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Abstract

Lipid-based nanoparticle technology has developed from chemical drug carrier into an efficient 

multifunctional siRNA tumor targeting delivery system. In this review, we start with an overview 

of the lipid-based nanomedicine history and the two classes of lipidic vectors for DNA or siRNA 

delivery. Then we discuss the features of lipid-based nanomedicine that lead to effective tumor 

targeting and the principles behind. We also discuss nanoparticle surface modification, classes of 

tumor targeting ligands, and other state-of-the-art strategies for enhancing endosome release 

primarily focused on lipid-based systems. At the end, we show that multifunctional self-assembled 

lipid-based nanoparticles could also be versatile delivery vehicles for cancer molecular imaging 

probes.
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1. INTRODUCTION

Drugs formulated in liposomes are considered the very first class of nanomedicine used in 

clinics. Liposomes are artificial cell-like vesicles that have an aqueous compartment inside 

the surrounding one or multiple lipid bilayers. The bilayer usually consists of a lipid 

component (usually a cationic lipid and/or a fusogenic lipid) and cholesterol. Some may 

further contain a polyethylene glycol-lipid conjugate for surface protection.1 The aqueous 

compartment and the lipid bilayer have both been used to carry drugs. By formulating 

doxorubicin into liposomal dosage form, it can increase the tumor uptake and reduce the 

cardio-toxicity.2,3 For the drugs with very poor solubility such as paclitaxel, loading the drug 

into the bilayer compartment can increase the delivering dose.4,5 For some drugs, such as 

camptothecins that are not stable under physiological pH, formulation into liposomes can 

also protect them from degradation.6,7 Furthermore, it can improve the pharmacokinetic 

profile primarily by increasing the circulation time of the drug.8

Lipid-based systems have also been developed for poly- or oligo-nucleotide delivery for 

decades. In 1987, Felgner et al.9 showed that lipofection, i.e., cationic lipid mediated 

transfection, is more efficient for delivering DNA into cells than calcium phosphate10,11 or 
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DEAE-dextran.12 Later, various cationic lipid formulations such as the popular 

Lipofectamine13,14 or cardiolipin analogs15,16 have been developed and used extensively for 

in vitro DNA or siRNA delivery.

An important milestone for lipid-based nanomedicines is the clinical trial for liposome-

mediated gene therapy conducted in 1992. This clinical trial used a liposome formulation 

consisting of a cationic derivative of cholesterol, 3-β-[N-(N′,N′-dimethylaminoethane)-

carbamoyl] cholesterol and dioleoylphosphatidylethanolamine (DC-Chol/DOPE) to transfer 

a xenogenic MHC class I antigen gene to the cutaneous melanoma lesions.17 Although the 

transfection efficiency, the duration of expression, and the overall therapeutic effect was not 

as promising as anticipated, no adverse clinical effects were observed.18 There were other 

clinical trials for cystic fibrosis using other cationic lipids.19,20

The discovery of RNA interference has brought a new category of therapeutics that can be 

used for genetic diseases,21–25 viral infections,26–31 or cancers by inhibiting various 

pathways. Compared to delivering plasmid DNA for expressing short-hairpin RNA (shRNA) 

in cells, delivering synthetic siRNA can silence protein expression and is more favorable in 

terms of drug delivery. The great advantage of siRNA therapy is that the site of action is the 

cytoplasm, not the nucleus. Lipid-based systems and other non-viral vectors are excellent 

vehicles for siRNA delivery.

2. CLASSES OF LIPIDIC VECTORS

DNA or siRNA delivery systems can be divided into viral and non-viral vector systems. 

Based on the type of the target disease, local or systemic administration is a factor of 

consideration. Viral vectors have been used for both systemic and local administrations. The 

strategy is, by genetic engineering, replacing pathogenic viral genes with desired genes or 

shRNA expression cassette. One great advantage of using viral vectors is that some viral 

vectors such as lentiviral and retroviral vectors can achieve stable long term expression due 

to their host genome-insertion nature.32 In addition, viral vectors are generally more efficient 

in terms of expression level. However, immunogenicity and other safety issues are always 

the major concerns of using viral based systems, especially in humans. For the field of tumor 

targeting siRNA therapy, since stable long term expression is not needed and the site of 

action for siRNA is only the cytoplasm, non-viral vectors are more favorable.

