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SUMMARY

We present a systems strategy that facilitated the development of a molecular signature for 

glioblastoma (GBM), composed of 33 cell-surface transmembrane proteins. This molecular 

signature, GBMSig was developed through the integration of cell-surface proteomics and 

transcriptomics from patient tumors in the REMBRANDT (n=228) and TCGA datasets (n=547) 

and can separate GBM patients from controls with an MCC value of 0.87 in a lock-down-test. 

Functionally, 17/33 GBMSig proteins are associated with TGFβ signaling pathways, including: 

CD47, SLC16A1, HMOX1 and MRC2. Knockdown of these genes impaired GBM invasion, 

reflecting their role in disease-perturbed changes in GBM. ELISA assays for a subset of GBMSig 

(CD44, VCAM1, HMOX1, and BIGH3) on 84 plasma specimens from multiple clinical sites 

revealed a high degree of separation of GBM patients from healthy controls (AUC 0.98 in ROC). 

Additionally, a classifier based on these four proteins differentiated the blood of pre- and post-

tumor resections, demonstrating potential clinical value as biomarkers.

eTOC Blurb

Multidimensional analysis of GBM cell-surface proteins reveals a disrupted membrane-signaling 

network that can be identified from the blood of GBM patients, a subset of which can distinguish 

between normal and diseased individuals.
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INTRODUCTION

A systems approach that integrates multi-omic measurements offers an avenue for better 

understanding the emergent properties and complexities of a disease process. Considering 

the recent advancements in omics technologies and machine learning, the power of a 

systems approach, in contrast to the single parameter atomistic approach, can enable the 

development of molecular signatures for complex diseases such as cancer (Sung et al., 

2012). However, such an approach that integrates data types across multiple sources also 

needs empirical validation since the separation of true disease signal from noise that arises 

out of variability in omics platforms-both biological and technical is essential. Here we have 

attempted to develop such a molecular signature for glioblastoma (GBM) through the 

integration of high-resolution proteomics and transcriptomics supported by end-to-end 

experimental validation.

Despite significant improvements in treatment and survival outcomes for other cancers, the 

median survival rate for GBM with treatment is still only 15 months—a figure that has been 

largely unchanged for decades (Demuth T, 2004; Mrugala, 2013; Delyon et al., 2015; 

Grabowski and Sehouli, 2015; Jorgensen and Knudtson, 2015; Limani et al., 2015; Milroy, 

2015; Rollig et al., 2015). MRI scans are used to diagnose or evaluate tumor progression, but 

these studies are often difficult to interpret due to variability in the appearance of the tumor 

and include a degree of subjectivity (Thompson et al., 2011). The field of neurooncology 

would benefit from a blood-based molecular signature of GBM that could complement MRI 

scans and existing genomic tests (Hegi and Stupp, 2013; Kurscheid et al., 2015; Murat et al., 

2008; Stupp et al., 2006).

Most attempts at developing robust biomarkers have failed to make it to the clinic (Omenn et 

al., 2012; Sung et al., 2012), and there is a process of validation that must be followed to 

generate a robust molecular signature appropriate for clinical use. That is not what we will 

present herein – that will be a subsequent downstream evaluation. Rather, here we have 
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focused on the development of a molecular signature, GBMSig, which defines the set of 

transmembrane proteins whose transcript concentrations are perturbed in GBMs compared 

to healthy control tissues and on identifying the extent to which some of these have been 

released into the blood and can be observed by targeted mass spectrometry.

Cell-surface transmembrane proteins occupy a strategic location between the cell and its 

microenvironment, and can propagate signals from both exofacial and cytoplasmic ends of 

the membrane (Chen et al., 2008; De Marco et al., 2013; Kandouz, 2012; Murai and 

Pasquale, 2010; Pasquale, 2010). Since aberrant expression of these proteins on the cell-

surface is known to disrupt normal cell activities and influence neoplastic transformation 

(Okumura et al., 2004; Teh and Chen, 2012), we hypothesized that integration of 

transcriptomic and proteomic expression data for these proteins would enrich for putative 

targets that could be the basis for a molecular GBM signature with a higher probability of 

being mechanistically linked to the underlying pathology. Cell-surface transmembrane 

proteins are often cleaved and shed into the blood in pathological conditions, making them 

ideal targets for diagnostic blood markers (Li et al., 2013; Shao et al., 2012; Varady et al., 

2013).

Cell-surface-transmembrane proteins tend to be low-abundant in the blood and are the 

proverbial needles in the haystack, presenting significant challenges in their detection even 

after depletion of highly abundant proteins. Reproducible quantification of these low 

abundant proteins can only be achieved after they have been identified. To first identify 

candidate tumor-derived, cell-surface transmembrane proteins, we performed comparative 

cell-surface proteomics analyses of four relevant GBM cell lines: CD133+ cancer stem cells, 

healthy neural stem cells, as well as the GBM cell lines U87MG and T98. Considering the 

possibility that the protein expression profile could be altered for a variety of reasons, 

including in-vitro culturing (Ertel et al., 2006; Vogel et al., 2005), we integrated cell-surface 

proteomics data with primary GBM tissue transcriptomic compendia of the REMBRANDT 

and TCGA. This integrative approach (Figure 1) helped us to verify mRNA expression of 

corresponding proteins identified through shotgun proteomics and also to develop a robust, 

GBM-specific membrane signature (GBMSig) composed of 33 proteins that reflects the 

biology of GBM with potential for tissue and blood-based diagnosis.

RESULTS

Compositional analysis of GBM cell-surface proteome by shotgun proteomics

There is significant heterogeneity across tumors of individuals, even within each of the four 

molecular subtypes. To capture some of this heterogeneity, we performed cell-surface 

proteomics on four cell lines including two GBM cell lines UMG87 and T98, a GBM cancer 

stem cell line (grown at the source, Celprogen, that ensured CD133 expression) and a 

healthy neural stem cell line (positive for putative stem cell markers tub iii, oct-4, sox-2, and 

nestin from Millipore). Cell-surface proteins were labeled and captured with membrane-

impermeable sulfo-NHS-SS-biotin from intact cells (Figure S1).

Captured cell-surface proteins were subjected to high-resolution mass spectrometry in 

triplicate (technical replicates) and the proteins were identified using the Global Proteome 
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Machine [(the GPM) (http://www.theGPM.org)] with minimum log expectation scores of 

<10−3 (Craig and Beavis, 2003, 2004; Fenyo et al., 2007; Ghosh et al., 2010). We identified 

a total of 868, 813, 541, and 564 non-redundant proteins from U87MG, T98, neural stem 

cell, and cancer stem cell populations, respectively (Figure 2A–D and Table S1). While our 

experimental approach was designed to enrich for cell-surface proteins, we also employed 

the transmembrane prediction algorithm TMHMM (Krogh et al., 2001; Moller et al., 2001) 

to identify those cell-surface proteins with transmembrane domains from the total identified 

proteins. Although this filtering step was rather strict and likely eliminated several true 

positives, we were left with 157, 154, 98, and 80 cell-surface transmembrane proteins in 

U87MG, T98, neural stem cell, and cancer stem cell lines, respectively. Overall 274 different 

cell-surface transmembrane proteins were identified from all four cell lines. Among cell-

surface transmembrane proteins identified, we found 53 cluster-of-differentiation (CD) 

markers, which in general offer an immunological basis for separating different cell types 

(Beare et al., 2008; Erber, 1990).

We also identified 98 multi-transmembrane domain containing cell-surface proteins, which 

are underrepresented in whole-cell proteomic datasets because of their hydrophobicity and 

limited cellular abundance. As would be expected, functional classification of these proteins 

highlighted the enrichment of those biological processes that are known to be associated 

with cell-surface activities such as cell adhesion and migration, transport, and bi-directional 

signaling (Figure 2E–F). We also observed a difference in enrichment of immune regulatory 

processes among all three distinct cancer cell lines (U87MG, T98, and cancer stem cell line) 

compared to the healthy neural stem cells—reflective of the functional differences between 

these cell types (Table S1). Our cell-surface proteome analysis identified transmembrane 

proteins expressed among various GBM cell lines related to different aspects of GBM 

biology. This approach provided us with a list of proteomic targets that, upon further 

selection based on RNA expression (described below), were good candidates for detection 

and measurement by quantitative selected reaction monitoring (SRM) mass spectrometry. 

