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Abstract

Despite abundant clinical evidence linking metabolic abnormalities to diabetic vasculopathy, the 

molecular basis of individual susceptibility to diabetic vascular complications is still largely 

undetermined. Endothelial dysfunction in diabetes-associated vascular complications is considered 

an early stage of vasculopathy and has attracted considerable research interests. Type 2 diabetes is 

characterized by metabolic abnormalities, such as hyperglycemia, excess liberation of free fatty 

acids (FFA), insulin resistance and hyperinsulinemia. These abnormalities exert pathological 

impact on endothelial function by attenuating endothelium-mediated vasomotor function, 

enhancing endothelial apoptosis, stimulating endothelium activation/endothelium–monocyte 

adhesion, promoting an atherogenic response and suppressing barrier function. There are multiple 

signaling pathways contributing to the adverse effects of glucotoxicity on endothelial function. 

Insulin maintains the normal balance for release of several factors with vasoactive properties. 

Abnormal insulin signaling in the endothelium does not affect the whole-body glucose 

metabolism, but impairs endothelial response to insulin and accelerates atherosclerosis. Excessive 

level of FFA is implicated in the pathogenesis of insulin resistance. FFA induces endothelial 

oxidative stress, apoptosis and inflammatory response, and inhibits insulin signaling. Although 

hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia independently contribute to 

endothelial dysfunction via various distinct mechanisms, the mutual interactions may 

synergistically accelerate their adverse effects. Oxidative stress and inflammation are predicted to 

be among the first alterations which may trigger other downstream mediators in diabetes 

associated with endothelial dysfunction. These mechanisms may provide insights into potential 

therapeutic targets that can delay or reverse diabetic vasculopathy.
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Introduction

The increased prevalence of obesity is closely associated with the rising incidence of 

cardiovascular diseases and type 2 diabetes [30, 100]. Diabetes creates an environment 

adverse to vascular function through a wide variety of metabolic assaults [65], and is linked 

to macro- and microvasculopathy [35]. Macrovascular complications include coronary artery 

disease, stroke and peripheral vascular disease. Microvascular consequences include 

retinopathy and nephropathy, which are regarded as major causes of blindness and end-stage 

renal failure [51, 60]. Obesity-related insulin resistance, which when severe is Type 2 

diabetes, is associated with progression of endothelial impairment [7]. Endothelial 

dysfunction is a key event in the pathogenesis of diabetic micro- and macrovasculopathy and 

has gained increasing attention in the study of diabetes-associated cardiovascular 

complications.

The contributing factors underlying impaired endothelial function in diabetes are varied and 

commonly include metabolic abnormalities such as hyperglycemia, excess liberation of free 

fatty acids (FFA) and insulin resistance (see Ref. [71] for review). This review will focus on 

the current knowledge regarding mechanisms of metabolic abnormalities in type 2 diabetes 

that drive endothelial dysfunction.

Endothelium and vasomotor function in diabetes

The endothelium releases various contracting and relaxing factors that are responsible for 

control of blood vessel tone and balance between vasodilation and vasoconstriction (see Ref. 

[79] for review).

Endothelium-dependent vasoconstriction is exacerbated in diabetes [80]. Endothelin-1 

(ET-1), a potent vasoconstricting peptide released from endothelial cells, plays critical roles 

in diabetes-associated vascular complication (see Ref. [19] for review). ET-1 expression is 

increased in microvascular endothelial cells isolated from subcutaneous adipose tissue of 

type 2 diabetic subjects, accompanied by increased basal mitogen-activated protein kinase 