There are different types of non-viral vectors for siRNA or DNA delivery such as polymers, 

block co-polymers, proteins, or peptides.33–36 Various designs have been established based 

on either chemical conjugation or self-assembly processes. Self-assembled nanomedicines 

are more desirable due to their easy preparation and potential for scale-up manufacturing. 

Desimone et al.37–40 established an imprint lithographic technique called PRINT™ (Particle 

Replication In Non-wetting Templates) for nanoparticle production. A variety of materials 

including synthetic polymers, hydrogels, active pharmaceutical ingredients, and proteins41 

could be made into shape-specific, monodisperse, and surface modifiable nanoparticles.37 

Bioactive agents including proteins, DNA, and small-molecule therapeutics42 have also been 

encapsulated into PRINT™ nanoparticles. There are also other non-viral physical methods 

such as hydrodynamic injection,43–45 electroporation,46–48 and particle bombardment49 that 
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could be used for local DNA or siRNA delivery. In this review, we will primarily focus on 

lipid-based self-assembled nanoparticles with tumor as the target disease.

2.1. Lipoplex

There are two main types of self-assembled lipid nanomedicines, one is the traditional type 

that formed simply by mixing positively charged liposome with negatively charged DNA or 

siRNA to make a complex. These types of reagents have been extensively used for in vitro 
gene transfection or silencing. The other type is a more sophisticated lipopolyplex 

nanoparticle such as the LPD (liposome-polycation-DNA) nanoparticles designed in our lab 

in the mid 90s.50

Verma et al. reported the first lipoplex mediated in vivo tumor siRNA delivery via 

intraperitoneal (i.p.) injection to a HCT116 colon cancer xenograft model with commercially 

available Oligofectamine (Invitrogen, Carlsbad, CA). They showed successful β-catenin 

expression reduction and HCT116 tumor growth inhibition.51 Sorensen et al. used DOTAP 

(N-[1-(2,3-dioleoyloxy)]-N-N-N trimethyl ammonium propane) liposomes to make lipoplex 

for systemic siRNA delivery.52 They showed inhibited exogenous green fluorescent protein 

expression in liver and spleen via systemic intravenous (i.v.) injection and endogenous tumor 

necrosis factor expression in macrophages via i.p. injection.

The problem for lipoplex is that the complex is not very stable. Especially when diluted in 

the blood circulation after injection. The lipoplex is usually made fresh immediately before 

use. Also, the works mentioned above did not really target siRNA to solid tumors via i.v. 

injection. To achieve siRNA solid tumor targeted delivery via systemic i.v. injection, a more 

sophisticated system that can produce a nanoparticle stable long enough before reaching the 

solid tumor is required.

2.2. LPD

Unlike a liposome that has an aqueous phase inside the particle, LPD nanoparticles consist 

of a solid core inside of the lipid bilayer.53 The core formation is a self-assembly process 

driven by charge–charge interaction. In the LPD formulation designed in our lab, we use 

FDA approved protamine with the help of a high molecular weight calf thymus DNA to 

condense DNA or siRNA into a solid core.54,55 Protamine is a highly positive charged 

arginine-rich nuclear protein from salmon sperm. Its natural function is to replace histones in 

the haploid phase of spermatogenesis and stabilize the DNA. With slightly excess amounts 

of negatively charged DNA or siRNA to positively charged protamine, the solid core 

remains negatively charged and thus allows further coating with positively charged DOTAP/

cholesterol cationic liposomes. The self-assembled LPD nanoparticles were further modified 

by post-inserting either DSPE-PEG for surface protection or DSPE-PEG-anisamide for 

targeting to the sigma receptor (Fig. 1).54–56

With a similar approach, Harashima group used poly-L-lysine to condense shRNA encoding 

plasmid DNA or siRNA into their octaarginine modified Multifunctional Envelope type 

