
Discrimination of Native-like States of Membrane Proteins with 
Implicit Membrane-Based Scoring Functions

Bercem Dutagaci1,†, Kitiyaporn Wittayanarakul2,†, Takaharu Mori3, and Michael Feig1,*

1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 
USA 2Department of Natural Resource and Environmental Management, Faculty of Applied 
Science and Engineering, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand 
3Theoretical Molecular Science Laboratory, RIKEN, Wako-shi, Japan

Abstract

A scoring protocol based on implicit membrane-based scoring functions and a new protocol for 

optimizing the positioning of proteins inside the membrane was evaluated for its capacity to 

discriminate native-like states from misfolded decoys. A decoy set previously established by the 

Baker lab (Proteins (2006), 62, 1010–1025) was used along with a second set that was generated 

to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with 

CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), 

heterogeneous dielectric generalized Born version 2 (HDGBv2) and 3 (HDGBv3) were tested 

along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals 

contributions to the solvation free energy. For comparison, scores were also calculated with the 

distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state 

discrimination, energy vs. root mean square deviation (RMSD) correlations, and the ability to 

select the most native-like structures as top-scoring decoys were evaluated to assess the 

performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively 

far from the native state was challenging and dominated largely by packing interactions that was 

captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for 

the membrane environment was much more important in the second decoy set where especially the 

HDGB-based scoring functions performed very well in ranking decoys and providing significant 

correlations between scores and RMSD that show promise for improving membrane protein 

structure prediction and refinement applications. The new membrane structure scoring protocol 

was implemented in the MEMScore web server (http://feiglab.org/memscore).
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INTRODUCTION

Membrane proteins play important roles in many cellular processes, ranging from 

intercellular signal transduction to the transport of small molecules across cell membranes.1 

Membrane proteins are also targeted by more than half of the currently approved drugs on 

the market.2 Information about the three-dimensional structure of membrane proteins is 

crucial in understanding their function and assisting structure-based drug design. At the 

same time, experimental structure determination of membrane proteins continues to be 

difficult. The rate of new membrane structures that are being solved remains low and 

structures of membrane proteins constitute only around 1% of all available structures in the 

Protein Data Bank (PDB)3.

Computational structure prediction is a powerful alternative that can compensate for the 

experimental challenges. Structure prediction methods are generally classified into two main 

categories: 1) template based methods,4–8 which utilize a structure from a related sequence 

as the template for structure prediction, and, 2) ab initio methods,9–14 that do not rely on 

known structures and employ extensive sampling to optimize conformations according to an 

energy function. Modern prediction algorithms often use a hybrid protocol where partial 

template-based structure fragments are combined via sampling. For membrane protein 

structures, the lack of known structures generally limits simple homology modeling.15–18 

Instead, a hybrid assembly protocol9 is often most successful where the presence and 

location of transmembrane helices is initially predicted,19–23 the overall topology of the 

protein is determined,19, 24 and helices are then assembled to form tertiary structure 

candidates.15–17, 25–27 The crucial final step following the generation of models is the 

application of a scoring function to find the structure presumed to be closest to the true 

native structure according to the most favorable score. Protein structure scoring functions are 

also important for computational protein design28–29 and during protein structure refinement 

of template-based models.30–32

Protein structure scoring functions can also be categorized into two general categories: 1) 

physics-based functions that use optimized force fields and solvation models and, 2) 
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knowledge-based functions that rely on statistical information derived from known 

structures.33 As a result of extensive optimization and an effective reduction of noise, 

knowledge-based scoring functions are often more successful when evaluating models of 

aqueous solvent proteins.7, 34–39 Knowledge-based scoring functions for membrane proteins 

have not been developed as extensively, in part, again, because of more limited available 

structures, but also because the membrane environment provides a complex physicochemical 

environment that is more difficult to capture with a simple statistical approach. The careful 

application of physics-based energy ranking can also provide significant discrimination of 

native-like structures in aqueous solution.33, 40 For membrane proteins, physics-based 

scoring functions may offer advantages by more competently capturing the balance between 

different interactions in aqueous solvent and in the membrane interior faced by membrane 

proteins.