(MAPK) activity [28]. In cultured endothelial cells, activation of extracellular signal-

regulated kinase 5 (ERK5) [89] or inhibition of the janus kinase/signal transducer and 

activator of transcription (JAK/STAT) signaling pathway [42] suppresses high glucose-

induced ET-1 expression. The endothelium also produces cyclooxygenase (COX)-dependent 

vasoactive factors [20, 88], including the vasoconstrictors, prostaglandin H2 (PGH2) and 

thromboxane A2 (TXA2), and the vasodilator, prostacyclin (PGI2). Indomethacin, a 

nonselective inhibitor of COX, abolished hypoxia-induced dilation of skeletal muscle 

resistance arterioles in obese Zucker rats, while blockade of PGH2/TXA2 receptors and the 

inhibition of thromboxane synthase increased hypoxia-induced dilation. Moreover, the 

TXA2 level was higher in the arterioles of obese rats. Together, these data suggest that 
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impaired hypoxia-induced dilation in obese rats may be due in part to an increased vascular 

production of TXA2 which competes against the vasodilator influences of PGI2 [29]. In 

intramyocardial arteries of obese Zucker rats, COX-1 inhibition enhanced arachidonic acid 

(AA)-induced vasorelaxation and inhibited serotonin-induced vasoconstriction, but COX-2 

inhibition reduced AA-induced vasorelaxation without modifying serotonin-induced 

response [64]. These results suggest that COX-2-mediated vasorelaxation in coronary 

arteries from insulin-resistant obese Zucker rats is enhanced, which may represent a 

compensatory mechanism.

Factors contributing to vasodilation include nitric oxide(NO), PGI2 and endothelium-derived 

hyperpolarizing factors (EDHF). Among all the factors, NO is the major factor in regulating 

endothelium-dependent relaxation. S-Nitrosylation of soluble guanylyl cyclase (sGC) by 

endothelial NO was recently identified as a mechanism that may compensate for moderate 

reduction of vascular NO bio-availability [54]. NO-mediated endothelium-dependent 

vasodilation is impaired in type 2 diabetic mice (db/db), which is attributed to reduced 

expression and/or phosphorylation (Ser1177) of endothelial nitric oxide synthase (eNOS) 

[56, 102], enhanced eNOS uncoupling [55] and increased inactivation of NO by reactive 

oxygen species (ROS) [11]. Superoxide ( ), hydrogen peroxide (H2O2) and peroxynitrate 

(ONOO−) are significant ROS in vasculopathy. There are multiple cellular sources of , 

including NAD(P)H oxidase, xanthine oxidase, the mitochondrial respiratory chain, the AA 

cascade (including lipoxygenase and COX) and uncoupled eNOS [66]. NAD(P)H oxidase is 

a known key source of  in the vasculature (see Ref. [15] for review). One of the 

NAD(P)H oxidase isoforms, Nox2, is especially abundant in the endothelium. Endothelium-

specific overexpression of Nox2 exacerbated angiotensin II-induced oxidative stress and 

attenuated endothelium-dependent vasorelaxation [50]. Increased intracellular production of 

 derived from NADPH oxidase does not inhibit eNOS activity directly, but instead 

prevents the extracellular actions of NO by producing ONOO− [104] leading to protein 

tyrosine nitration and the generation of nitrotyrosine. NAD(P)H oxidase activity, 

production and nitrotyrosine levels are increased in coronary microvessels and aortae of 

db/db mice, accompanied by impaired endothelium-dependent vasodilation [23, 102].

In addition to NO, EDHF is also an important mediator of vascular tone and reactivity in 

diabetes, especially in small resistance vessels (see Ref. [21, 24] for review). A recent study 

suggests that both NO and EDHF-mediated vasodilation is impaired in mesenteric arteries of 

Otsuka Long-Evans Tokushima fatty (OLETF) type 2 diabetic rats [45]. Our work shows in 

coronary arterioles of db/db mice, NO-mediated vasodilation is significantly reduced, but a 

preserved EDHF function contributes to endothelium-dependent vasodilation [56]. Soluble 

epoxide hydrolase (s-EH) rapidly hydrolyzes certain epoxylipids (e.g., EET) to less 

bioactive diols (DHET), thereby attenuating the evoked vasodilator effects. In db/db mice, 

oral administration of s-EH inhibitors prevented endothelial dysfunction, and the effects 

were not affected by incubating mesenteric arteries with L-NAME and indomethacin [103].