Nano Device (MEND) (Fig. 2). The octaarginine function for cell penetration will be 

discussed later. In this work, over 80% of luciferase gene expression silencing in HeLa cells 

was reported.57,58
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Besides lipoplex and LPD formulation, Zimmermann et al. used a stable nucleic acid lipid 

particles (SNALP) formulation consisting of 3-N-[(ω-methoxypoly(ethyleneglycol)2000) 

carbamoyl]-1, 2-dimyristoyloxy-propylamine (PEG-C-DMA), 1,2-dilinoleyloxy-N,N-

dimethyl-3-aminopropane, (DLin DMA), 1,2-distearoyl-sn-glycerol-3-phosphocholine 

(DSPC) and cholesterol, in a 2:40:10:48 molar ratio to deliver siRNA against apolipoprotein 

B (apoB) in the liver. In this formulation, the siRNA was encapsulated within the liposomes. 

More than 80% silencing of apoB mRNA and apoB-100 protein could be achieved with a 

single 1 mg/kg dose in non-human primate.59

3. FEATURES THAT LEAD TO EFFECTIVE TUMOR TARGETING

For targeting nanoparticles to solid tumors, there are several important barriers that have to 

be overcome. The pharmacokinetic and pharmacodynamic profiles of nanoparticles are 

completely different from conventional small chemical drugs or some protein drugs that are 

usually eliminated or metabolized by the kidneys, liver, or lungs.60 Nanoparticles are cleared 

from the blood circulation primarily by the reticuloendothelial system (RES), especially the 

Kupffer cell in the liver 61 and the macrophages in the spleen. After injecting the 

nanoparticles into the blood circulation, opsonins such as IgM, IgG, fibronectins, or 

complement C3 will absorb to their surface. Phagocytic cells will recognize the opsonins 

and will rapidly and effectively take up the opsonized nanoparticles. The uptake of the 

nanoparticles by the tumor is a slower and less efficient process. Thus, the RES uptake 

represents a major “kinetic barrier” for drug delivery to the tumor by nanoparticles. Once the 

nanoparticles arrive at the tumor, there are other “physical barriers” preventing the cargo 

drugs from entering the cytoplasm. With appropriate design, self-assembled lipid 

nanomedicines have been successfully used for siRNA tumor targeting delivery. Li et al.55,62 

showed that by taking advantage of the enhanced permeability and retention (EPR) effect of 

the tumor (see below), PEGylated LPD could accumulate up to 60–80% injected dose per 

gram of tissue in the H460 lung cancer xenograft model (Fig. 3). With the help of a targeting 

ligand–anisamide, significant siRNA uptake and almost complete oncogene silencing and 

significant tumor growth inhibition in vivo were observed. By delivering MDM2, c-myc, 

and VEGF siRNA combination, significant pulmonary metastasis inhibition in a B16F10 

murine melanoma model was also observed (Fig. 4). In the following sections, we will 

discuss in detail how self-assembled nanoparticles overcome these barriers.

3.1. EPR Effect, PEGylation, Optimal Size

Tumor cells are rapidly differentiating and growing cells. They require a large amount of 

nutrient supply. Angiogenesis as induced by growth factors, e.g., VEGF, is important for 

tumor growth.63 Neovessels in the tumor are usually leaky and not well organized. However, 

the degree of leakiness is highly tumor dependent and could vary significantly. Matsumura 

and Maeda64 discovered that due to the leakiness of the vasculature in the solid tumor, 

macromolecules and colloidal nanoparticles that are too big to penetrate normal blood 

vessels could penetrate these leaky vasculature and accumulate at the tumor site. This is so 

called Enhanced Permeability and Retention (EPR) effect. Lacking lymphatic drainage 

might also contribute to the enhanced retention effect.64–66 To take advantage of the EPR 
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effect, nanoparticles must be within an optimal size range. The optimum diameter should be 

around 100 nm.67 However, it is dependent on the leakiness of the tumor vasculature.