The XML data files are available for viewing at http://human.thegpm.org/tandem/

thegpm_upview.html. Unique Global Proteome Machine IDs for proteins identified in each 

cell line are provided in the key resources table of STAR Method section of this paper.

Differentially expressed cell-surface transmembrane proteins in GBM

For a candidate list of differentially expressed transcripts between tumor and non-tumor 

regions of the brain, we utilized microarray data from the REMBRANDT tissue source 

(http://rembrandt.nci.nih.gov). Out of 274 cell-surface transmembrane proteins identified 

from the proteomics study, we found expression data for 202 (532 independent probes) 

corresponding transcripts in REMBRANDT. Expression levels in the tumor transcriptomes 

were, on average, much more abundant than those from their normal counterparts, possibly 

as an artifact of the small number of available normal control samples, but also likely due to 

a real difference in transcript expression. Because of the small number of control samples, 

we used a conservative cutoff of two-fold average expression change with FDR<0.05. 

Among the resulting 202 selected transcripts, we observed 155 of them were upregulated 

and 47 were down-regulated (Figure 3A). To identify GBM-specific cell-surface 

transmembrane protein expression changes, we filtered out transcripts found to be 

Ghosh et al. Page 4

Cell Syst. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.theGPM.org
http://human.thegpm.org/tandem/thegpm_upview.html
http://human.thegpm.org/tandem/thegpm_upview.html
http://rembrandt.nci.nih.gov


differentially expressed in non-GBM brain diseases such as astrocytoma (N=148 tumors) 

and oligodendroma (N=67 tumors) relative to the same REMBRANDT control samples. 

This filtering approach further reduced the number of candidate cell-surface transmembrane 

proteins from 202 to 33 (Figure 3A–F and Figure S2).

To increase confidence that these 33 candidate proteins could represent real differences 

between case and control samples, we tested their performance as a GBM signature 

(designated as GBMSig) in an independent dataset: TCGA (The Cancer Genome Atlas, 

2008) (N=547 GBM tumor samples and 10 healthy brain tissues). We designed a Support 

Vector Machine (SVM) classifier (C. Cortes and Vapnik, 1995) with parameters tuned in 10-

fold cross validation on the REMBRADT training set (Figure S2A). We then classified the 

TCGA test set with a lock-down test (Figure S2B). We obtained a Mathew’s correlation 

coefficient (MCC) of 0.87, exhibiting 99% positive predictive value and 89% negative 

predictive value for our classifier. Of note, while the high predictive values for both 

REMBRANDT and TCGA should be evaluated in the light of the disproportionately small 

control samples, the purpose of this step was to evaluate the robustness of the targets 

following integration of the proteomic and transcriptomic datasets and thus this 

transcriptomic step was a means for helping to select the protein signature (GBMSig) 

presented herein and not an end in and of itself.

Principal component analysis (PCA) of the GBMSig genes and individual specificities and 

sensitivities from ROC analyses of training and validation set (TCGA) are presented in 

Figures 3C–3F and Table S2 respectively. Taken together, these results support the predictive 

power of the 33 protein GBMSig classifier and suggest that the integration of both 

proteomic and transcriptomic data and stringent filtering have enriched for candidate 

proteins of interest that might be quantitatively different in their expression between GBM 

and control patients.

Quantitative SRM assays for GBMSig

As an initial step to evaluating a subset of GBMSig as biomarkers in the blood, we 

developed quantitative SRM assays for all 33 proteins (Li et al., 2013; Picotti and Aebersold, 

2012;Bereman et al., 2012). Our earlier cell-surface protein profiling of GBM cell lines 

provided data for selecting mass spectrometry compatible peptides with appropriate mass to 

charge ratios (m/z). Seventy cell-surface protein peptide representatives from 33 GBMSig 

proteins were generated for SRM assay development—approximately 2 for each protein. 

Synthetic peptides labeled (13C15N) C-terminally with either lysine (K) or arginine (R) act 

as surrogates of endogenous peptides. These peptides were subjected to collision energy 

(CE) optimization (Maclean et al., 2010) to maximize the release of trapped energy from 

each peptide bond. Three parental (Q1) charges (+2, +3, and +4) and two daughter (Q3) ion 

charges (+1 and +2) of peptides were tested in all feasible combinations for assay 

optimization; the Q1/Q3 transition-CE combination that demonstrated the highest SRM 

peak-intensity and was minimally affected by interfering ions was selected for assay 

validation (Table S3). In the final SRM assay, the best performing peptide with a minimum 

of three transitions was used for quantitation. Retention time of each surrogate peptide was 

determined empirically, which helped to develop dynamic-SRM assays (d-SRM). This 
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targeted approach improved the sensitivity and specificity, enabling the reproducible 

measurement of low abundant GBMSig proteins in complex bio-specimens. Four resected 

GBM tumors and two non-tumor brain tissue samples were homogenized, enzymatically 

digested, clarified using C18, and spiked with synthetic C-terminally labeled (13C15N K/R) 

peptides for subsequent SRM mass spectrometry analysis (three technical replicates). Of the 

33 GBMSig proteins assayed we were able to reliably detect 21 across all samples. Twelve 

of the 21 GBMSig proteins were overexpressed in all four GBM tissues relative to non-

tumor brain tissues. The list of these proteins including nine proteins with p<0.05 are 

presented in Table S4. Protein expression data and PCA analyses are represented in Figure 

4A–C. Although a majority of GBMSig proteins (12 of 21) revealed differential expression 

between tumor and non-tumor regions of the brain, intratumor heterogeneities in GBMSig 

expression as investigated through tumor subtyping (Phillips et al., 2006) underscored the 

nature of combinatorial perturbation of membrane networks across different clinical 

specimens (Figure 4D, Table-S4–5).

Utility of GBMSig in the assessment of tumor progression and diagnosis through blood 
analysis

Cell-surface proteins are known to be secreted or shed into the blood stream by both healthy 

and tumor cells and the concentration changes in those proteins from tumor cells (as 

compared to normal cells) reflect the fact that their cognate networks have become perturbed 

(Li et al., 2013; Shao et al., 2012). As would be expected, given our initial decision to select 

for cell-surface proteins, we found twenty-one of 33 GBMSig proteins to possess N-terminal 

secretion signal sequences (SignalP4.1, www.cbs.dtu.dk). However, protein secretion in the 

blood is a complex process and can be controlled by a multitude of factors (Uhlen et al., 

2015). Therefore, we sought to identify which GBMSig proteins could be identified in the 

blood of GBM patients through empirical means. In a pilot study, we evaluated four GBM 

plasmas (pre-operative blood collection) for circulating GBMSig proteins by SRM mass 

spectrometry (Table S6). Following immunodepletion of the 14 most abundant blood 

proteins, we detected 14 of 33 GBMSig proteins independently in triplicate SRM runs 

(Table S6). Four circulating GBMSig proteins (HMOX1, CD44, VCAM1, and BIGH3 

(TGFBI)) were selected for further evaluation by ELISA assays for potential GBM diagnosis 

based on 1) detection by SRM in the blood of GBM patients; 2) high AUC values (>0.95) in 

ROC analyses of REMBRANDT and TCGA transcriptomic datasets; and 3) the availability 

of off-the shelf ELISA kits.