Thus, diabetes-associated vasodilatory dysfunction is associated with increased production 

or sensitivity to vasoconctrictors, as well as decreased production or increased degradation 

of endogenous vasodilators. In addition, in diabetes the relative importance of the 
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endogenous vasodilatory mechanisms are altered and exhibit compensatory dilatory 

pathways.

Role of hyperglycemia in diabetes-associated endothelial dysfunction

In diabetes, the progression of vasculopathy is highly dependent upon the degree of 

hyperglycemia [4]. Prior work proposed various biochemical mechanisms which address 

how hyperglycemia leads to diabetic endothelial dysfunction [65]. This section will 

primarily focus on the newly identified signaling pathways by which hyperglycemia-induced 

metabolites exert adverse effects on endothelial function (Fig. 1).

The increased production of diacylglycerol (DAG) through glycolysis increases activation of 

protein kinase C (PKC), which is associated with vascular abnormalities in permeability, 

contractility, extracellular matrix synthesis, cell growth, apoptosis, angiogenesis, leukocyte 

adhesion, and cytokine activation and inhibition (see Ref. [27] for review). In cultured 

human microvascular endothelial cells, hyperglycemia-induced increase in PKC activity can 

be reversed by activation of transcription factor NF-E2-related factor-2 (nrf2), which 

regulates antioxidant defense responses [90]. The distinctive role of different PKC isoforms 

and the therapeutic implications require further investigation. In high glucose-treated 

primary human umbilical vein endothelial cells (HUVEC), the expression of endothelin 

converting enzyme-1 (ECE-1) increased as was ET-1 production, which was abolished by 

inhibiting PKC-delta, but not PKC-alpha, and PKC-beta [36]. In a rat model of type 2 

diabetes and hypertension, the PKC-beta inhibitor, ruboxistaurin, restored endothelium-

dependent vascular relaxation and suppressed vascular contraction [41]. In addition to the 

direct effects on endothelial cells, hyperglycemia affects ‘cross talk’ of vascular endothelial 

cells and pericytes through activating PKC-delta, which increases both expression of Src 

homology-2 domain-containing phosphatase-1 (SHP-1) and pericyte apoptosis, critical 

factors in development of diabetic retinopathy [26].

Another area of great interest focused on glucose-induced formation of non-enzymatic 

advanced glycation end products (AGE) [65]. AGE signaling is mediated through the 

receptor of AGE (RAGE) or other targets such as the toll-like receptor 4 (TLR4) and CD36. 

Deleterious vascular effects by AGE can occur by receptor-independent or dependent 

pathways [32]. In HUVEC, glycated albumin, a precursor of AGE, up-regulates NADPH 

oxidase and enhances oxidative stress [63]. In human aortic endothelial cells (HAEC), high 

glucose increased the expression of RAGE. High glucose-induced RAGE expression was 

normalized by overexpression of either uncoupling protein 1 (UCP1), superoxide dismutase 

2 (SOD2) or glyoxalase 1(GLO1) [93]. In retinal endothelial cells, RAGE activation by 

hyperglycemia induces the expression of thioredoxin-interacting protein (TXNIP, an 

endogenous inhibitor of the antioxidant thioredoxin) and inflammatory genes such as 

COX-2, vascular endothelial growth factor-A (VEGF-A) and intercellular adhesion 

molecule-1 (ICAM-1) [58]. In isolated rat mesenteric arteries, methylglyoxal, an AGE 

precursor, impaired endothelial function and increased nitrotyrosine expression [9]. In 

isolated rat retina, AGE also caused increased capillary permeability since pretreatment with 

anti-RAGE antibodies prevented the abnormalities [85]. Lastly, administration of soluble 

form of RAGE (sRAGE) partially restored coronary endothelial function in db/db mice [25]. 
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These studies highlight the critical importance of AGE in the pathogenesis of vascular 

dysfunction in diabetes.