A common approach in physics-based scoring functions is to combine an atomistic force 

field with an implicit solvent or membrane model so that the solvent degrees of freedom can 

be accounted for instantaneously. This idea has been applied to water soluble proteins40–43 

and more recently also to membrane protein structures by Yuzlenko and Lazaridis44. In the 

latter study, physics-based scoring using implicit membrane models was used to evaluate 

decoys from five transmembrane protein test sets provided by the Baker laboratory17 

(bacteriorhodopsin (BRD7), rhodopsin (RHOD), V-ATPase (VATP), fumarate reductase 

(fmr5), and lactose permease (ltpA)). The study compared the Implicit Membrane Model 1 

(IMM1),45 the Generalized Born with simple SWitching (GBSW)46 and an early version of 

the Heterogeneous Dielectric Generalized Born (HDGB)47 model, all of which resulted in 

good native-state discrimination relative to the energies of the decoys as measured by Z-

scores. However, a relative ranking of decoys and identification of the most native-like 

decoy, which is more important in practical applications where the native structure is not 

known, was problematic due to poor correlation between the scores and RMSD values. This 

suggests a need for improvement for the scoring protocol. While improvements in the actual 

scoring energy function may be possible, an effective protocol for optimizing the position 

and orientation of a given decoy within the membrane is also critical since scoring of protein 

structures depends on how they are placed within the membrane. Finally, another issue is the 

choice of decoys. If the decoys are not sufficiently native-like for scoring functions to be 

able to reliably distinguish more native-like from less native-like structures, the performance 

of any scoring function would be expected to be poor. Therefore, decoy sets with additional 

structures closer to the native state could offer further insights into how well membrane 

protein scoring functions can perform.

In this study, we are revisiting the scoring of membrane protein structures using physics-

based scoring function with implicit membrane models. In particular, we tested a recently 

improved version of the HDGB implicit membrane model including a van der Waals term 

that better describes amino acid interactions within the membrane (HDGBvdW)48 but results 

are also compared with IMM145, GBSW46, and previous versions of the HDGB model.48–50 

We also developed a refined protocol for the optimization of the position and orientation of 

the structure decoys with respect to the membrane. In terms of the decoy set, we revisited 

the five-protein Baker decoy set mentioned above to compare with the previous study by 

Yuzlenko and Lazaridis,44 but also generated additional models closer to the native 
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structures to test whether the performance of the scoring functions improves for the closer 

decoys. Finally, encouraged by a good performance of the methods tested here, we 

developed the new MEMScore (http://feiglab.org/memscore) web service to provide our 

scoring protocol to the broader community.

METHODS

Test Systems and Decoy Sets

Five transmembrane proteins, BRD7 (Bacteriorhodopsin), fmr5 (fumarate reductase), ltpA 

(Lactose permease), RHOD (Rhodopsin), and VATP (V-ATPase) were considered here with 

the native structures taken from the Protein Data Bank (PDB) from PDB codes 1PY651 

(BRD7), 1QLA52 (fmr5), 1PV653 (ltpA), 1U1954 (RHOD), and 2BL255 (VATP).

Two decoy sets were considered. The first decoy set (set 1) was provided by the Baker 

group.17 Set 1 consisted of 100 decoys for BRD7, fmr5, ltpA, and VATP and 50 decoys for 

RHOD with RMSD values with respect to the native structures ranging from 3 to 25 Å. A 

second set of decoys (set 2) was prepared for each system by generating additional structures 

closer to the native structures. This was done by initially selecting five decoy structures of 

set 1 with the lowest RMSD values. Using a Cα-based representation, trajectories were 

generated where the decoys were pulled towards the native and, vice versa, the native 

structure was pulled towards the decoys during 200 ps of molecular dynamics (MD) using a 

harmonic restraint with a force constant of 10 kcal/mol/Å2 that was applied with respect to 

the target structures. In these simulations, transmembrane helix segments were restrained 

separately, and contacts between Cα-atoms that were initially less than 8 Å distance from 

each other were weakly restrained using a flat-bottom potential (1 Å) with a weak force 

constant of 0.1 kcal/mol/Å2 to maintain contacts where possible via the CONS NOE 

command in CHARMM.56–57 From the pulling simulations, frames were selected more 

frequently at the beginning of each simulation and less frequently towards the end as the 

target structure was approached. The selected frames were subsequently reconstructed to all-

atom detail and energy minimized over 1,000 steps using the IMM1 model. From the 130 

models generated in this manner, only the ones with final energies lower than 0.8 times of 

the minimum energy of all structures were subsequently included in the decoy set 2. For 

each selected decoy structure in set 2, another short 20-ps MD simulation was performed 

followed by 100 steps of minimizations using the IMM1 model, during which Cα atoms 

were restrained with a 0.10 kcal/mol/Å2 force constant to yield the final decoy structures. 