We assembled a collection of 84 plasma specimens from five different sources and subjected 

them to ELISA analyses for the four selected proteins. As we were unable to obtain GBM 

and normal plasma samples from the same source (and same collection procedure), we 

obtained each from multiple locations to help mitigate batch effects by performing analyses 

across data from multiple distinct sample sources, and different sources entirely in the 

training and test sets. All samples obtained were collected using the standard collection 

protocol for K2-EDTA (purple cap) blood. We subjected the samples to an independent 

training and validation format with each set being composed of age and gender matched 

GBM samples (21 training, 21 validation) and healthy samples (21 training, 21 validation) 

(Figures 5A–C and S3, Table S7). Following batch-normalization (standard score), the 
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training set was modeled using linear discriminant analysis (LDA). LDA characterizes 2 

classes as Gaussian densities of equal covariance using a linear combination of features. The 

performance of four GBMSig proteins in the identification of GBM class was assessed for 

validation set after locking down parameters. We observed 95.2% sensitivity and 95.2% 

specificity for the independent validation set (GBM=21, Healthy=21). ROC analyses of the 

training set exhibited an AUC of 0.99 while the validation set presented an AUC of 0.98 

(Figure 5A–C), highlighting significant differences in the abundance of these proteins in 

GBM patients versus normal controls. Power analysis of ELISA results also indicated good 

agreement between the effect size (>|0.6|) and the sampling method (power>0.8) (Figure 

S3E).

We then examined the changes in blood concentrations of the same four proteins (HMOX1, 

CD44, VCAM1, and BIGH3) for ten GBM patients prior to and after tumor resection. Blood 

samples were collected preoperatively and postoperatively at 24 hrs, 48 hrs, and ~10 days 

post-surgery (first post-operative visit). From ELISA analysis, we observed significant 

changes (p<0.05; ROC AUC of 0.83) in the blood concentrations of three proteins (HMOX1, 

CD44, and BIGH3), possibly reflecting the pathophysiological changes related to tumor 

resection (Figure 5D–E) within ten days of surgery. PCA analysis also revealed a separation 

of 52.1% on PC1 and 27% on PC2 for changes in the blood concentrations of HMOX1, 

CD44, and BIGH3 between 24hrs and 10days post-resection (Figure S4A–B, Table S8). 

However, since there was no endpoint to this study, it was not possible to relate the changes 

in the blood concentrations of these GBMSig proteins to the overall survival (OS) or 

progression-free-survival (PFS) of patients, which could be evaluated in future by 

undertaking longer and more frequent post-operative follow-ups.

Connections between the classifier and TGF-β responsiveness

Pathway analysis of GBMSig proteins using the KEGG database (Kanehisa and Goto, 2000) 

and GeneMANIA (www.genemania.org) reflected the role of GBMSig proteins in several 

established aspects of GBM biology, including: focal adhesion, ECM-receptor interaction, 

apoptosis, and the MAPK signaling pathway (Figures 2F and S2C). Additionally, co-

expression analysis of GBM tissue transcriptomics and proteomics data (Figure 3A,4A,4C) 

indicated that a number of proteins within the GBMSig classifier co-expressed with TGFBI 

(BIGH3)—a known TGF-β-inducible protein (Lauden et al., 2014; Nummela et al., 2012). 

This observation, along with a known role for TGF-β in cancer and GBM (Pickup et al., 

2013), highlighted possible TGF-β1 responsive network components operating within 

GBMSig classifier that could impact the modulation of other GBMSig proteins within the 

classifier. To determine whether GBMSig proteins could respond to TGF-β treatment and 

provide biological, mechanistic evidence for the classifier, we tested TGF-β1 responsiveness 

in the astrocytoma cell line U87MG through induction of C-terminal phosphorylation of 

SMAD2 (Figure 6A). Conversely, SMAD2 phosphorylation is diminished in the presence of 

TGF-β-inhibitor (SB 431542). Cell viability did not significantly change following 

treatment with TGF-β1 or its inhibitor relative to untreated cells (data not shown). Proteomic 

changes of GBMSig expressions following TGF-β/inhibitor treatment were evaluated by 

SRM assays. We observed 13 GBMSig proteins including TGFBI (BIGH3), which exhibited 

at least 1.5 fold higher expression following TGF-β treatment relative to cells treated with 
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TGF-β-inhibitor alone (Figure 6B and Table-S10). As basal TGF- β expression could 

contribute to expression of our GBMSig proteins, we found that cells pretreated with TGF-

β-inhibitor and subsequent TGF-β treatment modulated the expression of GBMSig proteins. 

There were four additional GBMSig proteins (CD47, MYOF, ABCA1, and CD44) that 

exhibited a positive enrichment (>1.2 fold over inhibitor treatment) for TGF-β treatment in 

comparison to TGF-β-inhibitor treatment alone. Details are presented in Table S10 and 

Figure S5. Changes in protein expression of SLC16A1, MRC2, SLC16A3, CD47, and CD97 

after TGFβ treatment relative to inhibitor treatment were confirmed by alternate method 

flow cytometry (Figure 6C). Results were consistent with the changes in protein expression 

observed by SRM. These observations highlight the modular responsiveness of a subset of 

GBMSig classifier with TGF-β signaling that was previously undescribed (Figure 6D).

TGF-β1 responsive GBMSig subset and tumor invasion

As a known inducer of epithelial to mesenchymal transition (EMT), TGF-β1 plays an 

important role in the local metastasis of tumor cells (Picon et al., 1998, Hoelzinger et al., 

2007). We determined if overexpression of TGFβ1-responsive transcripts from our GBMSig 

subset correlated with patient survival in the REMBRANDT data. Co-expression of these 

genes indeed correlated with poor patient survival (p<0.003, Log Rank, Mantel-Cox) (Figure 

6G). This correlation could be the result of several factors related to tumor development 

concurrent with the hypothesis that invasion is, in part, attributable to the action of TGF-β1. 

To further investigate the role of our TGF-β targets in this context, we inhibited the 

expressions of SLC16A1, MRC2, and CD47 through siRNA silencing and quantified 

differences in U87MG cell invasion. We confirmed effective siRNA knockdown by qPCR 

(Figure 6E) and flow cytometry (Figure S5B), and observed no significant impact on cell 

viability following knockdown (Figure 6F). siRNA or non-targeting siRNA treated cells 

were seeded in transwell chambers, and the degree of cell invasion was evaluated as the 

percentage of cells invaded compared to non-targeting siRNA treated cells. The resultant cell 

invasion from three independent experiments is presented in Figure 6G. The silencing of 

SLC16A1 and MRC2 caused 52.88% ± 9.70SEM, and 42.26% ±2.19SEM reduced cell 

invasion respectively—similar to knockdown of the known invasion-mediating protein CD47 

(57.74% ± 6.32SEM)-highlighting the role of these proteins in GBM invasion. We conclude 

that a subset of TGF-β responders play a crucial role in the migration and invasion of GBM 

cells, which in combination or alone may influence the clinical outcomes of GBM.

DISCUSSION

We formulated a systems strategy to develop GBMSig—a molecular signature for GBM 

composed of protein targets (table S9) originating from the cell-surface of diseased cells that 

provide excellent candidates that after shedding from the cell-surface can be detectable in 

the blood. We reasoned that cell-surface proteins would be the best candidates as they are 

most likely to be found in the blood due to their known role and function in disease 

associated cell-signaling processes (Li et al., 2013). The heterogeneity of GBM is well 

documented, and adds to the challenge of finding putative targets that can be reliably 

detected across heterogeneous tumors. For this reason, we wanted to enrich for putative 

targets that would likely be common to many GBM subtypes. Starting with four cell lines—
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two widely used cell lines of GBM, one established as having primary GBM cancer stem 

cell properties (e.g. expression of CD133), and a healthy neural stem cell line—we 

generated a list of putative targets by capturing and characterizing cell-surface proteins by 

mass spectrometry. Identification of cell-surface proteins by biotin labeling helped to enrich 

for proteins that are often difficult to detect because of their low abundance and 

hydrophobicity. By requiring all candidates to possess a known transmembrane domain, we 

likely eliminated many potential candidates. However, we feel our conservative approach 

greatly lessened the possibility of false positives. While reducing our target number from 

well over a thousand to 274, these targets were likely enriched for the properties most 

central to GBM blood biomarkers. We could detect that ten of the fourteen targets in the 

blood contained an N-terminal secretion signaling sequence (21 of 33 GBMSig targets) 

consistent with the properties our experimental design targeted.