Sorbitol, another toxic compound produced by abnormal metabolic pathways in diabetes, 

results from increased activity of the polyol pathway. In isolated, pressurized rat gracilis 

muscle arterioles, the aldose reductase (AR) inhibitor, zopolrestat, attenuated 

hyperglycemia-induced impairment of flow-mediated vasodilation [76]. Increasing doses of 

sorbitol elicited dose-dependent constrictions, which were abolished by endothelium 

removal, SQ-29548 or superoxide dismutase (SOD) plus catalase [76]. The sorbitol pathway 

serves as an important mechanism for diabetic retinopathy [40]. AR levels are lower in 

endothelial cells compared to pericytes. Hyperglycemia induces significant polyol 

accumulation in pericytes, which can be inhibited by AR inhibitors, but little or no 

accumulation in endothelial cells [34].

Increased ROS serves as a final common pathway of hyperglycemia-induced vascular 

dysfunction through a multitude of mechanisms. In addition to the inactivation of NO, 

hyperglycemia-induced ROS production may directly promote vascular apoptosis and 

remodeling. Hyperglycemia-induced endothelial apoptosis of HAEC was decreased by C-

peptide, which reduces RAC-1 translocation to the membrane and NAD(P)H oxidase 

activation [13]. High glucose increases lectin-like oxLDL receptor-1 (LOX-1) expression 

and reduces eNOS expression in HUVEC, which is reversed by NAD(P)H oxidase inhibition 

[73]. Hyperglycemia-stimulated vascular matrix metalloproteinase (MMP) activation in 

bovine aortic endothelial cells can be reduced by treatment with an antioxidant, but not an 

inhibitor to PKC [77]. Mesentery artery remodeling and expression of MMP-9, MMP-12 

and tissue inhibitors of matrix metalloproteinase (TIMP)-1 and TIMP-2 are increased in 

db/db arteries [67]. In BAEC, normalizing levels of mitochondrial ROS by manganese SOD 

(MnSOD) and an inhibitor of electron transport chain complex II prevent glucose-induced 

activation of PKC, formation of AGE, sorbitol accumulation and nuclear factor-kappa B 

(NFκB) activation [53]. Thus, hyperglycemia-induced biochemical sequelae lead to 

enhanced oxidative stress. Interventions that reduce oxidative stress also block the 

production and action of the adverse biochemical sequelae in hyperglycemia.

It is also noteworthy that glycocalyx, a layer of proteoglycans covering the endothelium, is 

involved in constituting the vascular barrier together with endothelial cells [6]. Acute 

hyperglycemia reduced glycocalyx volume and induced endothelial dysfunction in healthy 

human subjects, indicating a potential role for glycocalyx perturbation in mediating vascular 

dysfunction during hyperglycemia [52].

Therefore, hyperglycemia may induce chronic vascular complications via formation of toxic 

metabolites such as ROS, AGE, increased sorbitol and persistent activation of PKC. The 

interactions among various metabolites may further perpetuate the adverse effects of 

hyperglycemia. Intensive glycemic control, as well as inhibiting the downstream signaling 

by various metabolites, may serve as potential therapeutic targets for diabetes-induced 

vascular dysfunction.

Zhang et al. Page 5

Basic Res Cardiol. Author manuscript; available in PMC 2017 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Role of insulin resistance in diabetes-associated endothelial dysfunction

The onset of hyperglycemia and diabetes is often preceded by insulin resistance from many 

years to decades. The role of insulin resistance and subsequent hyperinsulinemia at the level 

of endothelial cells in vasculopathy has been extensively studied (Fig. 2). In vitro 

experiments using cultured endothelial cells suggest that insulin can induce the concurrent 

release of ET-1 and NO, two substances with opposing vasoactive properties. Insulin 

stimulates ET-1 gene expression and secretion in endothelial cells via a phosphoinositide-3 

kinase (PI3K)-dependent inactivation of glycogen synthase kinase-3beta (GSK-3beta) and 

