inner ear, and their surrounding supporting cells are derived from their 

respective vestibular and auditory pro-sensory patches within the developing otocyst [2].

Non-mammalian vertebrates such as birds, fish and amphibians have the capacity to 

regenerate hair cells in response to injury. In fish and amphibians, hair cells are added to the 

inner ear and the lateral line sensory organs throughout the lifetime of the animal as part of 

ongoing growth [3]. The newly generated hair cells originate from neighboring non-sensory 

supporting cells. Such ongoing hair cell production is dramatically up-regulated in response 

to injury [4, 5]. In the avian inner ear, a steady turnover of hair cells is observed within 

vestibular sensory organs but not within the auditory sensory organ [6, 7]. However, upon 

damage, auditory hair cells are readily regenerated from supporting cells through both 

mitotic [8, 9] and non-mitotic mechanisms [10]. The mammalian inner ear has a very limited 

ability to replace lost hair cells. Once matured, the auditory sensory epithelium lacks the 

ability to regenerate lost hair cells [11] and the vestibular sensory epithelia mount only a 

limited regenerative response to trauma [12, 13] (see chapter by Burns and Stone in this 

issue).

During early development, transcriptional pathways have been elucidated that govern the 

differentiation of the otocyst towards sensory or non-sensory regions [reviewed in [14]. 

Temporal and spatial triggers of otic development and maturation have been characterized, 

including the molecular controls that guide otic induction, patterning, morphogenesis and 

neurosensory development [15] (see chapter by Whitfield and Alsina in this issue). 

Knowledge about transcriptional pathways has laid the groundwork for establishing early 

and late developmental pathways of the inner ear. Moreover, pathogenic mutations in several 

transcription factors are associated with deafness [16, 17].

In this review we will discuss a new layer of gene regulation involving mechanisms of 

noncoding RNAs, chromatin remodeling, histone modifications, DNA methylation and 

research progress in these areas in the auditory and vestibular systems. It has become clear 

in recent years that the epigenetic layer of regulation plays an essential role in the 

development and maintenance of the inner ear, and has potential in regenerative capacities, 

with a great deal yet to be explored.
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2. Gene regulation by epigenetic pathways and non-coding RNAs

2.1 Epigenetic gene regulation

Epigenetic regulation, above the DNA sequence, is controlled by a combination of dynamic 

nucleosome occupancy, post-translational modifications (PMTs) of histones, DNA 

methylation, and nuclear regulatory non-coding RNAs (Fig. 1) [18–20]. This level of 

regulation plays an essential role in development from a single totipotent oocyte through 

defined subsets of multipotent progenitor cells, eventually yielding the entire variety of cell 

types comprising the highly complex adult organism. Global epigenomic maps are essential 

to our understanding of gene regulation, or misregulation, as well as critical for controlling 

cell fate commitment and maintenance [21–23].

Chromatin allows for DNA to be tightly packed within eukaryotic nuclei. Nucleosomes 

constitute the fundamental subunit of chromatin. Nucleosome cores are comprised of 145–

147 base pairs (bps) of DNA, wrapped around an octamer of two copies of histone proteins 

H2A, H2B, H3 and H4 [24].

Open chromatin structure is an identifier of regulatory elements. Areas of chromatin with 

lower nucleosome occupancy have markedly increased accessibility to the nuclease DNaseI 

and are referred to as DNase Hypersensitive sites (DHS). Using a DNaseI hypersensitivity 

assay coupled with high-throughput sequencing, DNaseI-seq, DHS sites were found to be 

associated with most of the defined cis-regulatory elements such as promoters, insulators, 

silencers, enhancers and locus control region [25].

The ENCODE (The Encyclopedia Of DNA Elements) Project analysis clearly demonstrates 

the overlap between transcription factor binding sites (TFBS) and a less dense nucleosome 

structure. Furthermore, DHS and transcription factor binding appear in a developmental 

stage or cell lineage dependent context [26, 27]. Genome-wide DHS maps will reveal high 

resolution, ~150–200 bp, open regulatory segments that allow more accurate predictions of 

TFBS.

Histone modifications are present as enrichment patterns at promoters and enhancers. The 

core histones comprising the nucleosome undergo various modifications at numerous 

positions across their N-terminal tails that project out of the mostly globular octamer. 

Common PTMs of histone proteins include acetylation, methylation, phosphorylation and 

ubiquitination. The modification pattern of histones is highly dynamic and is regulated by 

the opposing action of enzyme families. For instance, histone acetyltransferases catalyze the 

transfer of an acetyl group to the ε-amino group of lysine side chains, whereas histone 

deacetylases (HDACs) remove the acetyl group [28].

The overall chromatin architecture is directly linked to the composition of histone PMTs at a 

certain genomic location [29]. Different chemical modifications imparted on the histones 

have different effects over the degree of association between the negatively charged DNA 

and the nucleosome. They can tighten the DNA loop around each nucleosome and/or 

compress nucleosomes together, or it can loosen each nucleosome’s hold upon the DNA and 

separate nucleosomes from each other. In addition, histone modifications serve as docking 
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sites for regulatory proteins and chromatin remodelers that may alter the placement or 

position of nucleosomes in an ATP-dependent manner [30]. As a result, histone PTM 

compositions can be analyzed for its effect on gene expression resulting from its underlying 

influence on chromatin architecture.