We next relied upon existing microarray expression data to further enrich for candidate 

targets and explored how well they might work as classifiers. With a number of regulatory 

steps occurring between transcription and translation, we used the transcript array data as a 

filter to identify targets with appreciable RNA expression. Because the REMBRANDT and 

TCGA data sets were created for the purpose of better understanding heterogeneity across 

GBM and other tumor types, their small control sample size is not ideal for identifying the 

genes differentially expressed between tumor and normal samples. As we did not rely on the 

microarray expression data for generation of targets, but rather as a filter for the elimination 

of targets, the small control sample size was less of an issue. We further filtered our 

candidate list by removing differentially expressed genes that were also found in 

astrocytomas (148 samples) and oligodendrogliomas (67 samples), thus enhancing the 

specificity for GBM. Additionally, this integrative analysis ensured that the classifier was 

not based on expression of proteins that are the product of artifactual changes such as those 

that arise from cell culturing. Utilization of laboratory grown cell lines for the generation of 

candidates is consistent with the prior reports (Geiger et al., 2010). As GBM tumors are 

typically more aggressive and metastatic than other brain tumors, this filtering step may have 

selected for those genes specific to those functions. Previous work by our group used 

microarray data alone to identify gene networks that differ across astrocytoma grades (Wang 

et al., 2013). This previous work did not identify the TGF-β network and did not utilize 

anything resembling the filtering and proteomic data integration presented here, highlighting 

the differences achieved through an integrative omics approach. This filtering step may have 

enabled the identification of several TGF-β network proteins. In doing so, we may also have 

enriched for targets more likely to be in the blood, as metastatic mechanisms require 

signaling external to the primary tumor. This is supported by our analysis of the survival 

data, where co-expression of TGF-β responsive GBMSig genes correlated with poorer 

outcome (p<0.003, Log Rank, Mantel-Cox) (Figure 6H).

Following this filtering, we utilized the REMBRANDT and TCGA data for evaluating the 

performance of putative targets as classifiers. While the sensitivity (99.8%) and specificity 

(80%) were encouraging, with an MCC value of 0.87, the small control sample size limits 

the ability to determine the robustness of any classifier based on this evidence alone. 

However, we performed end-to-end experimental verification of the classifier and 

demonstrated that an integrated-omics approach was capable of producing a list of 
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candidates that performed well as classifiers across platforms (proteomics, transcriptomics, 

ELISA) and across experiments (REMBRANDT to TCGA).

With our GBMSig candidates that performed well as classifiers for both REMBRANDT and 

TCGA, we turned to identifying those candidates that could best be quantitatively and 

reproducibly detected in both tissue and blood. We were able to detect 14 of the 33 low-

abundant proteins in the blood and 21 of the 33 in brain tissue using the recently developed 

and sensitive approach of SRM. Further efforts to detect all proteins would likely have been 

productive as absence of detection is just as likely to be due to technical as it is biological 

reasons. Rather than optimize detection of all GBMSig targets, we chose to evaluate targets 

that could be reliably detected via established ELISA assays—the gold standard of clinical 

detection.

The vast majority of published biomarker candidates have failed to make it to the clinic 

(Micheel CM, 2012). A contributing factor to this high failure rate is the lack of properly 

designed experiments that contain truly independent training and test sets. We were unable 

to secure GBM and normal blood samples collected and processed by the same source. To 

circumvent this limitation, we acquired samples from five different sources, distributing 

samples from different sources into separate training and test sets. This approach makes it 

improbable, though not impossible, that our high sensitivity and specificity are the result of a 

batch effect. We have previously shown that multiple sources can be beneficial for the 

purposes of robustness and have the ability to help mitigate batch effects (Ma et al., 2014; 

Sung J, 2013; Wang et al., 2013). Even when mixing and matching samples in different 

configurations, we found our test to be robust, with comparable sensitivity and specificity 

(data not shown).

Our integrated omics approach also produced a list of candidates that are related to known 

characteristics of GBM. Many of the resulting targets had connections to TGF-β. We 

investigated the role of SLC16A1 and MRC2 in TGF-β responsiveness, showing that 

knockdown of these transcripts greatly reduced invasion. Recently, we have demonstrated 

that HMOX1 expression is associated with GBM stemness and invasion (Ghosh et al., 

2016). MRC2 was previously shown to correlate with TGF-β1 expression in hepatocellular 

carcinoma (Gai X, 2014). SLC16A1 has not previously been implicated in invasion nor 

linked with TGFβ1 signaling. We have provided experimental evidence in favor of modular 

roles for 17 GBMSig proteins (Table S10) in TGF-β signaling. How these proteins or other 

proteins in our GBMSig connected to TGFβ1 signaling function in relationship to each other 

is an outstanding question for future investigation.

Our ability to distinguish between blood from GBM patients and normal controls was 

robust, with high sensitivity (95.2%) and specificity (95.2%). This resulted in an AUC of 

0.99 for the training set and 0.98 for the validation set (Figure 5A–C), with great agreement 

between the effect size (>|0.6|) and the sampling method (power>0.8) (Figure S3E). 

Although we were not able to secure the control and the GBM samples from the same 

source, a high AUC value was observed that was unexpected. It is possible that this high 

agreement could be due to the novelty of the multi-omics, systems approach we used herein. 

Further application and interpretation of the results in the context of other cancers and/or 
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pathologies will be of interest moving forward. We attempted to demonstrate potential 

clinical utility in assaying changes in the blood concentrations of 3 of 4 GBMSig proteins 

following tumor resection (Figure 5D–E, S4A–B). Given the non-specificity of MRI 

imaging in evaluating the effectiveness of therapeutic options, performance of GBMSig in 

the longitudinal assessment of therapeutic changes might widen the scope for disease 

management in the future.

As our selection criteria for which targets to assay by ELISA were based on 1) SRM 

detection in the blood; 2) high AUC values (>0.95) in ROC analyses of transcriptomic data 

(Figure S2D–E); and 3) availability of commercial ELISA kits, we anticipate a canvasing of 

other targets for which reliable ELISA data could be generated would increase the options 

for development of a GBM-specific blood test—especially from the GBMSig extended 

candidate list. Targets with smaller variance or greater separation between case and control 

might also improve robustness or be the basis of distinguishing among diseases. Although 

our candidate selection process was designed to increase the likelihood of robust separation 

between GBM and lower grade brain tumors and healthy controls, performance of GBMSig 

in separating non-GBM cancer such as liver cancer is also encouraging (Figure S2G). 

However, it remains to be evaluated if other cancers or pathologies would exhibit similarities 

and/or differences in the pattern of GBMSig expression.

We have demonstrated the power of integrating large-scale transcriptomics data together 

with shotgun proteomics to identify proteins that can be quantitatively measured and used to 

distinguish between the blood of a GBM patient and a healthy individual. The TGF-β 
connection of several of our GBMSig targets lends itself to biological interpretation that is 

often lacking with statistically heavy approaches. Arguably, this is a product of how we 

integrated experimental proteomics data with carefully analyzed existing transcriptomics 

data. Translating what we have learned here to a clinical application requires significantly 

more work, but many of the principles and systems applications demonstrated here can 

enable future efforts. We have an excellent candidate list of GBM biomarkers with which to 

move forward into the validation stage. We believe this general approach will be applicable 

to generating diagnostic blood protein panels for virtually any disease where the phenotype 

distinctions between normal and disease are clear.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the followings:

Contact for Reagent and Resource Sharing

Further information and requests may be directed to Leroy Hood at the Institute for Systems 

Biology (lhood@systemsbiology.org).