Ras (an abbreviation of RAt Sarcoma)-MAPK activation [92, 95]. Insulin induces NO 

production via activation of an insulin receptor tyrosine kinase that phosphorylates insulin 

receptor substrate-1 (IRS-1), leading to binding and activation of PI3K, phophoinositide-

dependent protein kinase-1 (PDK-1) and protein kinase B (Akt)/eNOS pathway [47, 48, 96]. 

The multidomain adaptor protein, APPL1, modulates the dual vascular effects of insulin. 

APPL1 potentiates insulin-stimulated Akt activation by competing with the Akt inhibitor 

Tribble-3 and suppressing ERK1/2 signaling by altering the phosphorylation status of its 

upstream kinase Raf-1 (RAF proto-oncogene serine/threonine-protein kinase) in HUVEC 

[84]. In microvascular endothelial cells isolated from type 2 diabetic subjects, IRS-1/Akt 

phosphorylation was reduced while ERK1/2 activation was increased, suggesting the 

presence of endothelial cell insulin resistance [28]. Further evidence suggests that insulin is 

a double-edged sword in the treatment of diabetics. Physiological concentrations of insulin 

(10−10 M) preserve telomere length, reduce p53 and vascular cell adhesion molecule-1 

(VCAM-1) expression, and delays endothelial senescence under high glucose conditions 

through an NO-dependent mechanism. However, supra-physiological concentrations of 

insulin (10−7–10−6 M) in the presence of high glucose promote cellular senescence in an 

eNOS-independent manner [44].

Animal studies suggest that endothelium-specific insulin resistance does not cause changes 

in whole-body glucose tolerance, circulating insulin concentrations or insulin sensitivity [17, 

81]. Endothelium-dependent vasorelaxation was not examined in endothelium-specific 

insulin receptor knockout mice; but in transgenic mice with a mutant insulin receptor 

targeted to endothelium, aortic endothelial function was impaired. Furthermore, in ApoE KO 

mice with a specific endothelial cell knockout of insulin receptors, atherosclerotic lesion 

formation is accelerated along with impaired endothelium-dependent vasodilation of carotid 

arteries, and enhanced VCAM-1 expression and mononuclear cell adhesion [61]. In mice 

with a genetic deletion of the insulin receptor in all vascular tissues, basal vascular eNOS 

phosphorylation, endothelial function and blood pressure are normal, despite absent insulin-

mediated eNOS phosphorylation [70]. Additionally, knockout of insulin receptors in 

cardiomyocytes attenuates coronary arterial dysfunction induced by pressure overload, 

implicating a compensatory mechanism [69]. These studies suggest that the concept of 

selective insulin resistance is more complex and variable than previously thought [22].

Although in vitro experiments strongly suggest that insulin regulates NO release by 

endothelial cells, endothelium-intact isolated arteries (mouse aortae and mesenteric arteries) 

do not relax following the administration of insulin (unpublished work). There is also 

controversy as to whether insulin-induced relaxation of resistance vessels and increase in 
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blood flow to skeletal muscles occur at physiological exposure time and concentrations of 

insulin [5]. A clinical study shows that although troglitazone increased whole-body and 

forearm glucose uptake, and improved insulin sensitivity, it had no effects on insulin-

induced vasodilatory function in obese subjects [72].

Thus, mechanisms underlying the association between insulin resistance and endothelial 

dysfunction, and therapeutic implications of improving insulin sensitivity in the vasculature 

warrant further investigations.

Role of FFA in diabetes-associated endothelial dysfunction

Free fatty acids in excess is implicated in the pathogenesis of insulin resistance [33]. As is 

seen with hyperglycemia-induced glucotoxicity, lipotoxicity from FFA may promote 

endothelial dysfunction by a number of related mechanisms (Fig. 3).