Nanoparticles need to stay in the blood circulation long enough to overcome the kinetic 

barrier for extravasating the leaky tumor vasculature. As previously mentioned, the primary 

elimination mechanism for nanoparticles is the uptake by phagocytic cells after opsonization 

of the nanoparticles. Modifying the nanoparticle surface with carbohydrate or polyethylene 

glycol (PEG) is a common strategy for protecting and shielding the surface charge.68 Studies 

have shown that PEGylated colloids69,70 and stealth liposomes55 could stay in the blood 

circulation up to 6–10 h in mice and 40 h in humans.71

3.2. Targeting Ligands

EPR effect is important in guiding the nanoparticles to tumor tissue, but EPR effect is not 

enough for delivering siRNA into the cancer cells. There still remains two physical barriers, 

cell membrane and endosome membrane, that prohibit siRNA from entering the cytoplasm. 

Drugs or siRNA that stay outside of the cancer cells are not bio-available and will not show 

therapeutic effect. Nanoparticles with a structure too stable may stay in the tumor 

extracellular matrix without releasing payload drugs. For example, a stealth liposomal-

cisplatin formulation (SPI-077) accumulated efficiently at the tumor site, but it showed 

minimum therapeutic effect compared to free cisplatin.72 In order to prompt cancer cells to 

take up nanoparticles, targeting ligands are needed for triggering receptor mediated 

endocytosis. There are various types of targeting ligands being used for tumor targeting, 

including peptides, proteins, antibodies (including Fab, scFv, etc.), aptamers, and small 

molecular weight ligands, etc.

3.2.1. Peptide Ligands—Binding motifs between ligands and receptors usually involves 

only several amino acids. Based on this concept, investigators have establish phage display 

libraries to select special amino acid sequences that show strong binding affinities to tissues, 

cells, or organs of interests.73 This method has been established and improved for decades. 

Increasing numbers of peptide ligands have been identified with high affinities against neo-

vasculature, various kinds of cancer cells, proteins, receptors, organs and even lymphatic 

vessels.74 For example, the RGD (Arg-Gly-Asp) motif that shows great binding around 1 

nM has been used for targeting various drugs or nanoparticles to either tumor neo-

vasculature or cancer cells that express integrin αvβ3 cell surface receptor.75–77 NGR (Asn-

Gly-Arg) peptide targeting aminopeptidase N (APN, CD13) is another example for peptide 

ligand.78 There are also other non-specific cell penetrating peptides for drug delivery 

systems. They include the famous HIV-1 Tat, Drosophila Antennapedia transcription factor, 

herpes simplex virus type-1 VP22 transcription factor, or even simple oligoarginine (R8, R9) 

peptides.79,80

3.2.2. Antibodies (Including Fab, scFv, etc.)—Antibodies (mostly IgG) have been 

extensively used in biological laboratories due to their high binding affinity to specific 

epitopes. Humanized antibodies can be used solely or combined with other chemotherapy 

agents for cancer therapy. Two great examples are the FDA approved anti-Her2/neu 

monoclonal antibody Herceptin® for breast cancer and the anti-VEGF monoclonal antibody 
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Avastin® for metastatic colorectal cancer. Taking advantage of their binding activity to 

cancer cell membrane proteins, Herceptin has also been used in targeting liposomes to breast 

cancer xenografts.81–85

IgG antibodies usually have a molecular weight around 150 kDa. In order to make them 

smaller to either increase the biological production efficiency or reduce the chances to 

generate immune response, several smaller versions of antibodies have been adapted.86 For 

example, removal of the Fc region of the IgG to become the Fab fragment, or combination of 

the variable regions of both light and heavy chains into a single chain peptide antibody 

(scFv) is commonly used. Fab and scFv can further be engineered into dimer, trimer, or 

tetramer forms to provide stronger multivalent binding.

3.2.3. Transferrin—Transferrin is an iron transporting protein that can specifically react 

with its receptor (Tf receptor) that is expressed in various tissues. Due to the rapid growth of 

cancer cells, Tf receptors are over-expressed on various kinds of cancers. Anti-Tf receptor 

antibody87,88 and transferrin have both been used as ligands for targeting liposomes to 

tumors89,90 or even brain cells.91

3.2.4. Small Molecule Ligands (Folic Acid, Anisamide)—Small molecule ligands 

that have good binding affinity and specificity are also suitable for tumor targeting, although 

they are relatively rare. The advantages of using small molecule ligands compared to small 

peptides, proteins, or antibodies may include: easy synthesis, more tolerant to chemical 

modification/conjugation, low immunogenicity, and stable for long-term storage.