Histone PTMs allow exploration of the basic epigenetic landscape dynamics. For example, 

histone 3 lysine 4 tri-methylation (H3K4me3) is positively correlated to the transcription 

start sites of actively transcribed genes [31]. Histone 3 lysine 27 tri-methylation 

(H3K27me3) is a repressive modification that spans over inactive genes; however, it is 

typically restricted to repressed key lineage developmental genes, not all inactive genes. Co-

localization of H3K4me3 and H3K27me3 is known to mark genes found in a poised 

expression state, mainly in pluripotent stem cells or multipotent progenitor cells. This 

bivalent state is likely enriched in cell populations earlier in development to confer the 

ability to respond to signaling cues and readily activate gene expression (by loss of 

H3K27me3) or long-term repression (by loss of H3K4me3) as cells commit to their terminal 

fates [32, 33]. ChIP-Seq combines chromatin immunoprecipitation (ChIP) and high-

throughput sequencing [34] and is used to establish genome-wide histone modification 

profiles [35].

DNA methylation is a key regulator of promoter and enhancer activity. DNA methylation, 

carried out by DNA methyltransferases (DNMTs) involves the covalent addition of a methyl 

group at the 5′ carbon of the cytosine ring, resulting in 5-methylcytosine [36]. In general, 

DNA methylation of promoters and enhancers negatively correlates to their activity and the 

expression of genes [37] through the disruption of transcription factor binding. For example, 

there is a gain of DNA methylation in pluripotency-related enhancers and gene promoters as 

differentiation progresses, and differential methylation in lineage specific enhancers between 

various lineages of blood and skin stem cells [38]. Altered patterns of promoter and 

enhancer DNA methylation are frequent in tumorigenic and aging cells. Connexin 26 is the 

most prevalent gene associated with profound congenital deafness [39]. Aberrant 

methylation in its promoter region has been found in breast [40] and lung cancer [41]. Aging 

rats have hypermethylation of the connexin 26 promotor region associated with a reduction 

in connexin 26 expression [42]. Recent advances and manipulations of next-generation 

sequencing platforms have presented a great advance in mapping the cell’s methylome in a 

genome-wide fashion, in particular MethylCseq [43]. This method provides genome-wide, 

nucleotide resolution of DNA methylation.

2.2 Gene regulation by non-coding RNAs

The central dogma of molecular biology that genetic information begins with DNA and ends 

with protein was challenged with the discovery of the wide range of non-protein coding 

RNA transcription and RNA-mediated genetic and epigenetic events in higher organisms 

[44]. The vast majority of the genome, approximately 97%, is non-coding. While less is 

known about all the regulatory and other elements of this larger portion, a significant role is 

attributed to RNA. Non-coding genome contains multiple forms of RNAs, including long 

non-coding (lncRNA) [45], piwi-interacting RNAs (piRNAs), circular RNAs (circRNAs), 

small nucleolar RNAs (sno-RNAs) and microRNAs (miRNAs). Small or short non-coding 
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RNA (ncRNA), which are under 200 nucleotides (nt) in length, include miRNAs (Fig. 1). 

The primary miRNA (pri-miRNA) transcripts are processed in the nucleus by a 

microprocessor complex that includes Drosha, an RNase III-like enzyme, and DGCR8 [46, 

47]. A precursor miRNA (pre-miRNA) hairpin product 70 nt long is generated, which is 

exported by the receptor Exportin 5 to the cytoplasm. There, a second RNase III enzyme, 

Dicer, converts the RNA into mature miRNA duplexes. These duplexes are separated to 

produce a mature 22-nt miRNA, which is incorporated into the RNA-induced silencing 

complex (RISC). Finally, the complex targets mRNAs in order to repress them by 

degradation or translational repression.

In mammals, a single miRNA can bind any of hundreds of mRNA targets by 

complementation of the seed region of the miRNA to the target’s 3′ untranslated region 

(UTR) binding site. This leads to a reduction in gene expression by translational suppression 

and mRNA destabilization [48]. The second major class of ncRNA, greater than 200 nt, is 

lncRNA [45]. They can either be cis-acting and function in local gene silencing (e.g., Xist 

RNA, a key regulator of X chromosome inactivation [49]); or trans-acting and target 

multiple genes throughout the genome, such as lncRNA-p21 [45]. lncRNAs mechanisms of 

action are likely unique and can be difficult to identify, as they do not have structural 

characteristics and their biogenesis and processing may differ.

In the inner ear field, the history of research in non-coding RNAs goes back to 2005, when 

the triad miRNA-96, 182 and 183 were detected in zebrafish hair cells of sensory epithelia 

by in situ hybridization [50]. Microarray analysis of mouse inner ears revealed expression of 

miRNAs and in particular, miRNA-96, 182 and 183 in mammalian hair cells [51]. Since then 

profiling using microarray and next generation sequencing platforms uncovered hundreds of 

miRNAs in the auditory and vestibular portions of the inner ear, including 74 differentially 

expressed miRNAs [52, 53]. MiRNAs specific to age-related hearing loss were identified in 

a microarray screen, and differential regulation of specific miRNAs led to the suggestion 

that pro-apoptotic miRNAs and those promoting proliferation and differentiation are both 

involved in age-related degeneration of the organ of Corti [54].

Much less is known about lncRNAs in the developing and mature inner ear. The Meg3 RNA 

has been proposed to function as a lncRNA and based on expression studies, to play a role in 

pattern specification, differentiation and maintenance of inner ear cells [55]. Rubie is a 

lncRNA positioned upstream of the Bmp4 gene, and its disruption by an intronic 

endogenous retrovirus is predicted to be the cause of the Epistatic circler (Ecl) mouse 

vestibular phenotype [56].