Experimental Model and Subject Details

Human Studies—IRB committee approvals and informed consent were obtained from all 

patients. The inclusion criteria for GBM patients were: 1) diagnosed as GBM based on 

clinical assessment, 2) plasma samples (collected in K2-EDTA tubes) were obtained prior to 

surgical removal of tumor mass, 3) age was >15 yrs., 4) subject was not suffering from any 
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other cancer, 5) GBM patients received standard care of treatment, 6) both male and female 

subjects were included, 7) plasma samples were archived, labeled and fresh frozen. Age and 

gender of the subjects are provided in table S7. Healthy controls were purchased from 

Bioreclamation (Healthy-source-1 and Healthy-source-2A), and Proteogenex (Healthy-

source-2) with the following inclusion criteria 1) subjects were healthy with no known 

chronic diseases, 2) no previous history of cancer, 3) age and gender matched with that of 

GBM subjects, and 4) plasma samples were archived, labeled and fresh frozen. GBM 

plasmas for the training set and longitudinal set (collected pre-operatively and post-

operatively at 24hrs, 48hrs, and ~10 days) were collected from Swedish Medical Center, 

Seattle, and the validation set were collected from California Pacific Medical Center 

Research Institute (CPMCRI), San Francisco. Equal number of GBM (21 subjects) and 

healthy (21 subjects) blood plasma specimens was selected for training data set. Power 

analysis (>0.8) justified the inclusion of similar number of GBM (21 subjects) and healthy 

(21 subjects) blood plasma samples for the validation set. For power analysis, please refer to 

python codes in Data S1 and the figure S3E.

Cell Culture—The human GBM cell lines U87MG and T98 obtained from ATCC were 

grown in DMEM high glucose culture medium supplemented with 10%FBS and Pen Strep. 

Neural stem cells (NSCs) from Millipore and cancer stem cells (CSCs) from Celprogen were 

grown according to suppliers’ specifications.

Methods Detail

Cell-Surface Labeling and Mass Spectrometry—EZ-Link-Sulfo-NHS-SS-biotin 

(Pierce) kit was used to surface label U87, T98, neural stem cell (Millipore) and cancer stem 

cell (Celprogen) according to manufacturer instruction. Biotinylated cell surface proteins 

were affinity-purified on neutravidin beads (supplied with the kit). After stripping off non-

specifically bound proteins by several rounds of washing with the lysis buffer (supplied with 

the kit) followed by water wash (to remove excess reagents), labeled proteins were 

selectively eluted with DTT at elevated temperature to ensure higher recovery of bound 

proteins. Eluted proteins were concentrated onto 10kDa micro ultrafiltration unit and 

reduced in the same ultrafiltration unit with 10mM TCEP for 60 min at 37°C. Excess TCEP 

was neutralized by washing the membrane with equal volume of 100mM ammonium 

bicarbonate followed by alkylation with 55mM iodoacetamide for 1hr in dark. Excess 

alkylating agent was quenched with molar equivalent of TCEP by incubating at RT for 

15min followed by washing the membrane several times with digestion buffer containing 

50mM ammonium bicarbonate, 10% TFE and 1mM CaCl2. Proteins were digested on 

membrane serially with trypsin for 12hrs at 37°C with 1:25 enzyme-to-protein ratio and Glu 

C for 6 hrs with 1:50 enzyme-to-protein ratio at RT in dark, respectively. Enzymatic 

digestion was quenched by adding 20μl of 0.2%FA, and digested materials were collected by 

centrifugation. Peptides were lyophilized and re-dissolved in 1% ACN, 0.1% FA for mass 

spec analysis using a Thermo Electron Orbitrap mass spectrometer (LTQ ORBITRAP) 

equipped with an electrospray ionization source in line with an Agilent HP1100 liquid 

chromatography system. Peptide digests were enriched onto a 2cm pre-column packed in-

house with 200Å Magic C18AQ resin and separated using a ProteoPep II 75μm i.d. × 10cm 

analytical column on 160 min ACN gradient as follows: 2%B (Buffer B-100%ACN/
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0.1%FA) for 5min, 2–10%B for 20min, 10–25%B for 65min, 25–40%B for 20min, 40–

60%B for 15min, 60–100%B for 10min, and held at 100%B for 13 min followed by 

equilibration of column for 17min with buffer A (Buffer A-2%ACN/0.1%FA). Pump flow 

rate was maintained constantly at 0.350μl/min. Mass spectrometer was operated in positive 

data-dependent acquisition mode with 1 S MS scan (m/z 300–1800; 30,000 resolution) 

followed by 9 MS/MS events for peptides with charge states between +2 and +4. Dynamic 

exclusion was set for 60 sec. Each isolate was run three times. After data acquisition, 

Xcalibur (Thermo) raw data were converted to mzXML format using ReAdW profile and 

default parameters. Peptide assignments were done using the GPM (www.thegpm.org).

Brain Tissue Processing—Brain tissues were homogenized in tissue lysis buffer (TLB) 

composed of 100mM n-octyl-glucoside, 1% NP-40, 150mM NaCl, 1mM PMSF, 2mM 

sodium orthovanadate and 50mM sodium fluoride in 50mM TEAB, pH8.0. Tissue 

homogenate was clarified by centrifugation at 10,000×g for 10 min and the supernatant 

containing the proteins of interest was preserved at −80°C till further use. For SRM analysis, 

tissues were reduced, alkylated, and then digested with trypsin and Glu C o/n in dark. 

Digestion reaction was quenched with TFA, and peptides were lyophilized, C18 purified and 

solubilized in 1%ACN/0.1% FA for SRM analysis.

GBM Subtyping—Total RNA was isolated from tissue samples with Triazol, and then 

cleaned with RNeasy MinElute Cleanup Kit. 1 μg of total RNA was used to generate 100 μl 

of cDNA using the High Capacity cDNA Reverse Transcription Kit. Real-time PCR of 

MGMT was performed on the ABI PRISM 7900 HT detection system using 33 Taqman 

probes (Phillips et al., 2006) and Taqman reagents under default conditions: 95°C for 10 

minutes, 40 cycles of 95°C for 15 seconds, and 60°C for 1 minute with human beta-

glucuronidase (hGUS) as endogenous control. All assays were done in triplicate. The 

expression level of each gene (Δct) for each tissue sample is calculated compared to the 

hGUS expression level using the formula 2−(Ct value of gene − Ct value of hGUS). qRT-PCR was 

performed for 4 GBM tissue samples (Table S5) for the 33 gene panel as described by 

Phillips et al. For each gene we obtained the average Δct (μ) and standard deviation (σ). For 

each tissue sample we calculate standard scores (z) for all 33 genes as follows: zg = Δctg − 

μ/σg, where g ∈ 33 gene panel. Three components: 1) Mesenchymal (M), 2) Proliferative (P) 

and 3) Proneuronal (N) expressions were calculated by taking the average of z scores of all 

genes belonging to the corresponding component.

M = μ(zg), where g ∈ component Mesenchymal

P = μ(zg), where g ∈ component Proliferative

N = μ(zg), where g ∈ component Proneuronal

Finally, the subtype is determined using the following reference range.

Mesenchymal M > P + 0.2, M > N + 0.2

Proliferative P > M + 0.2, P > N + 0.2

Proneuronal N > M + 0.2, N > P + 0.2

Prolifmes P > N + 0.2, M > N + 0.2, |P-M| < 0.2
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Mesneuronal M > P + 0.2, N > P + 0.2, |N-M| < 0.2

Prolifneuronal P > M + 0.2, N > M + 0.2, |N-P| < 0.2

SRM Assay Development and Analysis—Agilent Triple Quadrupole equipped with 

ChipCube nanoelectrospray ionization source in line with 1200 nanoFlow HPLC system was 

employed for SRM assay development and subsequent analysis. Cell surface peptide library 

developed through prior high-resolution shotgun analysis (described earlier in shotgun mass 

spectrometry section) provided the foundation to synthesize C-terminally labeled (13C15N) 

surrogate peptides for 33 GBMSig. Collision energy (CE) values for each peptide bond were 

optimized using the Mass Hunter Optimizer for Peptides Software (Agilent Technologies). 

All combinations of +2, +3 and +4 of Q1 and +1 and +2 of Q3 ion pair (only y-series of 

ions) of each peptide were undertaken for CE optimization. The top 4–5 transition pairs 

(Q1/Q3) and corresponding CE values that ensured maximum signal intensity of SRM trace 

was employed for quantitation. To develop dynamic-SRM (d-SRM) assay, retention time of 

each peptide was determined a priori by spiking C-terminally labeled (13C15N) surrogate 

peptides in presence of corresponding biological isolates (cell, tissue or serum). The 

abundance of endogenous peptides was assessed from co-eluting surrogate peptides 

(13C15N) which ensured precise quantification, All SRM acquisition method was run with 

standard parameters viz. capillary voltage 1700–2100, a sheath gas flow of 11 L/min at a 

temperature of 380°C, a drying gas flow of 15 L/min at a temp of 150°C, nebulizer gas flow 

at 30psi, the fragmentor voltage at 380 V, the cell accelerator voltage at 7 V, an MS 

operating pressure of 5×105 Torr and Q1/Q3 set to operate in unit resolution.

