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Abstract: Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals,
while its application is still limited in titanium alloy mainly due to its low formability. Recent works
showed that SSP could effectively enhance the formability and mechanical properties of titanium
alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated
with the microstructure, which endow the alloy with different chemical and physical properties.
Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance
is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the
burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging
temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with
different burning durations, velocities, and microstructures of burned sample. The results showed
that the burning process is highly dependent on the forging temperature, due to the fact that higher
temperatures would result in more Ti2Cu precipitate within grain and along grain boundaries. Such
a microstructure hinders the transport of oxygen in the stable burning stage through the formation of
a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that
the burning resistance of the alloy can be effectively tuned by controlling the temperature during the
semi-solid forging process.

Keywords: Titanium; semi-solid forging; temperature; microstructure; burning behavior

1. Introduction

Owing to the high strength and excellent corrosion resistance, titanium and titanium alloys have
shown potential engineering applications, such as biomedical engineering, the chemistry industry, and
aerospace [1]. However, the extensive applications of titanium and titanium alloys have been greatly
limited for their poor formability (such as high deformation load and low thermal conductivity) and
high processing cost [2]. In this regard, plenty of research efforts, such as advanced forging/rolling
technologies [3,4], alloying with low-cost metal element [5], and heat treatment [6], have been devoted
to improve the formability of titanium alloys. Semi-solid processing (SSP) is one of the representative
techniques that are proposed to improve the formability of metal alloys, such as titanium alloys [7–10],
aluminum alloys [11–15], magnesium alloys [16–18], and steel products [19–21]. Fundamentally,
SSP is a processing of mushy or semi-solid metals or alloys, where the alloy consists of solid and liquid
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phases [22]. In such a state, the liquid component encloses the solid crystals, which allows the slips
and the rotations of crystals, enhances the formability of metals, and reduces the processing load in the
forming of complicated products [23].

To successfully apply the SSP technique, the alloy should have a definite solid-liquid region with
a wide freezing range before processing. One crucial parameter is the solid-liquid fraction in the
alloy, which largely determines the SSP temperature. Higher amounts of the solid fraction are usually
preferred as they reduce the chance of volumetric defects, increase the stability of the material under
its own weight, promote the smooth laminar flow of liquid, and also improve the surface quality and
the internal structure of the formed components [24]. Previous works on the deformation behavior
of the metals [7,25] have shown that a solid fraction between 75% and 95% is commonly suitable
for SSP, such as semi-solid forging [26], rolling [17] and extrusion [16]. In addition to formability,
the SSP temperature plays a critical role in the final microstructure of the alloys (which determines
their chemical and physical properties), including the distribution and morphology of grain and
precipitation during solidification. The study on the semi-solid deformation and forging behavior of
aluminum alloys, such as Al-Si [27], and Al-Cu alloy [28], showed a high-temperature dependence on
microstructure, especially on precipitation. Similar results were also reported by semi-solid extruding
of magnum alloy [29] and steel [30] where, by controlling the temperature and composition, a high
potential of semi-solid forging in improving the formability and mechanical properties of metal product
was suggested.

For the SSP of titanium alloy, a burn-resistant Ti-Cu alloy (Ti14) with α+Ti2Cu phase structure
designed for potential application in advanced engines, is considered to be suitable for semi-solid
forging due to the low melting Ti2Cu phase (990 ◦C) and wide freezing [8,31,32]. The previous
works on deformation and forging behavior of Ti14 alloy have demonstrated that the mechanical
property was directly related to their microstructural characteristics, especially on morphology and
the nature of Ti2Cu precipitates that depend on SSP temperature [33,34]. However, as a key structural
material for advanced aero-engines, the influence of the forging temperature on the burn characteristic,
which is a crucial requirement for burn resistant alloys, is still unknown. In the literature, plenty
of works have assessed the factors that affect the burn characteristics of titanium alloys, such as
the composition [35–37] and critical ignition boundary (such as oxygen partial pressure and surface
pressure) [38–40]. However, none of the studied samples are forged at the semi-solid state. Therefore,
this work is intended to acquire the burning behavior of the burn-resistant Ti14 alloy forged in the
semi-solid state under different temperatures. For such a purpose, a modified direct current simulation
burning (DCSB) method [40] was employed. Through the comprehensive analysis of the burning
characteristics, e.g., flame height, duration, velocity, and burned sample structure, it is found that
the burning behavior and burn resistant mechanism of Ti14 alloy has high dependence on the forged
microstructure, which may consummate the basic research for semi-solid processing of burn-resistant
titanium alloys.