3. Role of epigenetic factors and miRNAs in inner ear development

3.1 Epigenetics and otic induction, patterning and morphogenesis

Cranial placodes, including the otic placode, arise from a common precursor field, the 

preplacodal region, adjacent to the neural plate. Mutual repression between the 

homeodomain transcription factors OTX2 and GBX2 segregate placode progenitors of 

different fate, with GBX2 being required for otic placode specification [57]. A recent study 

identified DNMT3A, an enzyme required for de-novo DNA methylation as an essential 
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upstream regulator of otic GBX2 expression. De-novo DNA methylation, which creates new 

patterns of DNA methylation, occurs predominantly during early development and 

gametogenesis [58]. In the early chick embryo, Dnmt3a is expressed in the pre-placodal 

region and later in the otic placode itself. Knockdown of Dnmt3a selectively reduces the 

expression of early otic marker and specifier genes Gbx2 and Pax2, followed by a loss of 

late otic marker genes and a severe reduction in otic vesicle size [59]. How DNMT3A 

regulates Gbx2 expression has yet to be established. DNA methylation of cis-regulatory 

elements undergoes dynamic changes during development and cell differentiation [60, 61]. 

The authors propose a model by which DNMT3A activates Gbx2 gene expression by 

selectively methylating a repressor binding site in the Gbx2 promotor.

Following otic placode formation, the otic placode invaginates to form the otic cup, which 

pinches closed dorsally to form the otic vesicle (otocyst) [62]. A study by Uribe and 

colleagues revealed a critical role for histone demethylase KDM4B (alternative name 

JMJD2B) in otic invagination [63]. KDM4B is a histone demethylase that preferentially 

catalyzes demethylation of tri and di-methylated lysine residue 9 on histone 3 (H3K9me2/3). 

H3K9me3 and H3K9me2 are considered repressive epigenetic marks and are correlated with 

transcriptional silencing of a gene locus [64]. In the developing chick embryo KDM4B is 

expressed in pre-otic ectoderm and later becomes restricted to the border of the otocyst. In 

the absence of KDM4B, cytoskeletal rearrangements and cell polarization, required for otic 

invagination, fail to occur. The authors provide compelling evidence that the observed 

defects are due to a failure of Dlx3 induction. Dlx3, a member of the vertebrate Distal-less 

related (Dlx) homeodomain genes, is initially expressed throughout the otic placode and 

during otic invagination becomes restricted to the rim of the invaginating otic pit [65]. The 

authors show that KDM4B directly binds to the Dlx3 regulatory region and is required for 

demethylation of H3K9me3 at the promoter of Dlx3. Knock down of Dlx3 causes similar 

otic invagination defects, and forced expression of Dlx3 is sufficient to rescue otic defects 

due to the loss of KDM4B [63].

Otic morphogenesis requires a highly coordinated and complex pattern of growth. The 

histone deacetylase HDAC1 has recently emerged as an important regulator of cell 

proliferation and cell survival. In mice, targeted deletion of Hdac1 dramatically impairs 

proliferation and is associated with elevated levels of the cyclin-dependent kinase (CDK) 

inhibitor expression [66]. In zebrafish, HDAC1 is highly expressed in the developing otocyst 

and posterior lateral line primordium. Hdac1 knockdown results in a smaller otic vesicle, 

fused otoliths, malformed or absent semicircular canals, and fewer sensory hair cells [67]. 

These defects can at least in part be attributed to defects in otic cell proliferation and cell 

survival, which in Hdac1 morphants is severely reduced. In addition, knockdown of Hdac1 
reduced otic expression of fibroblast growth factor (FGF) ligands FGF3 and 8 [67]. FGF3 

and FGF8 play a critical role in otic patterning and hair cell fate specification in zebrafish 

[68, 69], and disrupted FGF signaling likely contributes to the observed inner ear defects in 

Hdac1 morphants. Whether HDAC1 plays a similar role in murine inner ear morphogenesis 

has yet to be established.

Haploinsufficiency in Chd7, a gene that encodes for a chromatin modifier protein, causes 

CHARGE Syndrome, a multiple congenital anomaly disorder, which among other effects is 
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characterized by inner ear defects [70]. CHD7 is a member of the chromodomain helicase 

DNA-binding (CHD) family of ATP-dependent chromatin remodeling enzymes. ATP-

dependent chromatin remodeling complexes facilitated by ATP hydrolysis shift, exchange or 

remove adjacent nucleosomes, enabling binding of transcription factors to DNA (reviewed 

in [71]). In both humans and mice, Chd7 haplo-insufficiency results in severe semicircular 

canal malformation, and accompanying vestibular defects [72–75]. These defects are in part 

due to an abnormal pattern of cell proliferation. In addition, analysis of heterozygous Chd7 
mutant and conditional Chd7 knockout mice revealed that CHD7 regulates the expression of 

vestibular regulatory genes in a gene dosage dependent manner [76]. Interestingly, inhibition 

of retinoic acid (RA) signaling can rescue semicircular canal defects in heterozygous Chd7 
mutant mice, suggesting that hyperactive RA signaling contributes to inner ear 

malformations in Chd7 mutants [77]. The exact mechanism through which CHD7 regulates 

vestibular–specific genes has yet to be determined. CHD7 occupancy is cell-type specific, 

and most CHD7 sites show features of gene enhancer elements. It has been proposed that 

CHD7 provides access to transcriptional activators and co-factors by locally remodeling 

chromatin structure [78, 79]. In neuronal stem cells CHD7 directly interacts with HMG-box 

transcription factor SOX2 and cooperatively regulates the expression of key developmental 

regulators including the Notch ligand Jagged1 (JAG1) [80]. JAG1 is an essential regulator of 

inner ear neuro-sensory development and is required for semicircular canal formation [81]. 