All samples were loaded onto HPLC chip comprising of an enrichment column (160nL or 

500nL) and a 150mm analytical C18 column. For plasma SRM analysis, 500nL enrichment 

column was used and peptides were eluted (with nanopump flow of 0.3μl/min) over step 

gradients as follows: 4%B for 2min, 25%B for 53min and maintained for 5min, 47%B for 

12min and maintained for 10 min followed by column washing for 10 min at 0.5μl/min and 

equilibration for 11min at 0.3μl/min flow rate.

Plasma Depletion—All plasma samples were immunodepleted using a C10/10 column 

packed in-house with 6ml bulk Seppro IgY14 matrix capable of depleting top 14 abundant 

proteins from human plasma prior to SRM mass spectrometry. Flow through fraction was 

concentrated onto 10kDa micro ultrafiltration unit and reduced in the same ultrafiltration 

unit with 10mM TCEP for 60 min at 370C. Excess TCEP was neutralized by washing the 

membrane with equal volume of 100mM ammonium bicarbonate followed by alkylation 

with 55mM iodoacetamide for 1hr in dark. Excess alkylating agent was quenched with 

molar equivalent of TCEP and incubating at RT for 15min followed by washing the 

membrane several times with digestion buffer containing 50mM ammonium bicarbonate, 

10% TFE and 1mM CaCl2. Proteins were digested on membrane serially with trypsin for 

12hrs at 37°C with 1:25 enzyme-to-protein ratio and Glu C for 6 hrs with 1:50 enzyme-to-

protein ratio at RT in dark respectively. Enzymatic digestion was quenched by adding 20μl 

of 0.2%FA and digested materials were collected by centrifugation. Peptides were 

lyophilized and re-dissolved in 1% ACN, 0.1% FA. After C18 clarification, each specimen 
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was spiked with heavy (13C15N K/R) synthetic GBMSig peptides for SRM mass 

spectrometry analysis.

Flow Cytometry—The following antibodies were used in the study: SLC16A1, MRC2, 

SLC16A3, CD47, and CD97. Cells were harvested after washing with ice-cold washing 

buffer (PBS/0.1% sodium azide) and incubated with primary antibody in antibody 

incubation buffer (1% BSA in PBS/0.1% sodium azide) for 1hr on ice. After washing the 

cell pellets with washing buffer, cells were incubated with FITC conjugated anti-mouse or 

PE conjugated anti-rabbit for 30 min on ice at 1:100 or 1:200 dilutions (prepared in antibody 

incubation buffer) respectively. Unbound conjugates were removed by washing with the 

washing buffer. Flow cytometry analysis was performed on FACSCalibur (BD Biosciences). 

The mean fluorescence intensity (MFI) of FITC or PE-positive cells (three replicate runs) 

was measured in comparison to respective isotype controls and the data were analyzed using 

FlowJo.

Western Blotting—Total proteins from U87 cells treated with TGF-β or its inhibitor were 

lysed by sonication in TLB, composed of 100mM n-octyl-glucoside, 1% NP-40, 150mM 

NaCl, 1mM PMSF, 2mM sodium orthovanadate and 50mM sodium fluoride in 50mM 

TEAB, pH8.0. After protein estimation with Pierce 660, equal amount of protein (8μg) from 

each isolate was separated by electrophoresis on Mini-Protean TGX 4–15% precast gel 

(Biorad) and transferred to nitrocellulose membrane using a semi-dry blotting (Biorad) 

apparatus. The membrane was blocked in TBS containing 3% FBS for 30min/RT and 

incubated with anti-SMAD2 or C-terminally phosphorylated SMAD2 at 1:1,500 dilution or 

anti-GAPDH at 1:15,000 dilution O/N at 40C. After washing the membrane with TBS/

0.1%T-20, membrane was incubated with appropriate HRP-conjugated secondary antibody. 

The Fisher SuperSignal West Femto Chemiluminescent Substrate was used for detection. 

The blot was visualized using Biorad gel documentation unit.

siRNA Treatment and qPCR Analysis—U87 cells (one million) maintained in DMEM 

high glucose culture medium supplemented with 10%FBS and penicillin-streptomycin were 

plated in a 10 cm dish. 24 hours after seeding, cells were washed with HBSS prior to 

reducing FBS to 0.2% in DMEM for siRNA treatment. ON-TARGETplus-SMARTpool 

siRNAs for SLC16A1, MRC2, CD47 and ON TARGETplus Non-targeting pool were used 

in the study. siRNAs were added at a 2:1 ratio of Dharmafect to siRNA for a final 

concentration of 40 nM per the manufacturer instructions. For Quantitative Real-time PCR 

(qRT-PCR) analysis of target gene inhibition, RNA was isolated per the manufacturer 

instructions using Qiagen RNeasy Kit. RNA was converted to cDNA using Applied 

Biosystems High Capacity cDNA Reverse Transcription Kit, per manufacturer instructions. 

qRT-PCR was performed on an ABI 7900 HT 384-well format using Power Syber Green. 

For the following genes, primers were designed using the online tools provided by 

Integrated DNA technologies (IDT): HPRT1 forward 5′-TGCTGAGGATTTGGAAAGGG, 

HPRT1 reverse 5′-ACAGAGGGCTACAATGTGATG, MRC2 forward 5′-

ACCAGCAACATATCCAAGCC, MRC2 reverse 5′-GAGTTTCCCTGGATGGTGTAG, 

SLC16A1 forward 5′-GTGGCTTGATTGCAGCTTC, SLC16A1 reverse 5′-

TGGTCGCCTCTTGTAGAAATAC, CD47 forward 5′-
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TGGTATGGATGAGAAAACAATTGC, CD47 reverse 5′-

GTCACAATTAAACCAAGGCCAG. PCR pairs were designed to generate amplicons 

between 90–130 base-pairs and pre-evaluated for a dissociation curve.

Cell Invasion Assay—Quantitative cell invasion assay was performed for U87MG cells 

using the invasion kit according to manufacturer’s instructions. Percentage of siRNA treated 

cells invaded in respect to non-targeting RNA treated cells were assessed from three 

independent experiments with three replicates each time.

Quantification and Statistical Analysis

Data Normalization—All numerical raw data were normalized to standard score (Z-score) 

using the formula,  is the raw value and μ is the mean of the population, σ is the 

standard deviation of the population.

SRM Quantification—SRM data were analyzed using Skyline (Bereman et al., 2012). 

SRM traces were integrated by default peak integration method and processed with 

Savitzky-Golay smoothing algorithm as described in Skyline. For precise identification and 

quantification of targets, each SRM trace was manually inspected for three- Q1/Q3 transition 

pairs with retention time determined empirically in prior runs. Peptide peak ratios 

(endogenous: surrogate) from three independent runs of each sample were averaged and 

expressed per μl of neat plasma or per μg of total protein as in the case of brain tissue 

homogenates. Final data were expressed as standard score (Z score).

Development of GBMSig—The human tissue expression array of GBM (N=228 

subjects) and non-tumor (N=16 subjects) isolates in REMBRANDT [https://

gdoc.georgetown.edu/gdoc/] were used as training datasets to distinguish differentially 

expressed cell-surface-transmembrane proteins as predicted using TMHMM algorithm 

(http://www.cbs.dtu.dk/services/TMHMM/). We employed R: Bioconductor 

(www.bioconductor.org) packages “affy” and “limma” for gene expression analysis. Cell 

surface proteins differentially expressed between GBM and non-tumor with log2-fold 

change >2X and FDR <0.05 was undertaken for further analysis. To identify GBM enriched 

expression, astrocytoma (N=148 subjects) and oligodendroma (N=67 subjects) tissue arrays 

in the same compendium were also assessed. Predictive accuracy of GBMSig was evaluated 

using independent transcriptome dataset in TCGA (547 GBM tumors and 10 non-tumor 

brain controls).