Set 2 consists of 75 decoys for BRD7, 83 decoys for fmr5, 72 decoys for ltpA, 90 decoys for 

RHOD and 118 decoys for VATP covering an RMSD range between 1 and 13 Å.

Scoring Protocol

All of the decoy structures were subjected to the protocol illustrated in Fig. 1. In brief, initial 

models were optimized first in aqueous solvent before being inserted into the membrane. 

After finding an optimal orientation in the membrane, further minimization and MD was 

carried out before scoring the final models. The details of this protocol are described in the 

following.
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Initial Minimization in Aqueous Solvent—Initial models were first completed by 

adding hydrogens using the CHARMM HBUILD module. Initial relaxation was then carried 

out with IMM1. Because the degree of membrane insertion for a given structure is not 

assumed to be known a priori each model was translated so that the center of mass is located 

at z=100 Å (with z being the membrane normal), which corresponds to the bulk water phase 

in the IMM1 model. Minimizations were performed using the steepest descent (SD) 

algorithm over 50 steps and followed by the adopted-basis Newton-Raphson algorithm 

(ABNR) over 1,000 steps. During minimization, Cα and Cβ atoms were restrained by a force 

constant of 0.10 kcal/mol/Å2 to prevent large deviations from the initial models.

Optimization of Membrane Orientation—The minimized structures were transferred to 

the membrane by placing the center of mass at z=0 and orienting each molecule with the 

first principal axis aligned parallel to the membrane normal. The position and orientation 

was then further optimized with a Monte Carlo protocol where random rigid body 

translations along the z axis between -12 and 12 Å and random rotations around the x and y 

axes between −60° and 60° were explored to find an optimal orientation according to the 

minimum solvation energy. Monte Carlo sampling was carried out for 500 steps which was 

generally sufficient to reach convergence. The orientation with the minimum energy was 

then used as the starting point for further optimization.

Minimization in Membrane Environment—Optimally oriented models were 

minimized initially over 50 steps with SD and over 100 steps with the ABNR algorithms 

using the implicit membrane model that was later used for scoring. Cα positions were 

restrained by a force constant of 0.10 kcal/mol/Å2 during the minimization process. After 

minimization, 20 ps of MD simulations were performed using the velocity Verlet integrator 

using a 2 fs time step. Long-range electrostatics and van der Waals interactions were 

switched to zero between 20 and 24 Å for GB models and between 7 and 9 Å for the IMM1 

implicit membrane model. The SHAKE58 algorithm was applied to constrain bond lengths 

involving H atoms. The temperature was coupled to a bath at 298 K using a Nosé-Hoover 

thermostat.59–60 Cα atoms were again restrained with a force constant of 0.10 kcal/mol/Å2. 

The final structures at the end of the MD run were further minimized for 50 steps using SD 

algorithm and 1,000 steps using the ABNR algorithm with a weak Cα restraint by a force 

constant of 0.10 kcal/mol/Å2.

Scoring of Decoys—The oriented and minimized models were scored using total 

energies that are consist of bonded and non-bonded interaction energies as well as the 

solvation energies calculated with a variety of energy functions. The implicit membrane 

models IMM1,45 IMM1-p36,44 GBSW46 and HDGB47 (HDGBv2,50 HDGBv349 and 

HDGBvdW48) were used with five different membrane widths of 23.1, 25.4, 27.0, 28.5, and 

30.4 Å. Long-range electrostatic and van der Waals interactions were cut-off with a 

switching function applied between 20 and 24 Å for GB models and 7 and 9Å for the IMM1 

models. The implicit membrane models are described in more detail below. For comparison, 

the distance-scaled, finite ideal-gas reference (DFIRE)38 potential was also applied to test 

the performance of a popular knowledge-based scoring function that has not been optimized 
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for membrane environments. In the case of DFIRE, the models optimized with HDGBvdW 

were used.

Implicit Membrane Models—Three major types of implicit membrane models were used 

in this study: IMM1, GBSW and HDGB.