Jag1 expression is severely reduced in E10.5 heterozygous Chd7 mutant otocysts, suggesting 

that Jag1 deficiency may in part contribute to the vestibular defects observed in Cdh7 
mutants [80]. Future studies are warranted to address whether SOX2 and CHD7 directly 

interact in otic progenitor cells and cooperate in regulating otic gene expression.

3.2 MiRNAs in otic patterning and morphogenesis

Most of our understanding of how miRNAs might control inner ear development stem from 

studies of Dicer1 mutant animals. Dicer1 function is essential for the processing of pre-

miRNAs into functional mature miRNAs. In addition, Dicer1 is required for processing of 

double stranded RNA into small-interfering RNAs (siRNAs) [82].

In zebrafish, Dicer1 mutant larvae have a severely malformed inner ear and lack otoconia 

[83]. Similarly, in mice, early otic deletion of the Dicer1 gene (Pax2-Cre Dicer1flox/flox or 

Foxg1Cre/+ Dicer1flox/flox) results in gross inner ear malformations. The overall size of the 

inner ear is reduced, cochlear outgrowth is severely stunted and the development of 

semicircular canals is arrested at the canal plate stage [84, 85]. FGF10 dependent signaling 

plays a critical role in otic morphogenesis. Loss of FGF ligand FGF10 leads to severe inner 

ear malformations including partial failure of semicircular canal formation and cochlear 

outgrowth defects [86, 87]. Fgf10 expression is severely diminished in Dicer1 mutants, 

suggesting that partial loss FGF10 function contributes to Dicer1 mutant phenotype [84]. 

The contribution of individual miRNAs to inner ear morphogenesis has yet to be examined.

A potential key regulator of inner ear morphogenesis is miR-200b, which is selectively 

expressed in cochlear and vestibular epithelial cells [88]. MiR-200b belongs to the miR-200 
family, which is comprised of miR- 200a, miR- 200b, miR- 200c, miR- 141 and miR- 429 
[89]. Epithelial-to-mesenchymal transition (EMT) and its reversal (MET) are critical for 
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tissue remodeling during development (reviewed in [90]). Recent studies revealed that EMT 

and MET are controlled by a double negative feedback loop between members of miR-200 

family and the transcription factors ZEB1 and ZEB2. miR-200 family members enforce an 

epithelial fate and oppose EMT by transcriptionally silencing Zeb1 and Zeb2 genes [91, 92]. 

The pro-mesenchymal fate transcription factors ZEB1 and ZEB2 in turn repress the 

transcription of epithelial genes, including miR-200 genes [93]. In the developing inner ear, 

epithelial remodeling is required for the formation of semicircular canals [94]. Twirler mice, 

which have a noncoding point mutation in the first intron of the Zeb1 gene, have severe 

vestibular and auditory defects [95]. Transcriptome analysis revealed that in Twirler mice, 

ZEB1 target genes are de-repressed, suggesting that ZEB1 function is compromised in 

Twirler mice and that the resulting disruption of epithelial and mesenchymal cell identities 

underlies the inner ear malformations observed in the Twirler mice [88]. It has yet to be 

determined whether and to what extend miR-200b expression is de-regulated in Twirler 

mice.

3.3 Epigenetic factors in neurogenesis and hair cell formation

Central to otic neurogenesis are the basic helix-loop-helix (bHLH) transcription factors 

Neurogenin1 (NEUROG1) and NEUROD1 [96]. NEUROG1 is required for neuronal fate 

specification [97, 98], whereas NEUROD1, which functions downstream of NEUROG1 is 

required for the progression of the otic neurogenic program [99].

A recent study found that subunits of SWI/SNF-like chromatin remodeling complex 

cooperate with EYA1/SIX1 in the transcriptional activation of Neurog1 and Neurod1 in the 

developing inner ear [100]. Haplo-insufficiency for EYA1 leads to branchio-oto-renal 

syndrome, which is characterized by combinations of craniofacial defects and hearing loss 

with or without kidney anomalies [101, 102]. Animal models revealed that the 

transcriptional cofactor EYA1 and the homeobox transcription factor SIX1 are required for 

formation of the cochlea and vestibulocochlear ganglion [103, 104]. EYA1 and SIX1 are 

members of Eyes absent (Eya) and Sine oculis (So/Six) gene families. EYA proteins have a 

potent transactivation domain but lack a DNA binding domain and require the presence of 

transcription factors to act as potent transcriptional activator (reviewed in [105]). Employing 

gain and loss-of-function strategies, the authors uncovered that EYA1/SIX1 co-activator 

complex controls otic neural induction and neural differentiation by positively regulating the 

expression of Neurog1 and Neurod1. Interestingly, the neural inductive activity of EYA1/

SIX1 depended on the presence and enzymatic function of core components of SWI/SNF 

like BAF complex. Mammalian SWI/SNFlike BAF complexes are ATP-dependent 

chromatin-remodeling complexes that are made up of a core ATPase subunit BRG1 (official 

name SMARCA4) or BRM (SMARCA2), and BRG1 Associated Factors (BAFs) (reviewed 

in [106]). The authors found that EYA1 and SIX1 directly interact with SWI/SNF subunits 

BRG1 and BAF170, and BRG1 ATPase activity is required for normal otic neurogenesis as 

well as ectopic neurogenesis induced by Eya1/Six1 overexpression, indicating a central role 

for SWI/SNF-like chromatin remodeling complex in otic neurogenesis [100]. A parallel 

pathway of Neurog1 regulation involves the ATP-dependent chromatin-remodeler CHD7. In 

Chd7-deficient otic tissue the cochlear vestibule ganglion is missing or severely reduced. 