Statistical Analysis and Modeling—True performance of GBMSig classifier was 

evaluated through SVM. For SVM modeling, tissue transcriptomics data in REMBRANDT 

were used as training set. Using R package CvTools, REMBRANDT data were splitted 

(K=10) into training and validation sets. To achieve, the highest level of accuracy, we 

performed autotuning of the hyperparameters and selected the best value for gamma and 

cost for subsequent modeling as follows:

gamma cost error dispersion

1.00E–06 0.1 0.072727 0.05749596
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1.00E–05 0.1 0.072727 0.05749596

1.00E–04 0.1 0.072727 0.05749596

1.00E–03 0.1 0.072727 0.05749596

1.00E–02 0.1 0.072727 0.05749596

1.00E–01 0.1 0.072727 0.05749596

1.00E–06 1 0.072727 0.05749596

1.00E–05 1 0.072727 0.05749596

1.00E–04 1 0.072727 0.05749596

1.00E–03 1 0.072727 0.05749596

1.00E–02 1 0.072727 0.05749596

1.00E–01 1 0.022727 0.03214122

1.00E–06 10 0.072727 0.05749596

1.00E–05 10 0.072727 0.05749596

1.00E–04 10 0.072727 0.05749596

1.00E–03 10 0.068182 0.05769525

1.00E–02 10 0.013636 0.03067948

1.00E–01 10 0.009091 0.01916532

Best parameters: gamma=0.1 and cost=10.

SVM modeling was performed using the R package e1021. Minimization of the error 

function was calculated using the following formula: , constraints=yi(wT 

θ(xi)+b) ≥1− ζi and ζi ≥ 0, = 1, …. N;kernel θ=exp(−γ|xi−xj|; C=capacity constant, w= 
vector of coefficients, b= constant, ζi= parameters for handling inseparable data, y= class 
labels,xi=independent variables, and θ=kernel. To train the SVM model (C-classification) 

we used radial kernel, gamma=0.1, and cost=10 (as determined following autotuning of the 

hyperparameters). To assess the quality of the training results, accuracy of the model was 

calculated from 100fold cross validation, which revealed mean accuracy of 98.63%. Once 

the model was trained we evaluated the sensitivity, specificity, positive predictive value 

(PPV) and negative predictive value (NPV) of the classifier for independent validation set in 

TCGA: Sensitivity= TP/|P|; Specificity= TN/|N|; Precision= TP/TP+FP; PPV= TP/(TP+FP); 

NPV= TN/(TN+FN); where TP= True positive predicted by the model, |P|= Total Positive, 

TN= True negative predicted by the model, |N|= Total Negative, FP= False positive i.e. 

healthy instances predicted as GBM, FN= False negative i.e. true GBM instances predicted 

as healthy.

Power Analysis—To achieve empirical validity, power analysis was performed. Power 

analysis of ELISA data were performed using statsmodel library in python with alpha=0.05; 

effect size for ELISA data was calculated using Cohen’s d, where

For detailed analysis, please refer to the python code provided as Data S1.
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Linear Discriminant Analysis (LDA)—A LDA method was developed to evaluate the 

performance of a subset of GBMSig (HMOX1, CD44, BIGH3, and VCAM1) proteins as 

blood classifier. ELISA Training data set (GBM plasmas= 21, and Healthy plasmas= 21) 

was modelled using LDA from the scikit-learn python package and the performance of the 

classifier were predicted for the validation set (GBM plasmas= 21, and Healthy plasmas= 

21). For detailed analysis, please refer to the python codes provided as Data S1.

Receiver Operating Characteristic (ROC) Curve Analysis—Diagnostic 

performance and accuracy of the classifier in separating GBM and normal controls were 

assessed through ROC analysis as described in Medcalc. Sensitivity and specificity for a 

given GBMSig is calculated as: Sensitivity  and specificity ; where a=True 

positive =(TP), b= False Negative (FN), c= False Positive (FP), and d= True Negative (TN).

Data and Software Availability

Python code used in the study is provided as Data S1.

Proteomics data for individual cell lines and replicate analyses are available from 

www.thegpm.org. Please refer to key resources table for unique GPM identification numbers 

that are required to access the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell-surface proteomics of four cell lines relevant in glioblastoma.

• Development of a 33-cell-surface-protein signature for glioblastoma.

• Association of a subset of the signature with TGF-β signaling and cancer 

invasion.

• Potential of a subset of GBMSig proteins as blood biomarkers.
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Figure 1. 
Description of the rationale and accompanying filtering steps applied to the initial list of 

proteins identified through sulfo-NHS-SS-biotin tagging of intact cells from four cell lines: 

U87MG, T98, CD133+ cancer stem cells and neural stem cells. From the 1480 candidate 

proteins, 274 contained transmembrane domains. Corresponding probes were found for 202 

targets in the REMBRANDT data set containing 228 GBM and 16 non-tumor brain tissue 

specimens. Genes found to be commonly expressed in oligodendrogliomas and astrocytomas 

were then removed to enrich for GBM-specific targets. This resulted in 33 targets identified 

as GBMSig. SRM mass spectrometry assays were developed for each of these targets. 

Twenty-one of the 33 GBMSig proteins could be detected across 4 GBM and 2 non-tumor 

brain specimens. Fourteen of the 33 proteins were also detected in the blood (following 

immunodepletion of the top 14 abundant blood proteins). Each of the 33 targets was 

evaluated as a classifier on 547 GBM and 10 control samples from TCGA. Four targets were 

selected based on the robustness as a classifier, ability to be detected in the blood and 

availability of a commercial ELISA assay.
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Figure 2. 
Compositional analysis of cell-surface proteins (CSPs) from three independent runs by high 

resolution mass spectrometry in (A) U87MG, (B) T98, (C) cancer stem cell (Celprogen), 

and (D) neural stem cell (Millipore). Proteins with log(e)=−3 score (GPM) were considered 

valid. Numerical data represents proteins identified in each isolates. E) Functional analyses 

of cell-surface proteins with transmembrane domains identified in the study highlight the 

enrichment of those biological processes that are known to be associated with cell-surface 

activities. Fold enrichment is presented as a ratio of number of cell-surface transmembrane 

proteins identified for a given biological process relative to whole genome annotations with 
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indicated p values. F) Cartoon diagram (KEGG) showing the identification (highlighted in 

orange) of those proteins associated with cell migration and invasion.
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Figure 3. 
Cell-surface proteins with transmembrane domains identified from shotgun proteomics were 

evaluated for their differential expressions using transcriptome compendiums of 

REMBRANDT and TCGA. A) The differential expression of 202 cell-surface 

transmembrane proteins in GBM tissues (N=228) relative to non-tumor brain specimens 

(N=16) of REMBRANDT transcriptome compendium. Expression values for these 

transcripts were log2 transformed, and a minimum of two-fold average expression change 

(FDR<0.05) between tumor and non-tumor brain tissues was used as cut-off for significance. 

Clustering reflects the directionality of cell-surface transmembrane transcript expression 

among GBM and controls. Non-tumor brain specimens are highlighted in yellow at the 
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bottom. B) majority of the cell-surface proteins with transmembrane domains mapped to 

REMBRANDT transcripts were discarded due to common expressions in non-GBM 

diseases such as astrocytoma (N=148) and oligodendroma (N=67 tumors). Shown are 33 

cell-surface transmembrane proteins that were subsequently tested for the development of 

GBMSig classifier. Each column of the heatmap is presented as the average log2 [tumor/

non-tumor] ratios. CNT is non-tumor brain, AST is astrocytoma, and OLI is oligodendroma. 