The vitamin, folic acid, is the high affinity natural ligand for the folate receptor which is 

over-expressed in a wide range of human cancers, including ovary, lung, breast, 

endometrium, kidney, and brain cancers. Drugs including protein toxins, chemotherapeutic 

agents, oligonucleotides, radioimaging/therapeutic agents, MRI contrast agents, 

liposomes,92 etc. have been modified and targeted with folic acid to various tumors.93–95 

Anisamide96 and haloperidol97,98 are good small molecule ligands for cancer cells over-

expressing the sigma receptor. They include melanoma, non-small cell lung carcinoma, 

breast tumors of neural origin, and prostate cancers.97,99–101 The LPD tumor targeting work 

done in our lab uses mostly anisamide as the targeting ligand.54–56,62

3.2.5. Aptamers—Aptamers are nucleic acid-based ligands ranging in size from 20 to 80 

bases (6 to 26 kDa). They were mostly identified through a procedure called “systemic 

evolution of ligands by exponential enrichment” (SELEX). Due to their unique nucleotide 

sequences, aptamers fold into unique 3D structures and are able to recognize, with high 

affinity, various molecules including proteins, sugars, phospholipids, or even small 

chemicals. One aptamer recognizing VEGF (Macugen®) has been approved by FDA as a 

therapeutic drug for the treatment of age-related macular degeneration (AMD).102 The 

aptamer that recognizes the prostate-specific membrane antigen is so far the most successful 

tumor targeting aptamer. With this aptamer, poly(d,l-lactide-co-glycolide)-block-

poly(ethylene glycol) (PLGA-b-PEG) nanoparticles,103 aptamer-siRNA chimera,104 and 

quantum dots105 have been delivered to prostate cancer xenografts.
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There are additional ligands under development such as protein scaffolds (e.g., affibody and 

monobody, which are protein domain-based frameworks).106 The options for tumor targeting 

ligands will keep growing. Since some targeting ligands may have their biological functions 

after binding to the receptors, choosing them carefully is important. For example, if the 

ligand serves as an agonist, it may promote cancer cell growth. It might not be a good ligand 

for tumor targeting.

3.3. Endosome Escape, Proton Sponge Effect, HII Phase, Ion-Pairs

Getting the nanoparticles endocytosed is not a major issue. The challenge that remains for 

the siRNA delivery field is how to bring the siRNA out of the endosome. For lipid-based 

systems, the mechanism through which cationic lipoplex can trigger endosome release has 

been proposed by Xu and Szoka.107 They proposed that in the endosome, the cationic lipid 

of the lipoplex can form ion-pairs with the anionic endosomal membrane. By excluding the 

interfacial water molecules, the ion-pairs destabilize the endosomal membrane. Furthermore, 

binding of cationic lipid with anionic lipids can form the inverted hexagonal HII phase, 

proposed by Cullis et al.,108 and leads to membrane fusion and release of cargo. Generally 

speaking, cationic lipids with smaller and less charged head groups and more bulky acyl/

alkyl chains favor the HII phase formation.109 This is probably the reason why DOTAP 

(containing two C18:1 acyl chains) is used quite often In liposome transfection formulation 

as a cationic lipid but DSTAP (1,2-distearyl-3-trimethylammonium propane, a close analog 

of DOTAP but with two C18:0 chains) is not.

Cationic lipid is not the only category of cationic molecules that can form ion-pairs with the 

endosomal membrane. Protein transduction domains such as HIV Tat, Drosophila 
Antennapedia transcription factor, herpes simplex virus type-1 VP22 transcription factor, or 

oligo-arginines (R8 or R9) also show similar activity. It is interesting to know that these 

peptides all have multiple arginines but not lysines in their sequences. Sakai and Matile110 

showed that this is because the charged groups of both the cationic guanidinium group of the 

poly-arginine and the anionic phosphate group of the endosomal membrane phospholipids 

contain delocalized electrons. They form stronger charge-charge interaction and hydrogen 

bonding than the interaction between phospholipid and lysine which does not contain 

delocalized electrons. Also, protamine used in the LPD formulation mentioned earlier also 

contains many arginines but not lysine.