TBX1, a T-box transcription factor selectively expressed in the non-neurogenic domain of 
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the developing otocyst, is known to limit the extent of the neurogenic domain within the otic 

vesicle [107]. Analysis of Chd7-deficient otic tissue revealed that the expression domain of 

Tbx1 is expanded into the neurosensory domain, and Neurog1 expression is initially induced 

but fails to be maintained [75]. Future studies are needed to clarify whether CHD7 occupies 

Tbx1 and Neurog1 cis regulatory sequences.

The bHLH transcription factor ATOH1 plays a central role in mechano-sensory hair cell 

development. ATOH1 is both necessary and sufficient for hair cell formation and 

differentiation [108–110]. ATOH1 expressing hair cells and their surrounding supporting 

cells derive from sensory progenitor cells commonly referred to as pro-sensory cells. Pro-

sensory cells and later differentiating supporting cells are inhibited from inducing Atoh1 
expression through a lateral inhibition mechanism mediated by the Notch signaling pathway 

[111–113]. A recent study by Stojanova and colleagues examined whether epigenetic 

mechanisms control Atoh1 expression in the developing murine cochlea. Developmentally 

regulated genes often exhibit both repressive (H3K27me3) and active (H3K4me3) epigenetic 

marks within their promoter and enhancer sequences, referred to as bivalent state [33]. The 

authors found that these bivalent epigenetic marks are frequent within the Atoh1 locus of 

pro-sensory cells and perinatal supporting cells, indicating that Atoh1 is poised for 

expression in these cell types. In differentiating hair cells, these bivalent marks were 

infrequent and H3K9 acetylation, a mark, associated with actively transcribed genes, was 

prevalent [114]. Inhibition of histone acetyltransferase activity reduced H3K9 acetylation at 

the Atoh1 locus and prevented Atoh1 induction, suggesting a central role for histone 

acetyltransferases in Atoh1 induction. In turn, shut down of Atoh1 expression in maturating 

hair cells required H3K9 deacetylation and was accompanied by an increased frequency of 

H3K9 tri-methylation (H3K9me3) [115], a mark associated with gene silencing [116].

3.4 MiRNAs in neurogenesis and hair cell formation

Early otic Dicer1 conditional knockouts (Foxg1Cre/+ Dicer1flox/flox or Pax2-Cre 
Dicer1flox/flox) have, in addition to defects in otic morphology, severe neuro-sensory defects. 

In these mutants, both vestibular and auditory sensory epithelia are severely reduced in size, 

innervating neurons are largely missing and the organization and apical specialization of 

remaining hair cells is severely disrupted [84, 117] [84, 85]. Innervating sensory neurons 

depend on trophic support from hair cells and supporting cells. Defects in neuronal survival 

may be a consequence of the stunted sensory development in early otic Dicer1 conditional 

knockouts; alternatively it may be due to defects in neuronal differentiation as previously 

reported for Dicer1 mutant cortical neurons [118]. Early otic Dicer1 conditional knockouts 

were not viable so hearing could not be tested. The targeted removal of functional mature 

miRNAs from hair cells using Pou4f3-Cre mice crossed with Dicer1flox/flox led to a mouse 

that survived until approximately one month of age, enabling hearing to be tested [52]. 

These mice were profoundly deaf, as evaluated by auditory brainstem response. The Dicer1 
mutant hair cells began degenerating soon after birth, with surviving cells having an 

abnormal morphology, suggesting a critical role for miRNAs in hair cell differentiation/ 

maturation.

Doetzlhofer and Avraham Page 9

Semin Cell Dev Biol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Re-examination of the cochlear phenotype of early otic Dicer1 mouse mutants by Huyghe 

and colleagues revealed previously undetected defects in pro-sensory cell proliferation and 

hair cell fate specification. Dicer1 deficient pro-sensory cells were delayed in their cell cycle 

withdrawal and showed a bias to differentiate as hair cells. In addition, defects in planar cell 

polarity (PCP) as well as defects in formation or maintenance of kinocilia were noted. These 

defects are likely due to de-regulation of Wnt signaling. Among the genes de-repressed in 

the absence of Dicer1 were secreted frizzled-related protein (Sfrp)4 and Sfrp5, which encode 

for known modulators of both canonical and non-canonical Wnt signaling [119]. Exposure 

of cochlear tissue to SFRP4 and SFRP5 protein caused cell fate specification and PCP 

defects that largely resembled the defects observed in Dicer1 mutants. Sfrp4 and Sfrp5 
expression in the developing cochlea is likely repressed by miR-124. The authors found that 
miR-124 is selectively expressed in the differentiating auditory sensory epithelium, miR-124 
negatively regulates Sfrp4 and Sfrp5 expression, and similar to Sfrp4/5 overexpression, 

miR-124 inhibition biases pro-sensory cells towards a hair cell fate [117].