Endothelial damage by FFA occurs due to a decrease in Bcl-2/Bax ratio, which augments 

endothelial apoptosis [59]. FFA’s apoptotic effects are associated with reduced Akt/eNOS 

phosphorylation and enhanced caspase-9 activation in HUVEC, which can be prevented by 

insulin (10−8 M) treatment [59]. FFA-induced apoptosis also involves p38 MAPK signaling 

[10], NFκB activation [68] and GSK-3beta/Wnt/beta-catenin signaling [107]. FFA inhibits 

insulin-mediated tyrosine phosphorylation of IRS-1, serine phosphorylation of Akt and 

eNOS, and NO production, while it increases IKKβ (IκB kinase-β) activity and phosphatase 

and tensin homolog (PTEN) expression [37, 83]. Exposure to FFA enhances the expression 

of NAD(P)H oxidase subunit, stimulating ROS production [12] and reducing mitochondrial 

membrane potential [106]. Elevated concentrations of non-esterified fatty acids (NEFA) 

increase monocyte expression of CD11b, intracellular ROS formation and adhesion to 

endothelial cells, which can be inhibited by antioxidants, NAD(P)H oxidase inhibitors and 

PKC inhibitors [105]. FFA increase A disintegrin and metalloproteinase (ADAM)-mediated 

substrate cleavage resulting in functional effects on cell proliferation, cell migration and 

endothelial permeability [62]. Moreover, saturated versus unsaturated FFA-induced 

endothelial apoptosis may be mediated via different mechanisms, and the impact of FFA on 

endothelial cells depends on vascular origin and growth/proliferation status of the vascular 

cellular elements. Therefore, it is important to examine the effects of FFA on target tissues 

that are known to be affected in diabetes, such as human aortic and retinal endothelial cells 

[2].

Studies on animal models also support the detrimental vascular effects of FFA. In the rabbit, 

in vitro incubation with FFA impaired endothelial function of isolated aortic rings, which 

was accompanied by reduced NO levels and enhanced oxidative stress [18]. In Sprague–

Dawley rats, FFA infusion increases blood pressure, reduces eNOS and PGI2 synthase 

activity and impairs aortic endothelial function [16, 82]. In obese Zucker rats and high fat 

diet-induced obese mice, inhibiting FFA release from adipose and inhibiting rate-limiting 

enzyme for fatty acid oxidation in mitochondria reduced aortic ROS production and 

prevented eNOS and PGI2 synthase inactivation [16].
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In addition to animal models, the adverse effects of FFA on endothelial function are 

demonstrated in healthy humans and diabetic patients. Infusion of FFA impairs endothelial 

function, which can be reversed by an inhibitor of the renin–angiotensin system (RAS) [86] 

or in the presence of rosiglitazone, a peroxisome proliferator-activated receptor gamma 

(PPARγ) agonist [46]. Lipid infusion blocked insulin-mediated increases in microvascular 

blood velocity and microvascular blood flow in both cardiac and skeletal muscle of healthy 

young adults [39]. A 48-h physiological increase in plasma FFA to levels of obesity and 

diabetes in a group of healthy subjects enhanced leukocyte activation and the angiotensin II-

forming activity in human mononuclear and polymorpho-nuclear cells [3]. Elevated FFA 

also increases plasma markers of endothelial activation, such as ICAM-1, VCAM-1 and 

soluble E-selectin (sE-selectin), and increases plasma levels of myeloperoxidase (MPO) and 

tissue-type plasminogen activator inhibitor-1 (tPAI-1, an indicator of a prothrombotic state) 

[43]. In obese subjects with type 2 diabetes, a lipid infusion results in a rapid and sustained 

elevation in blood pressure, impaired flow-mediated dilatation and increases in C-reactive 

protein (CRP), but does not change plasma renin and aldosterone levels [78].