Unlike cationic lipids that possess an intrinsic fusogenic property, polyplex formed by 

polymeric cationic carriers such as polyethyleneimine (PEI)111–114 shows a “proton sponge 

effect” for endosome destabilization.115–118 The polyplex has many crowded 1°-, 2°- and 3°-

amines. Due to the crowding effect, these amines show different pKa within the endosomal 

pH range and serve as a buffering “proton sponge.” After endocytosis, the pH inside the 

endosome should drop from physiological pH 7.4 to around pH 5 during the endosome-

lysosome maturation process. Due to the presence of the “proton sponge,” the pH would not 

drop as expected. The ATP-dependent proton-pump on the endosomal membrane would 

transport extra protons and chloride ions (counter ions), resulting in an increase in the 

osmotic pressure. Eventually, the endosome would swell and burst due to the large amount 

of water influx and the polyplex could be released. Polymers containing crowded histidines 
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(imidazoles) or morpholinos also show a similar buffering effect.119 The buffering effect 

may also play a role in protecting siRNA from degradation during the early endosome to late 

endosome transport process.

Verkman et al.118 did an elegant piece of work visually showing the accumulation of 

chloride ions in the endosomes and the release of chloride ions after endosomes burst. 

However, they did not show exactly that the cargo was efficiently released. The endosome 

burst and release of chloride ions does not necessary accompany the release of the cargo of 

the polyplex.

4. ENDOSOME ESCAPE (A PROGRESSING TECHNOLOGY)

Although some self-assembled lipid siRNA tumor targeting nanoparticles already show 

therapeutic effects in some xenograft mouse models, the endosome escape is still inefficient. 

Most of the siRNA delivered to tumor cells are still trapped inside the endosome 

compartment (Li et al. unpublished observation). There might be several reasons for the 

problem: PEG dilemma, lack of ion-pair formation, not small enough particle size, and 

insufficient de-assembly of the particles.

4.1. PEG Dilemma

As previous mentioned, PEGylation is the most commonly used method to protect the bare 

surface of nanoparticles. However, as PEG chains prevent the attachment of opsonins, they 

also impede the contact between nanoparticles and the target cells. Inside the endosome, 

PEG may also prohibit the interaction between the cationic lipids of the lipoplex and the 

anionic endosomal membrane. This is so called “PEG dilemma.”120 Sophisticated designs 

such as tunable stealth liposomes,121 cleavable PEG-lipid linker,120 or acid labile PEG 

molecule might help dealing with this dilemma.

4.2. Enhance Endosome Escape

Boeckle et al.122 have done an interesting study on the effect of free PEI in transfection. 

They compared the gene transfer efficiency between purified PEI-DNA polyplex and un-

purified PEI-DNA polyplex mixture (containing unbound PEI molecules). The result shows 

that without the presence of unbound free PEI, the gene transfer efficiency decreased 

dramatically. By applying free PEI 4 h after purified PEI-DNA polyplex transfection, they 

could rescue the gene transfer efficiency, probably by helping the previously transfected 

purified PEI-DNA polyplex escape from the endosome. This shows that free unbound 

cationic polymers such as PEI or poly-arginine may play a critical role in disrupting 

endosomes by forming ion-pairs with the anionic endosomal membrane. Poly-arginine may 

have stronger activity than PEI due to their ion-pair formation activity described by Sakai 

and Matile.110 If a nanoparticle formulation could sufficiently release free cationic polymers 

inside the endosome, there would be a great chance that the siRNA delivery be significantly 

improved.
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4.3. Particle de-Assembly and Smaller Particles

Besides endosome escape, de-assembly of nanoparticles is also essential for sufficient 

siRNA release. If the structure of the nanoparticles is so stable that they will not release the 

siRNA inside, the siRNA will not be bio-available. De-assembly may take place either in the 

endosome or in the cytoplasm after the endosome escapes. Ideally, it should take place in the 

endosome with the release of endosome disrupting cationic materials, because, even though 

the endosome is disrupted or burst, the “hole” opened on the endosomal membrane may not 

be large enough to allow intact nanoparticles to pass through. The LPD nanoparticles 

established by our lab have a particle size around 120 ~ 150 nm. If the particle size could be 

smaller (perhaps under 100 nm), not only could they escape from the endosome more 

efficiently, the required siRNA dose for tumor killing may also decrease. Furthermore, they 

may reach those tumors with less leaky vasculatures.