The failure of Dicer1 deficient auditory pro-sensory cells to exit the cell cycle at the 

appropriate time may, at least in part, be due to the loss of let-7 miRNA function. A recent 

study by Golden and colleagues revealed that a double negative feedback loop between let-7 
miRNAs and the RNA binding protein (RBP) LIN28B times and coordinates cell cycle exit 

and differentiation of pro-sensory cells in the murine cochlea. Let-7 (lethal-7), originally 

identified as a regulator of developmental timing (heterochrony) in C. elegans [120], was 

among the first miRNAs to be discovered [121, 122]. In human and mice, members of the 

let-7 family (let-7a, b, c, d, e, f, g, i, mir-98) function as tumor suppressors and are highly 

associated with a terminal differentiated state. Let-7 miRNAs target and transcriptionally 

silence pro-growth genes including Lin28a and Lin28b. In turn, LIN28 RBPs bind let-7 
primary and precursor transcript and interfere with their processing by Drosha and Dicer1 

(reviewed in [123]). In the developing inner ear, Lin28b is selectively expressed in pro-

sensory cells, whereas let-7 miRNAs are expressed in terminally differentiated cells 

including hair cells and supporting cells [124]. Using inducible LIN28B and let-7g 
transgenic mouse lines the authors found that higher than normal levels of let-7 miRNAs 

resulted in premature pro-sensory cell cycle exit, whereas lower than normal let-7 levels, due 

to LIN28B overexpression delayed pro-sensory cell cycle exit [124]. LIN28B 

overexpression led to an increase in cochlear N-Myc (Mycn) and cyclin D1 (Ccnd1) 
expression. N-Myc and cyclin D1 are known let-7 target genes [125, 126] and loss of either 

gene has been shown to disrupt cell proliferation in the developing inner ear [127, 128], 

suggesting that the effects of LIN28B and let-7 on proliferation are at least in part due to 

deregulation of N-Myc and cyclin D1 expression. Over-expression of let-7 miRNAs 

accelerates development and induces precocious differentiation in many tissues including the 

retina [129]. However, even though lower than normal let-7 levels due to LIN28B 

overexpression delayed auditory hair cell differentiation, let-7g overexpression failed to 

induce precocious differentiation [124]. These findings suggest that in the developing 

cochlea, let-7 mainly functions as an inhibitor of progenitor-specific gene expression.

Sensory cells including hair cells express three homologous miRNAs, miR-96, miR-182, 

and miR-183 [51]. These evolutionary conserved miRNAs are expressed from a single 

genetic locus and are commonly referred to as miR-183 cluster or family [130, 131]. 
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Overexpression of miR-183 family members in sensory progenitors biases them towards a 

hair cell fate. In zebrafish overexpression of miR-96 or miR-182 results in ectopic sensory 

patches and increases the number of hair cells within the inner ear vestibular sensory organs, 

whereas knockdown of miR-96, -182, and/or-183 generates fewer hair cells [132]. A similar 

bias towards a hair cell fate was observed when miR-183 family members were 

overexpressed in the developing chicken auditory organ. However, in contrast to zebrafish, 

overexpression of miR-183 cluster members failed to induce ectopic sensory patches [133]. 

Mutations in the seed region of miR-96 are associated with hearing loss in humans and mice 

[134, 135]. The mouse mutant diminuendo (Dmdo) has a single base change in the seed 

region of the miR-96 gene [135]. In homozygous and heterozygous Dmdo mice, hair cells 

form relatively normal but have misshapen stereocilia and their biophysical maturation and 

specialization is arrested [135, 136]. At one month of age, Dmdo homozygous mice have 

virtually no hair cells and Dmdo heterozygous mice show severe outer hair cell loss [135]. 

The observed defects could be due loss of miR-96 dependent target regulation and/or gain of 

novel targets. Qualitative similar hair cell defects are observed in hair cell-specific Dicer1 
mutants, suggesting the former to be the case.

4. Non-coding RNAs and epigenetics in human sensory disease

4.1 miRNAs in deafness

Mutations in miRNAs in humans have been found in three families [134, 137]. Of the 

miR-183, miR-182, and miR-96 triad that is specifically expressed in inner and outer hair 

cells, only miR-96 is associated with human disease. While attempts have been made to 

discover if there is a larger number of miRNAs contributing directly to human deafness, this 

is unlikely to be the case [138].

4.2 Epigenetic factors associated with deafness

Mutations in epigenetic factors recently emerged as potential causes for deafness in humans. 

Germline mutations in histone methyltransferases have been identified in human syndromes 

associated with sensorineural hearing loss. WHSC1 (Wolf-Hirschhorn Syndrome candidate 

1, also known as NSD2 and MMSET) is a histone methyltransferase that preferentially 

catalyzes H3K36 methylation, an epigenetic modification highly associated with 

transcriptional activation [139]. Haploinsufficiency in Whsc1 is linked to Wolf-Hirschhorn 

syndrome (WHS), a complex genetic disorder that causes severe growth retardation, 

craniofacial defects, seizures, and in some cases hearing impairment [140]. Whsc1 mutant 

mice are developmentally delayed and manifest similar craniofacial defects and external ear 

and eye anomalies seen in humans with WHS [141, 142]. The authors found that cochlear 

hair cells form in Whsc1 heterozygous and homozygous mutants, but their shape, 

arrangement, morphological specialization and innervation are disrupted, suggesting that 

WHSC1 dysfunction, might contribute to sensorineural hearing loss in individuals with 

WHS [142]. How WHSC1 controls cochlear hair cell arrangement, specialization and 

innervation are currently unknown, but components of the Wnt/ PCP machinery are among 

the likely targets of WHSC1 mediated regulation.
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5. Role of epigenetic factors and miRNAs in hair cell regeneration

5.1 Supporting cell proliferation in birds and fish

Histone modifying enzymes and miRNAs recently emerged as critical regulators of 

supporting cell proliferation in fish and birds.