In type 2 diabetic subjects, postprandial lipidemia is exaggerated and prolonged. Prolonged 

postprandial lipidemia is associated with prolonged endothelial dysfunction likely through 

the effects described above from FFA. This underscores the importance of dietary 

compliance with low-fat meals for type 2 diabetic patients [1].

Perspectives

Many studies suggest that intensive control of blood glucose delays the onset and retards the 

progression of diabetic vascular complications. However, to date, the effectiveness of 

intensive glucose control on the prevention of major cardiovascular events is still 

inconclusive [14].

The molecular mechanisms by which hyperglycemia, insulin resistance, hyperinsulinemia 

and dyslipidemia result in endothelial dysfunction overlap and make it difficult to tease out 

the specific molecular mechanisms. Among the various pathogenic features induced by 

metabolic abnormalities in diabetes, oxidative stress and inflammatory responses appear to 

be the first abnormalities which trigger several other mechanisms in diabetes-associated 

endothelial dysfunction [8]. Although the role of oxidative stress as a contributing 

mechanism to diabetes-induced endothelial dysfunction is supported by a large body of 

experimental and clinical studies, antioxidant supplementation (mostly with vitamin E) has 

not been shown to improve the pathological consequence. In contrast, substances such as 

statins, activators of peroxisome proliferator-activated receptors and inhibitors of renin–

angiotensin–aldosterone system, which possess indirect antioxidant properties, show 

improved endothelial function in preclinical and clinical studies as well as reducing the 

incidence of cardiovascular events in diabetic patients [38]. Factors that may contribute to 

the apparent discrepancy in these studies include patient selection with diseases that differ in 

extent of oxidative stress as well as the administered dose and type of antioxidant therapy 

used. Therefore, individualized assessment of the level of oxidative stress and the potential 

underlying mechanism of oxidative stress before treatment may provide insight into the 

appropriate therapeutic approach, which may improve the individual’s condition and resolve 
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this antioxidant paradox. The development of novel, potent antioxidant strategies and early 

intervention in the process of vascular dysfunction and disease development may also 

produce benefits in clinical outcomes [49, 71].

In addition to oxidative stress, metabolic abnormalities are correlated directly with markers 

of inflammation [74, 87]. Chronic low-grade inflammation can be both a cause and 

consequence of endothelial dysfunction, and the two appear to be tightly linked [65]. Since 

type 2 diabetes is highly associated with obesity, the metabolic role of adipose tissue 

potentiates the adverse effects on the vasculature [31, 98, 99]. Adipose tissue secretes a 

range of proinflammatory molecules, which lead to systemic inflammation and participate in 

the cross talk between adipose stores and the vascular wall (see Ref. 100 and 101 for 

review). Local inflammation in the vasculature is attributed to effects by the inflammatory 

cytokines/chemokines and leukocyte adhesion molecules expressed and released by the 

endothelium [97, 100]. Anti-inflammatory treatment by neutralizing antibodies to TNFα, 

MCP-1 and IFNγ effectively attenuated endothelial dysfunction in db/db mice without 

significantly affecting body weight and glucose metabolism [23, 91, 98]. This suggests that 

vasoprotection by anti-inflammatory therapies can be independent of their metabolic effects. 

Thus, newer anti-diabetic agents should not only achieve superior glycemic control, but also 

improve cardiovascular outcomes [94]. Therapies that combine salutary effects on vascular 

inflammation and oxidative stress potentially delay or reverse diabetic vasculopathy [57, 99].

Conclusion

Endothelial dysfunction is characterized by a number of functional alterations in the vascular 

endothelium, which include changes in vasomotor function, enhanced generation of ROS 

and inflammation resulting in a proatherogenic response, apoptosis, remodeling, and altered 

barrier function. Impaired endothelial function is a key event associated with subsequent 

progression of cardiovascular complications in diabetes. Although normal insulin signaling 

provides protection from glucotoxicity in endothelial cells, hyperinsulinemia further 

exacerbates hyperglycemia-induced endothelial injury. Insulin resistance leads to enhanced 

FFA production, which inhibits insulin signaling and accelerates vascular insulin resistance. 