2. Experimental Sections

2.1. Sample Preparation

The burn-resistant Ti14 alloy with α+Ti2Cu phase was selected for semi-solid forging.
According to atomic emission spectroscopy, the exact composition of the extruded bar alloy was
Ti-85%Cu-14%Al-0.3%Si-0.7% alloy. Since the melting point of Ti2Cu is 990 ◦C [7], which means that
the Ti2Cu will change to liquid and the alloy will change to a semi-solid state when the deformation or
testing temperature is over 990 ◦C. Three temperatures (1000 ◦C, 1050 ◦C, and 1100 ◦C) were selected
in the solid + liquid (S + L) region to carry out the semi-solid forging. These temperatures were
chosen to ensure smooth laminar flow of liquid during the deformation [7,33], as liquid segregation
and leakage will occur for higher temperature [34] (due to the low thermal conductivity of titanium).
The isothermal holding time for the alloy in the semi-solid state before forging was 10 min. The forging
die was coated with the graphite lubricant before the forging, and heated to 1000 ◦C to avoid thermal
losses during the forging. A radiation thermometer was used to measure the surface temperature of
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the specimen prior to the test, and the forging operations were conducted in a hydraulic press at a die
speed of 500 mm/s [33]. Samples were subjected to 60% reduction at each forging temperature. After
the forging, the alloy was immediately quenched in hot water to avoid microstructure coarsening due
to the longer solidification time.

Figure 1 shows the microstructures of the alloy at different forging temperatures. As reported
in our previous work [33], the forged alloy mainly consisted of α-Ti matrix and Ti2Cu precipitates.
By estimating the accumulated Ti2Cu fraction around the grain boundary, the semi-solid forged Ti14
alloy possesses much higher percentage of Ti2Cu precipitates comparing with that of the solid forged
sample. Increasing the semi-solid forging temperature, a higher percentage of Ti2Cu precipitates on
grain boundary is observed, which is accompanied by a decreased percentage within grain. This
fact leads to a slightly reduced mechanical property of the Ti14 alloy (tensile strength, yield strength,
elongation, and ductility) at higher semi-solid forging temperature. However, comparing with the
solid forged sample, the semi-solid forged sample has superior tensile strength and yield strength,
as shown in Table 1.

Materials 2016, 9, 697 3 of 13 

 

the surface temperature of the specimen prior to the test, and the forging operations were conducted 
in a hydraulic press at a die speed of 500 mm/s [33]. Samples were subjected to 60% reduction at each 
forging temperature. After the forging, the alloy was immediately quenched in hot water to avoid 
microstructure coarsening due to the longer solidification time. 

Figure 1 shows the microstructures of the alloy at different forging temperatures. As reported in 
our previous work [33], the forged alloy mainly consisted of α-Ti matrix and Ti2Cu precipitates. By 
estimating the accumulated Ti2Cu fraction around the grain boundary, the semi-solid forged Ti14 
alloy possesses much higher percentage of Ti2Cu precipitates comparing with that of the solid forged 
sample. Increasing the semi-solid forging temperature, a higher percentage of Ti2Cu precipitates on 
grain boundary is observed, which is accompanied by a decreased percentage within grain. This fact 
leads to a slightly reduced mechanical property of the Ti14 alloy (tensile strength, yield strength, 
elongation, and ductility) at higher semi-solid forging temperature. However, comparing with the 
solid forged sample, the semi-solid forged sample has superior tensile strength and yield strength, as 
shown in Table 1. 