C) Principal component analysis (PCA) of REMBRANDT GBM transcriptome arrays with 

GBMSig (n=33). Red dots represent non-tumor isolates and grey ones are GBM. Two 

principal components can explain 43% of the variability. D) Principal component analysis 

(PCA) of independent TCGA GBM transcriptome datasets composed of 547 GBM 

specimens and 10 non-tumor brain controls with GBMSig (n=33). Two principal 

components can explain 48% of the variability. Red dots represent non-tumor isolates and 

grey ones are GBM. E) ROC analysis of REMBRANDT tissue arrays for individual 

GBMSig proteins. Specificity (%) and Sensitivity (%) values of individual GBMSig were 

plotted on X and Y axis respectively. Standard error of AUC was calculated using the 

method described by DeLong et al. Orange color represents significance level P (Area=0.5) 

<0.0001 while gray color represents P>0.01.Detailed analysis is provided in table S2. F) 

ROC analysis of independent TCGA tissue arrays (GBM=547 subjects, NonTumor=10 

subjects) for individual GBMSig proteins. Specificity (%) and Sensitivity (%) values of 

individual GBMSig were plotted on X and Y axis respectively. Standard error of AUC was 

calculated using the approach described by DeLong. The analysis revealed high degree of 

specificities and sensitivities in discriminating GBM populations from controls with 

significance level P (Area=0.5) <0.0001. Detailed analysis is provided in Table S2.
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Figure 4. Proteomic verification of GBMSig expression in GBM tissues by SRM mass 
spectrometry
A) Equal quantities of tissue homogenates from tumor (n=4) and non-tumor isolates (n=2) 

were enzymatically digested, C18 clarified, and spiked with surrogate peptides labeled C-

terminally with 13C15
N K/R for SRM analysis. Ratios of endogenous and surrogate peptides 

were centroided and presented as Z-score in the heatmap. A subset of GBMSig (*) was also 

observed to be circulated in the blood plasma. Co-expression of several GBMSig proteins 

with BIGH3 (TGFBI) - a known TGFβ-inducible protein might be indicative of the presence 

of additional TGF-β responsive elements operating within GBMSig. Based on GBMSig 

expressions, GBM and non-tumor tissues can be arranged into groups as revealed through 

Spemann rank clustering. B) PCA analyses of GBMSig proteins as quantified by SRM mass 
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spectrometry can distinguish GBM from non-tumor brain specimens with first two 

components explaining 70.78% of variability, highlighting the robustness of GBMSig in 

separating GBM from controls with high efficiency at both transcriptome and proteome 

levels. C) Contributions of each GBMSig protein onto respective principal components. 

Expected average contributions on PC1 and PC2 are denoted by a red and blue line 

respectively. D) Subtyping of GBM 1–4 tissues were performed using qPCR for 33 genes as 

described (Phillips et al., 2006). Accordingly, GBM-1 is assigned as prolifimes, GBM-2 as 

mesenchymal, GBM-3 as proliferative, and GBM-4 as proneuronal. This subtyping allowed 

us to explain the heterogeneities in GBMSig expression observed from proteomic analysis. 

Subtype expression data (qPCR) are provided in table S5.
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Figure 5. 
Blood Diagnostic potentials of four GBMSig proteins. A) four GBMSig proteins viz. CD44, 

VCAM1, HMOX1, and BIGH3 (TGFBI) were evaluated by ELISA assays using 84 plasma 

samples obtained from 3 different locations. Despite different sites of collection, both 

training set and validation set revealed statistically significant differences between GBM 

(GBM-Src-1 and GBM-Src-2) and healthy controls(H-Src-1,H-Src-2, and H-Src-2A). p 
values are two tailed and welch corrected. B) ELISA results from training set were modelled 

using Linear Discriminant Analysis (LDA). The training set created a classifier with a 

scaling factor of (0.72, −1.1, −.05. −.68) for HMOX1, BIGH3 (TGFBI), VCAM1 and CD44 

respectively. The decision boundary coefficients are at (−1.83, 1.83) with an intercept of 

−2.38. Performance of these four GBMSig proteins was assessed for an independent 

validation set (GBM=21, Healthy=21). We observed 95.23% sensitivity and 95.2% 

specificity with 95.2% accuracy for the independent validation set. Dec. Boundary is 

Decision Boundary. C) Shown here is the ROC analysis of validation set that exhibited an 
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AUC of 0.98, highlighting robust discerning ability of GBMSig proteins as attractive 

candidates. D) MRI images showing the changes in tumor volume before (A) and after 

resection (B) for ten GBM patients recruited prospectively for the blood analysis. E) Boxplot 

showing the changes in the plasma values for 4 GBMSig proteins at 24hrs, 48hrs, and 

10days (~) post-resection as measured through ELISA assays. Data were normalized to 

preoperative condition for individual patient. Y-axis represents GBMSig values in ng/unit of 

total protein. Black dots represent each patient and ‘*’ indicates p<0.05.
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Figure 6. Association of GBMSig proteins with TGF-β1 signaling network
A) U87MG cells were treated with TGF-β1 or its inhibitor in presence or absence of FCS to 

evaluate i) endogenous c-terminally phosphorylated SMAD2 (lane-1), ii) the ability of TGF-

β1 to phosphorylate SMAD2 (lane-2), iii) the ability of TGF-β1-inhibitor to inhibit SMAD2 

phosphorylation when cells were grown in normal media (lane-3), iv) the ability of TGF-β1 

to induce SMAD2 phosphorylation in cells grown earlier in presence of TGF-β1-inhibitor 

(lane-4), and v) the level of SMAD2 phosphorylation on prolong TGF-β1 exposure (50hrs) 

when cells were grown in normal growth media (lane-5). The results demonstrated i) the 

ability of TGF-β1-inhibitor in inhibiting c-terminal phosphorylation of SMAD2 (lane-3) 

similar to when cells were grown in serum-free media (lane-1&2) and ii) reversible nature of 

c-terminal phosphorylation inhibition of SMAD2 that could be reversed with TGF-β1 
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treatment (lane-3&4). GAPDH was used as loading controls. B) SRM analysis of TGF-β or 

its inhibitor treated U87MG cell lines revealed responsiveness of a subset of GBMSig 

proteins towards TGF-β signaling. Complete list of GBMSig proteins detected in various 

biospecimens and the responsiveness of these proteins towards TGF-β/Inhibitor is provided 

in the supplementary tables S9 and S10 respectively. Data from four replicates SRM 

analyses were centroided and presented as Z-score. C) flow cytometry analysis of a subset of 

GBMSig proteins following TGFβ/Inhibitor treatment. Percentage of changes in mean 

fluorescence intensity (MFI) was measured from treating U87MG cell lines with TGFβ 
relative to its inhibitor. Data represent means ± S.D. from four-replicate analyses. D) 

Network relationship (drawn using Cystoscape) between GBMSig proteins, which are 

presented as nodes. These nodes are connected through edges based on known pathways and 

co-expression. Color of the nodes is controlled by fold changes in expression of GBMSig 

proteins on TGFβ treatment. Grey colored nodes represent extended relationship with 

GBMSig proteins. E) qPCR analysis of siRNA mediated interference of a subset of TGFβ 
responsive GBMSig elements viz. MRC2, SLC16A1, and CD47 genes in U87MG cells. 

Results from three independent siRNA treatments (30hrs) were averaged (error bars 

represent S.D.) and presented as CT ratios normalized to HPRT housekeeping gene. PARP1 

expression was used as non-targeted control. F) Calcein AM assay indicates no significant 

changes in cell growth and proliferation following siRNA mediated inhibition of SLC16A1, 

MRC2, and CD47 in U87 cell lines. Data represent means ± S.D. from five replicate 

analyses. G) siRNA treated U87 cells were allowed to migrate towards TGF-β1 gradient 

through basement membrane (Cell Biolabs Inc.). Invaded cells were analyzed through 

colorimetric assay. Results from three independent experiments were averaged and 

normalized to non-targeting siRNA pools (scrambled). As evident, loss of cell migration 

following siRNA mediated inhibition of SLC16A1 and MRC2 is similar to that of known 

invasive marker CD47. Data represent means ± S.D. from three replicate analyses. H) A 

panel of TGF-β responsive GBMSig (CA12, MRC2, TNC, CD44, SLC16A1, S100A10, 

ITGA7, CLCCI, and SLC16A3) highlights poor survival (p<0.003, log rank, Mantel-Cox) 

among GBM patients (class 2) when overexpressed relative to GBM patients where these 

genes were low expressed (class 1).
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