Thus, glucotoxicity, lipotoxicity, insulin resistance and a mutual interaction between these 

factors occur to promote the development and progression of endothelial dysfunction in type 

2 diabetes. Conventional therapies to reduce hyperglycemia, dyslipidemia and insulin 

resistance represent important clinical options to improve endothelial function and delay the 

progression of vascular complications. Therapeutic approaches targeting intracellular 

mechanisms underlying metabolic alterations, such as inhibiting AGE formation and 

signaling, suppressing PKC activation, inhibiting the cannabinoid receptor CB(1)-R [75], 

preventing or decreasing inflammatory responses and restoring the redox balance of the 

endothelium, are thought to be promising strategies to prevent endothelial dysfunction in the 

diabetic state. In animal models, to date, these insights are partially established with 

evidence of favorable effects. Since therapy addressing a single metabolic abnormality has 

not been beneficial (e.g., vitamin E), to reduce cardiovascular complications in type 2 

diabetes may require simultaneous interventions within multiple metabolic and signaling 

pathways. It may take a multi-component approach such as reducing hyperglycemia, 
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oxidative stress, inflammation and insulin resistance to ameliorate the adverse effects that 

progress to diabetic vasculopathy.

Therefore, clinical trials targeting multiple therapeutic targets are urgently needed to validate 

their effectiveness in ameliorating diabetic vascular complications. Combination therapy that 

simultaneously targets multiple pathways in the pathogenesis of endothelial dysfunction is 

an attractive emerging concept for slowing progression of diabetic vascular complications.
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Fig. 1. 
The impact of hyperglycemia on endothelial dysfunction. Hyperglycemia causes an increase 

in toxic metabolites resulting in increased production of ROS, advanced glycation end 

products (AGE), production of sorbitol and stimulation of protein kinase C (PKC). 

Activation of these pathways promotes increased vascular oxidative stress, inflammation, 

apoptosis, atherogenesis and impaired endothelial function. See text for details. AGE 
advanced glycation end products, COX-2 cyclooxygenase-2, ECE endothelin converting 

enzyme, ET-1 endothelin-1, LOX-1 lectin-like oxLDL receptor-1, MMP matrix 

metalloproteinase, NO nitric oxide, Nrf2 transcription factor NF-E2-related factor-2, PKC 
protein kinase C, RAGE receptor of AGE, ROS reactive oxygen species, SHP-1 Src 

homology-2 domain-containing phosphatase-1, TLR4 toll-like receptor 4, TXA2 

thromboxane A2, TXNIP thioredoxin-interacting protein
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Fig. 2. 
Role of insulin resistance in endothelial dysfunction. Insulin regulates endothelial function 

through both Ras-MAPK and PI3K-Akt-eNOS signaling pathways to maintain the balance 

between production of vasodilator mechanisms and vasoconstrictor mechanisms. Akt protein 

kinase B, eNOS endothelial nitric oxide synthase, GSK3β glycogen synthase kinase-3beta, 

IRS-1 insulin receptor substrate-1, MAPK mitogen-activated protein kinase, PDK-1 
phophoinositide-dependent protein kinase-1, PTEN phosphatase and tensin homolog, Ras rat 

sarcoma
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Fig. 3. 
Role of free fatty acids in endothelial dysfunction. Free fatty acids (FFA) stimulate 

endothelial apoptosis, augment vascular oxidative stress, reduce NO availability, enhance 

endothelial and monocyte activation and increase inflammatory responses. CRP C-reactive 

protein, ICAM-1 intercellular adhesion molecule-1, IκBα inhibitory subunit of NFκB, 

IKKβ IκB kinase-β, NFκB nuclear factor-kappa B, sE-selectin soluble E-selectin, VCAM-1 
vascular cell adhesion molecule-1
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