 
Figure 1. Microstructures of Ti14 alloy at the forging temperature of: (a) 1000 °C; (b) 1050 °C; and  
(c) 1100 °C. Right figures show the enlarged views of the grain boundaries as obtained from scanning 
electron microscope (SEM, JSM-6700, JEOL Company, Osaka, Japan) [33]. 

Figure 1. Microstructures of Ti14 alloy at the forging temperature of: (a) 1000 ◦C; (b) 1050 ◦C;
and (c) 1100 ◦C. Right figures show the enlarged views of the grain boundaries as obtained from
scanning electron microscope (SEM, JSM-6700, JEOL Company, Osaka, Japan) [33].



Materials 2016, 9, 697 4 of 12

Table 1. The relationship of the Ti2Cu fraction on grain boundary (fv), tensile strength, and ductility
with the forging temperature for Ti14 alloy [33].

Properties fv (%) UTS (MPa) ∆UTS (%) YS (MPa) ∆YS (%) El (%) ∆El (%)

SF 950 ◦C 18 790 - 625 - 15 -
SSF 1000 ◦C 33 990 25.3 880 40.8 9 −40
SSF 1050 ◦C 35 970 22.3 855 36.8 8.5 −43.0
SSF 1100 ◦C 39 900 14.0 800 28 6.5 −56

Note: The Ti2Cu fraction on the grain boundary (fv) is estimated based on the qualitative metallography.
SF and SSF represent conventional solid forging and semi-solid forging, respectively. UTS, YS, and
EI denote the ultimate tensile strength, yield strength, and elongation. The relative changes of the
mechanical properties of the alloy comparing with that obtained from SF are estimated as the following:
∆UTS (%) = (UTSSSF − UTSSF)/UTSSF × 100%, ∆YS (%) = (YSSSF − YSSF)/YSSF × 100%,
and ∆El (%) = (ElSSF − ElSF)/ElSF × 100%.

2.2. Burning Test

A modified direct current simulation burning (DCSB) method was employed to acquire the
burning behavior of the Ti14 alloy [36,37], and the examined sample has a similar cuboid-shape
(with a size of 5 × 10 × 20 mm3) for comparison purposes. As schematically shown in Figure 2, a
direct current of 5A in a pre-mixed gas was used to ignite the sample [35], and the direct current was
turned off immediately after successful ignition. In order to investigate the influence of gas condition
on the burning characteristics, the pre-mixed gas (O2/N2) with the oxygen partial pressure (Co) from
20% (air condition) to 100% (oxygen condition) and flow velocity 15 m/s was controlled by the gas
supply system (Paker F65). Among that, the burning of the titanium alloy mainly occurs in the air
condition (Co = 20%) [35,36,40], which is the major focus in this study. A digital high-speed video
camera (Pco 1200 hs, PCO Company, Berlin, Germany) was used to record the burning behaviors of
the alloy, including flame height, burning duration, and velocity. The images were taken at a frame
interval of 500 µs and an exposure time of 10 µs. To avoid exceeding the light saturation level of the
camera, neutral density filters were placed between the burning sample and the microscope. The
temperatures were measured using both R thermocouples when ignition occurred. The thermocouple
was placed in the center of samples. X-ray diffraction (XRD, XRD-1700, Bluker Company, Berlin,
Germany) and energy dispersive X-ray spectroscopy (EDS, JSM-6700, JEOL Company, Osaka, Japan)
microanalysis were used to investigate the burned products and chemical composition of selected
regions of burned structure.
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3. Results and Discussion