In the mature vestibular epithelia of birds, supporting cells divide at a low rate and 

continually and spontaneously replace lost hair cells. Treatment of hair cell-damaged 

chicken utricle with broad spectrum HDAC inhibitors or class I selective HDAC inhibitors 

resulted in a decrease in supporting cell proliferation, but did not affect the differentiation of 

replacement hair cells [143]. In developing zebrafish, class I HDACs, HDAC1 and HDAC3 

are selectively expressed in lateral line primordium and neuromast [144, 145]. Knockdown 

of HDAC3 or broad inhibition of HDAC activity severely impaired cell proliferation within 

the lateral line primordium [144] [146]. Similarly, in hair cell-damaged zebrafish larvae, 

inhibition of HDAC activity with broad spectrum HDAC inhibitors reduced supporting cell 

proliferation and subsequent hair cell regeneration. In mice, CDK inhibitors p27/Kip1 

(CDKN1B) and p21/Cip1 (CDKN1A) are required for maintaining auditory supporting cells 

and hair cells in a postmitotic state [147–149]. The authors found that in the hair cell-

damaged zebrafish larvae HDAC inhibition increased p21/Cip1 and p27/Kip1 expression, 

suggesting that HDACs facilitate supporting cell proliferation through restricting p27/Kip1 

and p21/Cip1 expression [145].

Lysine-specific demethylase 1 (LSD1, official name KDM1A) is a FAD-dependent enzyme 

that catalyzes the demethylation of mono- and di-methylated lysine 4 and 9 on histone 3 

(H3K4me1/2 and H3K9me1/2) repressing and activating transcription, respectively 

(reviewed in [150]). Two recent studies revealed an important role for LSD1 in regulating 

sensory progenitor cell proliferation. In the developing zebrafish larvae, pharmacological 

inhibition of LSD1 using trans-2-phenylcyclopropylamine (2-PCPA) disrupted cell 

proliferation and induced apoptosis in neuromast cells, causing a reduction in the numbers 

of sensory hair cells and supporting cells produced [67]. Similarly, in the hair cell-damaged 

zebrafish, 2-PCPA treatment significantly decreased supporting cell proliferation and 

subsequent production of hair cells. Based on gene expression data the authors propose that 

LSD1 promotes cell proliferation by inhibiting the expression of p21/Cip1 and p27/kip1 as 

well as by promoting the expression Wnt/β-cateninsignaling components [151].

Supporting cells within the auditory sensory epithelia (basilar papilla) of birds are quiescent, 

but re-enter the cell cycle within hours following hair cell damage [152]. Enrichment 

analysis of gene sets differentially expressed in the quiescent and proliferating basilar papilla 

uncovered miR-181a as a potential upstream regulator of supporting cell proliferation. The 

authors found that in the intact chicken basilar papilla miR-181a overexpression was 

sufficient to stimulate supporting cell proliferation and the production of new hair cells 

[153]. In a follow up study the authors found that knock-down of endogenous miR-181a in 

basilar papilla inhibited the regenerative proliferation of supporting cells in response to hair 

cell damage [154]. miR-181a has been shown to interfere with p27/Kip1 transcription and 

translation in tumor cell lines [155, 156], suggesting that miR-181a might trigger cell cycle 
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re-entry of supporting cells in a p27/Kip1 dependent manner. Whether miR-181a is capable 

of stimulating supporting cell proliferation in mammalian species is currently unknown.

5.2 Targets for regenerative strategies in mammals

Prior to the onset of hearing, mammalian supporting cells have a latent ability to 

spontaneously regenerate hair cells. Isolated auditory supporting cells placed in culture re-

enter the cell cycle and generate hair cells through both mitotic and non-mitotic mechanisms 

[157, 158]. In response to hair cell damage, auditory supporting cells spontaneously 

regenerate hair cells in vivo [159, 160]. The limited regenerative response of immature 

auditory supporting cells can be further enhanced by either inhibiting the Notch signaling 

pathway [161, 162], or by over-activating Wnt/ β-catenin signaling [163–165].

The polycomb group protein BMI1 is required to sustain Wnt/β-catenin signaling in 

neonatal supporting cells. BMI1 is part of the multi-protein polycomb repressive complex 1 

(PRC1), which is needed for ubiquitination of histone H2A lysine 119. This epigenetic mark 

is associated with gene repression (reviewed in [166]). In cochlear explants, obtained from 

neonatal Bmi1 mutant mice, supporting cells failed to re-enter the cell cycle in response to 

hair cell damage and BMI1 deficiency reduced the sphere-forming ability of unfractionated 

cochlear epithelial cells and Wnt-responsive supporting cells. The authors found that in the 

Bmi1-deficient cochlear tissue, Wnt antagonist DKK1 was increased and Wnt/β-catenin 

signaling was attenuated. Over-activation of Wnt signaling using GSK-3β inhibitor partially 

reversed the proliferation deficit of Bmi1 mutant supporting cells, suggesting that BMI1 

facilitates supporting cell proliferation by sustaining high levels of canonical Wnt signaling 

[167].