5. THERANOSTIC NANOMEDICINES

Tumor imaging is a very powerful clinical technique for tumor detection and therapeutic 

effect monitoring. With the development of multifunctional nanoparticles that can carry both 

drugs and imaging agents in the same formulation,123 monitoring cancer therapeutic effects 

while delivering the therapeutic agents at the same time has become possible. Self-

assembled lipids-based nanoparticles could be one of these multifunctional delivery systems 

for both therapeutic siRNA and a diagnostic agent. This is the so called theranostic smart 

nanomedicines. Since tumor cells will receive therapeutic siRNA and the diagnostic agent at 

the same time, cell-specific real-time monitoring of the therapeutic event can be achieved. 

By monitoring whether the tumor is undergoing apoptosis in the early phase of a given 

treatment, physicians could decide to either continue the treatment or changing the treatment 

strategy.

Apoptosis is a complex mechanism that involves various pro-apoptotic and anti-apoptotic 

molecules inside the cell. There are several methods for detecting apoptosis in vitro now, 

such as staining for the appearance of phosphatidylserine (PS) using annexin V or detecting 

the activation of caspase-3 which is an early apoptosis event. Annexin V is a human 

placental anticoagulant protein with four repeats each containing a putative Ca2+ dependent 

binding site for PS. PS was originally distributed in the inner plasma membrane. During 

apoptosis, the asymmetry of the cell membrane is disrupted, which results in the flip-out of 

PS and can be stained with annexin V as a marker of apoptosis. Several reports have 

demonstrated that annexin V labeled with indium-111, technetium-99 m, iodine-123, 

iodine-124 or fluoride-18 can be used for in vivo study.124–128

Monitoring caspase-3 activity is another widely applied in vitro apoptosis monitoring 

method. Several reports and commercially available kits have been designed based on the 

peptide sequence DEVD (asp-glu-val-asp) found in poly-ADP-ribose-polymerase (PARP), a 

natural substrate of caspase-3. Linking the DEVD sequence with two fluorescent proteins 

for fluorescence resonance energy transfer (FRET) (Fig. 5),129 a fluorophore with a 

quencher,130 or two subunits of luciferase131 as probes for apoptosis have been 

demonstrated in vitro or in vivo.
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Many recent reports demonstrate that liposomes can be loaded with gadolinium (Gd)132–134 

or Maghemite (γ-Fe2O3) nanocrystals135 for magnetic resonance imaging, quantum dots136 

for optical imaging, or64 Cu for positron emission tomography (PET) imaging.137 Among 

all the imaging techniques, MRI can provide good resolution and PET is very sensitive with 

moderate resolution. Both of them have almost no tissue depth limitation, but, so far, they 

can only show the size and location of the tumor. Monitoring therapeutic efficacy based on 

the change in tumor size may not be early enough. On the other hand, taking advantage of 

the FRET with only fluorescence dyes or involving quantum dots as a donor,138 

fluorescence imaging is capable of generating a signal that would change its profile. Thus, it 

has the potential for apoptosis monitoring.

Fluorescence with the wave length within visible range has been routinely used in 

fluorescence microscopy or intravital microscopy. But when it comes to in vivo imaging of 

the whole animal without any invasive procedure, high absorbance or scattering of the 

visible light by the tissues becomes a major issue. Inside the tissue, hemoglobin is the 

primary absorber for visible lights; water and lipids are the major absorbers of the infrared 

light. However, the absorbance coefficients of hemoglobin, water, and lipids are small within 

the near infrared (NIR) range (around 600 ~ 900 nm). Besides, imaging in the NIR range can 

also reduce the auto-fluorescence background from tissue and thus provide improved signal 

to noise ratio. Using advanced imaging methods such as fluorescence molecular tomography 

(FMT) with near infrared fluorophores can provide 7 to 14 cm penetration in tissue,139 

which could be useful in clinical practice.