3.1. The General Burning Behavior

The burning behavior of titanium alloy usually occurs as a two-stage process, ignition and
stable burning stages [35]. The two stages are usually distinguished by the gradient change of
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the heat/temperature caused by different chemical reactions [40]. Such burning characteristics are
commonly obtained from metals, such as lithium alloys [41], magnesium alloys [42], and particles
of zinc [43] and titanium [44]. Figure 3 shows a representative temperature profile measured at the
center of the sample during burning (from the alloy forged at a temperature of 1100 ◦C). To note that
since the thermocouple was placed at the middle of the sample, the recorded temperature does not
reflect the actual temperature at the burning site (due to the low conductivity of the alloy, ~21.9 W/mK
at 300 K [45]). Due to this fact, the ignition temperature cannot be accurately measured and, thus, not
discussed in this work. In spite of this, the changing tendency of the burning temperature can be well
reflected by this profile.
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Theoretically, the burning behavior of the Ti14 alloy is dominated by the burning of titanium since
it is the major element of the alloy (Ti wt % > 85 wt %). In this regard, several chemical reactions would
happen during the burning of titanium in air as summarized in Table 2. During the ignition period,
the sample temperature increases gradually, and oxygen (from air) plays a crucial role (Reaction a).
Afterwards, several reactions occur simultaneously (Reactions b–f), including the further melting of
Ti (Reaction b) due to the intensive heat release from Reaction a, and the oxidation reaction between
liquid Ti and O (Reaction c).

Table 2. Chemical reactions of titanium combustion in air [45].

Burning Stage Chemical Reaction Notation.

I Ti(s) + O2(g) → TiO2; ∆H0
298 = −944 kJ/mol a

II

Ti(s) → Ti(l); ∆H0
298 = +15 kJ/mol b

Ti(l) + O2(g) → TiO2(s); ∆H0
298 = −929kJ/mol c

1/2Ti(l) + 1/2TiO2(s) → TiO(l); ∆H0
298 = −472kJ/mol d

TiO2(s) → TiO2(l); ∆H0
298 = +67kJ/mol e

Ti(l) + 1/2O2(g) → TiO(s); ∆H0
298 = −526kJ/mol f

Note: where ∆H0
298 is room temperature standard enthalpy change of reaction. s, l, and g representing solid

phase, liquid phase, and gas phase, respectively.

The two-stage burning process has been found in many burning processes of metals [41–43], and
can be explained from the perspective of the controlling mechanisms, which is characterized by the
ratio (ε) between the controlling chemistry kinetics (RKin) and controlling oxygen transport (RTra) [41],
i.e., ε = RKin/RTra = A/(B + Co). Here A is determined by a range of factors, including the reaction
rate, burning radius, gas pressure and density, burning temperature, and diffusion coefficient. B is
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the quality stoichiometric coefficient. Co is the oxygen partial pressure. During the ignition stage
(i.e., ε >> 1), the oxygen diffusion rate is small, and the surface oxygen concentration is very high,
which reveals that even the burning radius and burning temperature is small in ignition, the burning
of the alloy was controlled by chemical reaction kinetics. Afterwards, in the stable burning stage, the
burning process was majorly controlled by the transport of oxygen with ε << 1.