The IMM1 model employs an empirical Gaussian function to describe the solvation free 

energy term along with a distance-dependent dielectric term; both terms vary along the 

membrane normal to describe the effect of the membrane environment. The IMM1 method 

is an extension of the Effective Energy Function (EEF1) model for soluble proteins61–62 and 

is based originally on the CHARMM19 polar force field.63 In addition, the IMM1-p36 

model,44, 64 which is an extension of IMM1 for the all-atom CHARMM36 force field, was 

used as well for the comparison.

The GBSW model is a two-dielectric heterogeneous implicit solvent model,65 where the 

electrostatic solvation free energy is calculated via a generalized Born (GB) formalism and 

the non-polar contribution of the solvation free energy is approximated by a solvent 

accessible surface area (SASA) model.66–67 The CHARMM36 force field68 was used for the 

proteins during the GBSW model calculations.

The HDGB model is also a GB-based formalism that implements a dielectric profile along 

the z-axis instead of a simple two-dielectric representation. The dielectric profile was 

initially motivated by solving the Poisson equation for ionic spheres in a dielectric layer 

system47 but subsequently optimized against free energies of insertion of amino acid side 

chain analogs.50 More recent additional optimizations of the original dielectric profile in 

HDGB47 led to update models HDGBv250 and HDGBv3.49 Recently, the HDGB model was 

further extended with an implicit van der Waals term (HDGBvdW)48 to improve the 

description of non-polar interactions within the membrane where electrostatic interactions 

are less important. For all of the HDGB models, the CHARMM36 protein force field68 was 

used again.

While the membrane width is a simple parameter in the IMM1 and GBSW models, HDGB 

requires a scaling of the dielectric and non-polar profiles that were initially optimized for a 

membrane with a hydrophobic thickness of 28.5 Å.50 For the HDGBvdW model, we also 

scaled atom type density profiles that vary as a function of z48 when modeling different 

membrane widths.

Software—All the simulations were performed using CHARMM69 version c40a2 or c41a1 

(for the HDGB models) where the implicit membrane models are implemented. The 

Multiscale Modeling Tools for Structural Biology (MMTSB) tool set70 was used to simplify 

the scoring protocol.

MEMScore web server—The membrane protein scoring protocol was implemented in 

the MEMScore web server (http://feiglab.org/memscore). The server allows the submission 

of a set of structures, optimizes their orientation within the membrane, and returns scores 
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using either of HDGBvdW, HDGBv3, GBSW and IMM1 implicit membrane models. 

Typical turnaround times for a set of 100 models are within a few hours.

Analysis

The performance of the scoring functions was evaluated in a number of different ways. First, 

native state discrimination was analyzed based on z-scores44, 71 for the difference between 

native state and decoy scores:

(1)

where <Edc>, Enat, and SDdc are the average energy calculated for the structures of decoys, 

the energy of the native protein structure, and the standard deviation of the energies for the 

decoy structures, respectively. Native state scores were obtained by subjecting the 

experimental structures to the same protocol as the decoys.

Second, Spearman’s rank correlation between scores and RMSD were calculated based on 

regression analysis. To obtain RMSD values, two different protocols were followed: 1) 

Models after the initial minimization in aqueous solvent were superimposed onto the native 

structures based on a least squares fit before calculating Cα RMSD values. 2) Models after 

orientation and optimization within the membrane were compared with the membrane-

optimized native structures. In this case, the least-squares fit to the native structures allowed 

only translation in x-and y-directions and rotation around the z-axis to preserve the z 

positions and relative orientations within the membrane. The first RMSD metric (RMSD1) 

only considers differences in the internal structure while the second metric (RMSD2) also 

emphasizes the orientation within the membrane.

Third, we also evaluated how close top-scoring decoys were with respect to the native 

structure (in terms of RMSD). In practice, this is the most important property because 

scoring functions would be tasked to select one or more top-scoring decoys from a set of 

models. We analyzed the average RMSD for the top 1 (top-1) and top 10 (top-10) decoys.

RESULTS

We tested the scoring of membrane protein structure decoys for five systems with mostly 

GB-based implicit membrane models in the scoring protocol shown in Fig. 1. We tested a 

range of implicit models (IMM1, IMM1-p36, GBSW, HDGB (HDGBv2 and HDGBv3), 

HDGBvdW) as well as DFIRE. The protocol involved initial relaxation, optimization of the 

membrane orientation of each decoy, and further optimization via minimization and MD 

before energy scores were finally calculated.