6. CONCLUDING REMARKS

Lipid-based nanomedicines have been known for their high biological compatibilities. Their 

pharmacokinetics and pharmacodynamics profiles are also well studied. This is a solid 

foundation for further development of advanced self-assembled lipid nanomedicines. The 

work done by our lab and other groups has shown that self-assembled lipid nanomedicines 

can specifically deliver siRNA to tumors in several xenograft and syngeneic models. 

Although the endosome escape of siRNA cargo still has room for improvement, the existing 

results are already promising. Finally, theranostic nanomedicine will be a new generation 

drug with high demand. Self-assembly nanoparticles are capable of carrying various cargos 

as long as these cargos meet the pre-requirement of the self-assembly process. Another 

advantage is that the manufacturing process of self-assembled lipid nanomedicines could be 

easily scaled-up. This also makes self-assembled lipid nanomedicines a versatile 

multifunctional delivery system for theranostic nanomedicine design.
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Fig. 1. 
(A) Preparation of the PEG and PEG-anisamide (PEG-AA) modified LPD. (B) Chemical 

structures of DSPE-PEG2000 and (C) DSPE-PEG2000-anisamide. Reproduced with 

permission from [54], S. D. Li and L. Huang, Targeted delivery of antisense 

oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol. Pharm. 3, 579 

(2006). © 2006.
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Fig. 2. 
The multifunctional envelope-type nano device (MEND) has a condensed nucleotide core 

coated with lipid envelope. The lipid envelope contains membrane fusogenic lipids and is 

further modified with PEG, targeting ligand and protein transduction domain peptides. 

Reproduced width permission from [58], K. Kogure et al., Multifunctional envelope-type 

nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 60, 559 

(2008). © 2006.

Tseng and Huang Page 20

J Biomed Nanotechnol. Author manuscript; available in PMC 2017 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Tissue distribution study of siRNA formulated in different LPD formulations. (A) FAM-

labeled siRNA was formulated into LPD formulations and i.v. injected into nude mice 

through tail vein. After 4 hours, tumor and major organs were collected. FAM fluorescence 

signals were detected by Xenogen IVIS-100 imaging system. (B) Quantitative results of 

FAM-siRNA tissue distribution. Data =mean ±SD, n = 3–4. NP, nanoparticles. Reproduced 

with permission from, [55], S. D. Li et al., Tumor-targeted delivery of siRNA by self-

assembled nanoparticles. Mol. Ther. 16, 163 (2008). © 2008.
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Fig. 4. 
LPD nanoparticles (NP) mediated siRNA delivery for metastatic tumor growth inhibition. 

Lung–homing B16F10 melanoma cells were i.v. injected into mice. 10 days later, mice were 

i.v. injected with siRNA twice (0.45 mg/kg, MDM2/c-myc/VEGF = 1:1:1, weight ratio). 

After six days, the mice were sacrificed and observed for melanoma growth in the lung. 

Only the mice received siRNA in targeted NP showed significant tumor growth reduction. 

Reproduced with permission from [62], S. D. Li et al., Efficient oncogene silencing and 

metastasis inhibition via systemic delivery of siRNA. Mol. Ther. 16, 942 (2008). © 2008.
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Fig. 5. 
DEVD FRET probe containing DEVD as the specific cleavage site for caspase-3, Cyan 

Fluorescent Protein (CFP) as the FRET donor, and Yellow Fluorescent Protein (YFP) as the 

FRET acceptor. (A) Without the presence of caspase-3, CFP and YFP are linked by DEVD 

peptide. Upon CFP excitation, the energy was transferred to YFP by FRET. (B) With the 

presence of caspase-3, the DEVD linker was cleaved and the FRET between CFP and YFP 

was disappeared. (C) DLD-1 cell expressing DEVD FRET probe was treated with 1 μM 

staurosporine for inducing apoptosis. The changes of CFP/YFP and FRET/YFP emission 

ratio indicate the cleavage of the DEVD FRET probe. Reproduced with permission from 

[129], C. L. O’Connor et al., Intracellular signaling dynamics during apoptosis execution in 

the presence or absence of X-linked-inhibitor-of-apoptosis-protein. Biochim. Biophys. Acta. 
1783, 1903 (2008). © 2008.
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