3.2. Ignition Stage

The ignition stage can be characterized by brightness, which is caused by the complex oxidation
of Cu and Ti in the alloy and is controlled by oxidation chemistry kinetics [46,47]. Ignition occurred
when enough Ti reacts with oxygen to generate a visible flame on the sample surface (Figure 4). The
increase of oxygen partial pressure (Co) in this experiment, even the gas pressures (Po) in laser ignition
tests [36,44,47] and friction pressures (Pf) in frictional ignition tests [40], will strengthen the burning
chemistry kinetics and lead to shorter ignition time. In order to know the influence of oxygen partial
pressure and forging sample on the burning chemistry kinetics, the ignition time where the time
duration from heating to the detected ignition (from the recorded images) is performed as shown
in Figure 5. As compared in Figure 5, the ignition time decreases generally with the increases of
oxygen partial pressure for all samples. Shafirovich [48] and Molodetsky [45] reported that burning
oxidation chemistry kinetics of titanium alloy in ignition is mainly dependent on the surface oxygen
concentration and required reaction heat, while the addition of alloying element such as V, Cu, and
Cr play an ignorably important role in determining the ignition time of the alloy, when the surface
oxygen concentration and heat are sufficient. Similar results are also obtained in the ignition of Ti14
alloy, where burning chemistry kinetics exhibit high dependence on oxygen partial pressure. Overall,
the forging temperature does not show a clear impact on the ignition time of the Ti14 alloy.
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Figure 4. Captured images during burning for Ti14 alloy as obtained from: forging temperature
of 1000 ◦C after ignition at the time of (a) 0.4; (b) 3.2; and (c) 6.4 s; forging temperature of 1050 ◦C after
ignition at the time of (d) 0.4; (e) 2.4; and (f) 5.6 s; and forging temperature of 1100 ◦C after ignition
at the time of (g) 0.4; (h) 2.4; and (i) 4.0 s. The oxygen partial pressure (Co) is 20% for all the three
burning tests.
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3.3. Stable Burning Stage
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As illustrated in Figure 6a, the burning duration increases with the oxygen partial pressure
(Co). Such a result is reasonable as higher Co will enhance the burning process and lead to more
sufficient burning, which will on the one hand increase the sample weight by oxidation reaction and
on the other hand lead to longer burning duration [48]. From Figure 6b, it is found that the burning
velocity shares a same increasing profile as that of the burning duration, which indicates that the
increase of sample weight is more profound compared with that of the burning duration at higher Co.
It is interesting that the higher forging temperature is intended to result in a shorter burning duration,
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as well as slower burning velocity in all tested oxygen partial pressures. For instance, the burning
velocity (vb) at 20% Co is around 7.8 mg/s (flow velocity of 15 m/s) for the Ti14 alloy obtained
at 1000 ◦C forging temperature, which is two times higher than its counterpart forged at 1100 ◦C
(~3.8 mg/s). In comparison, the as-casted Ti14 alloy is reported to have a vb of around 6.7 mg/s
under the flow velocity of 10 m/s [49]. It is noticeable that although higher flow velocity would
enhance the burning process (i.e., increase vb), the Ti14 alloy as obtained from forging temperature
of 1050 and 1100 ◦C possesses much smaller vb (even under a higher flow velocity). Such obvious
deviations among the vb are considered to be induced by the difference in microstructure and
composition of the alloys [32], which vary vastly with the applied processing technique (i.e., casting or
semi-solid forging) and processing parameters as forging temperature (Figure 1).

To reveal the results in such different burning behaviors, the cross-sectional morphologies of the
burned sample at a typical oxygen partial pressure of 20% were compared. Similar with the results
from that of Ti-V-Cr alloy [35,40] and TC4 alloy [49], it is identified an obvious burned product zone
(BPZ), fusion zone (FZ), and heat affected zone (HAZ) for all examined samples (Figure 7a–c). Due
to its easy fusion during burning, the burned product zone and fusion zone cannot be distinguished
clearly from each other [25]. As illustrated in insets of Figure 7a–c, a typical burned surface morphology
of titanium alloy with porous TiO2 particles was observed [40,50] (Figure 7a–c, blue and red frame).
Such a porous structure acts as a transporting channel for oxygen during burning.
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Figure 7. The SEM image of the burned Ti14 alloy as obtained from the forging temperature of:
(a) 1000; (b) 1050; and (c) 1100 ◦C (Co = 20%). A, B, C represent the BPZ/FZ, Cu-rich layer, and
HAZ, respectively. The first two insets for each figure are the SEM (blue frame) and SEM-BSE
(red frame) surface morphologies of the burning products, respectively. The last inset for each figure is
the OM image (green frame), which shows the microstructure of Ti2Cu precipitates in HAZ from the
corresponding Ti14 sample after burning; and (d) EDS of the burned structures which clearly show the
distribution of Cu.
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According to the XRD results (Figure 8a), there exists a mixture of CuO and Cu2O among the TiO2
particles in all samples. In addition, a certain amount of Ti2Cu and Al2O3 phases were also observed
on the surface of the burned products. Specifically, the alloy obtained from higher forging temperature
possesses more CuO and Cu2O phases after burning. To note no TiN phase is detected from the burned
products, which is reasonable, as TiN will be further oxidized to TiO2 due to the high oxygen reactivity
under air flow [51,52].
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It is interesting that a clear Cu-rich layer was observed at the interface of BPZ/FZ and HAZ
in all tested samples, as highlighted in Figure 7a–c (region B), which is not observed on the burn
morphologies of Ti-V-Cr [35,40] and as-casted Ti-Cu burn resistant alloy [49]. The average thickness of
Cu-rich layer increases with the forging temperature and a thickness of about 22 µm is obtained
after being forged at 1100 ◦C, which is more than 50% larger than that after forged at 1000 ◦C
(~14 µm). In particular, more Ti2Cu is found to precipitate and segregate to form the Cu-rich layer at
higher forging temperature, which leads to thicker Cu-rich layer. It is supposed that this Cu-rich layer
is behaving like a wall during the burning process, which will on the one hand reduce the exposure
of titanium to oxygen, and on the other hand block the oxygen transportation channels [45,47,50].
In addition, the Cu-rich layer will reduce the intensity of oxidation reaction and hinder the burning of
the alloy. Such assumption agrees with our experimental observations and the alloy forged at higher
temperature exhibits smaller average flame height (or flame intensity) during the whole burning
process, as compared in Figure 8b.