DNA methylation may restrict hair cell lineage potential. DNMT1 activity is required to 

maintain patterns of DNA methylation in daughter cells after DNA replication [168]. The 

nucleotide analog 5-azacytidine (5-aza) incorporates into DNA and interferes with DNMT 

function, leading to a decrease in global DNA methylation [169]. A recent study used a 

prosensory-like cell line (MUCS), initially derived from adult mouse utricle, to determine 

the role of DNA methylation in hair cell fate induction and differentiation. MUCS cells have 

mesenchymal characteristics and the authors found that treatment of MUCS cells with 5-aza 

increased expression of epithelial genes and hair cell genes on both transcript and protein 

levels, which facilitated the formation of hair cell-like cells [170].

The newt, a urodele amphibian, possesses a remarkable ability for tissue and cell 

regeneration independently of its age. Regeneration in adult newts is mediated primarily by 

dedifferentiation and re-differentiation (trans-differentiation) of terminally differentiated 

cells [171]. Gene expression profiling of newt inner ear and lens tissue revealed that the 

early phase of lens and hair cell regeneration is accompanied by a sharp drop in let-7 
miRNA expression, suggesting that high let-7 miRNA levels may be refractory to trans-

differentiation of terminal differentiated cells [172]. A recent study indicates that indeed, 

high let-7 miRNA levels impair hair cell regeneration in the early postnatal murine cochlea. 

In early postnatal cochlear explants, pharmacological inhibition of Notch signaling allows 

for the production of new hair cells through supporting cell-to-hair cell conversion (trans-

differentiation) [173]. Using a similar experimental approach, the authors found that let-7g 

Doetzlhofer and Avraham Page 13

Semin Cell Dev Biol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overexpression significantly decreased the production of new hair cells in response to Notch 

inhibition, whereas overexpression of let-7 antagonist LIN28B enhanced hair cell production 

in response to Notch inhibition [124]. Expression of mature let-7 miRNAs rise within the 

auditory sensory epithelium during postnatal maturation, and it is intriguing to speculate that 

such rise in let-7 miRNA expression may be functionally linked to the decline in 

regenerative capacity of supporting cells.

Another miRNA recently implicated in auditory hair cell regeneration is miR-210. miR-210, 

an evolutionary conserved miRNA, is critical for the cells response to hypoxia, with roles in 

mitochondrial metabolism, angiogenesis, DNA repair, and cell survival [174]. miR-210 was 

identified in a screen for miRNAs that are differentially expressed during hair cell 

differentiation using the inner ear cell line (UB/OC-1). MiR-210 knockdown in UB/OC-1 

cells induces premature hair cell marker expression, suggesting that miR-210 functions in 

maintenance of a progenitor state. Overexpression of miR-210 in early postnatal cochlear 

explants resulted in spontaneous formation of new hair cells, which based on Cre-loxP 

mediated lineage tracing, originated from supporting cells. A subset of in silico predicted 

miR-210 targets were experimentally validated. However, none of the validated miR-210 
targets have yet been associated with sensory cell development [175]. Futures studies are 

needed to resolved how miR-210 facilitates supporting cell-mediated hair cell regeneration.

6. Conclusions

The past decade has seen a remarkable increase in our understanding of non-coding RNAs 

and chromatin modifying enzymes that has changed how we view gene expression and 

regulation in every organism and tissue studied. Advances in genomic technologies have 

enabled a comprehensive look at the key mechanisms of epigenetics. Investigations of the 

auditory and vestibular systems have lagged behind partly due to the lack of a robust cell 

culture system for the inner ear, the prior need for a large number of cells for genomic 

experiments, and the requirement for a model organisms rather than direct examination of 

the human inner ear. Despite these hindrances, we predict that the next decade will lead to 

dramatic discoveries, following the progress made to date and summarized in this review. 

Most promising, epigenomic dynamics uncovered during development or hair cell 

regeneration may help identify key regulators, which will in turn aid in prioritizing genes for 

future studies.
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Abbreviations

bps base pairs

DHS DNase Hypersensitive sites
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TFBS transcription factor binding sites

PTMs post-translational modifications

HDACs histone deacetylases

H3K4me3 histone 3 lysine 4 tri-methylation

H3K27me3 histone 3 lysine 27 tri-methylation

ChIP chromatin immunoprecipitation

DNMTs DNA methyltransferases

lncRNA long non-coding RNA

piRNA piwi-interacting RNA

circRNA circular RNA

sno-RNA small nucleolar RNA

miRNA microRNAs

pri primary

pre precursor

ncRNA non-coding RNA

nt nucleotides

RISC RNA-induced silencing complex

UTR untranslated region

CDK cyclin-dependent kinase

FGF fibroblast growth factor

CHD chromodomain helicase DNA-binding

RA retinoic acid

siRNAs small-interfering RNAs

EMT epithelial-to-mesenchymal transition

MET mesenchymal-to-epithelial transition

bHLH basic helix-loop-helix

H3K9me3 H3K9 trimethylation

PCP planar cell polarity

Sfrp secreted frizzled-related protein
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RBP RNA binding protein

WHS Wolf-Hirschhorn syndrome
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Fig. 1. 
Schematic diagram of miRNA biogenesis and epigenetic mechanisms in the mammalian 

cell. Common histone PMTs such as histone methylation (me) and acetylation (ac) are 

indicated. DNA methylation is shown on the DNA double helix, as 5-MeC and CH3. Gene 

transcription produces a pri-miRNA that is processed by Drosha to form a pre-miRNA. 

Exportin-5 facilitates its export to the cytoplasm, where Dicer cleaves the pre-miRNA into 

short double-stranded RNA. The RISC complex is activated and its catalytic component 

argonaute (Ago) leads to degradation of mRNA, translational suppression and 

deadenylation.
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