For the low thermal conductivity and oxidation exothermic reaction, the microstructure of the
heat affected zone with different forging temperature is consisted of coarse grain and acicular Ti2Cu
precipitates (Figure 7a–c green frame). It is observed that more Ti2Cu is precipitated and segregated
to form a Cu-rich layer with higher forged temperature during burning, which is a benefit for the
isolation of oxygen.

The above discussion has clearly shown that the Ti2Cu precipitates, as generated by solid-state
forging, greatly influences the burning behavior of the Ti14 alloy, and this role can be clearly seen from
the schematic burning model, shown in Figure 9. It is well known that many factors are considered
to affect the burning behavior of titanium alloy (such as heat, fuel, and metal burning reaction rates),
the oxygen plays the most dominating roles [46]. The general results have shown that the burning of
titanium is maintained by assimilating oxygen from the air and it is difficult to prevent the transport
of oxygen (due to the porous structure after burning, i.e., the TiO2 particles). In this regard, the
semi-solid forging provides a new avenue to enhance the burning resistance of the Ti14 alloy, through
the generation of Ti2Cu precipitates in the alloy. In summary, the Ti2Cu precipitates will form a kind of
oxygen isolation Cu-rich layer during burning, which improve the burning resistance of Ti14 alloy.
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Moreover, the Ti2Cu phase will melt before the burning, which will, on the one hand, consume part of
the heat, and on the other hand, act as a lubricant on the surface to reduce the burning possibilities,
especially under high-speed impact or friction.
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Figure 9. Schematic model showing the role of the Ti2Cu precipitates in the forged Ti14 alloy (as
generated from the SSP) during the burning process.

4. Conclusions

Through a series of burning tests of the semi-solid forged Ti14 alloy, it is found that the semi-solid
forging provides a new avenue to improve the burning resistance of the Ti14 alloy. The Ti2Cu phase
precipitated during the semi-solid forging plays an important role in burning tests, since it could
hinder the transport of oxygen in a stable burning stage through forming a kind of oxygen isolation
Cu-enriched layer. Additionally, the Ti2Cu phase melts before burning, which consumes part of the
heat (and reduces the alloy temperature), and may behave as a lubricant under dramatic impact
and/or high-speed friction. These results suggest that the burn resistance of the Ti14 alloy can
be effectively controlled through the semi-solid forging temperature, where the higher the forging
temperature, the more Ti2Cu precipitates are obtained, i.e., the better burning resistance achieved.
This may consummate the theoretical basis for the application of semi-solid processing technology of
burn-resistant titanium alloy.
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