Two decoy sets were studied, for which results are presented separately in the following. The 

first set was examined already earlier44 and we primarily focused here on comparing 

improvements in the scoring protocol to the previous work. The second set extends 

structures closer to the native structure and was studied to evaluate how different scoring 

functions perform at different distances from the native.
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Scoring of Decoy Set 1

The scoring protocol was applied to decoy set 1, generated originally by the Baker lab and 

studied before by Yuzlenko and Lazaridis.44 Fig. 2 shows the distribution of scores relative 

to the energy of the native structure as a function of RMSD2 (which includes differences in 

membrane orientation, see Methods) with respect to the native structure. It can be seen that 

all of the scoring functions generally discriminated decoys from the native and provided 

some degree of correlation between the scores and RMSD in qualitative agreement with the 

previous analysis by Yuzlenko and Lazaridis.44 The results were analyzed quantitatively via 

z-scores to assess native state discrimination, Spearman’s rank correlation coefficients to 

describe the correlation between scores and RMSD, and the RMSD values of the top-scoring 

decoys.

Detailed z-score results are given in Table S1 and summarized in Table 1. The results vary 

only moderately as a function of membrane width, but widths between 27.0 and 28.5 Å give 

best overall results for the systems studied here (see below). To facilitate comparisons with 

the previous work by Yuzlenko and Lazaridis we focus initially on the results for a 

membrane width of 28.5 Å which corresponds to a dipalmitoyl-phosphatidylcholine (DPPC) 

bilayer. We found good native state discrimination with z-scores ranging from just below 3 

with IMM1 to more than 4 with the HDGB models when the full protocol was applied. With 

DFIRE, the z-score was around 2.4 and DFIRE failed to fully discriminate the native 

structures for fmr5 and VATP from the decoys (see Fig. 2). This is still remarkable, however, 

considering that this knowledge-based potential was not optimized for membrane proteins. 

To examine the effect of optimizing membrane placement, we also calculated scores from a 

protocol variant where that step was omitted. Without optimizing membrane positioning, the 

z-scores were reduced by about one unit for all scoring functions except DFIRE, for which 

the z-score remained essentially unaltered as may be expected since DFIRE does not 

consider the membrane environment. The results without optimizing the membrane 

placement were similar to the results reported previously by Yuzlenko and Lazaridis,44 

where an extensive optimization of the membrane orientation was not carried out. This 

suggests that careful placement and orientation of protein structures in the membrane is an 

important factor in discriminating decoys from native states.

Correlation coefficients between the scores and RMSD are given in detail in Table S2 and 

summarized in Table 2. Two different RMSD metrics were considered here: RMSD1 

compares with the native structure after a simple least-squares fit (neglecting any difference 

in membrane orientation) whereas RMSD2 preserves differences in membrane orientation 

(see Methods for details). Again, there was little difference as a function of membrane width 

(Table S2). The optimization of the membrane placement improved correlation coefficients 

with respect to RMSD2 for some scoring functions. However, the correlation with respect to 

RMSD1 for all scores except DFIRE (Table 2) deteriorated when the membrane placement 

was optimized for reasons that are not entirely clear. Correlation coefficients with the full 

protocol were higher with respect to RMSD2 than RMSD1 but, overall, correlation 

coefficients remained quite low, and never exceeded 0.5. This suggests that the relative 

ranking of the models in decoy set 1 is challenging with any of the scoring functions tested 

here. Moreover, the GB-based scores led to worse correlation than the IMM1 and DFIRE 
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scores, contrary to the z-score results, whereas DFIRE had the highest correlation 

coefficients, especially when using the RMSD1 metric that ignores differences in membrane 

orientation. This suggests that accurate modeling of the membrane environment is not the 

most important feature for ranking models in decoys set 1. Since DFIRE is known to do well 

with distinguish better-packed structures models from less optimal conformations38, 72 the 

good performance with DFIRE suggests that differences in packing may be the main 

distinguishing factor in the models of this decoy set. This is further corroborated by a 

detailed analysis of how individual energy components in the implicit membrane-based 

models contribute to the correlation between scores and RMSD (see Table S3). The main 

finding is that the van der Waals contributions to the total energy and, to a lesser extent, the 

cavity-based non-polar solvation term are most strongly correlated with RMSD. Electrostatic 

and solvation interactions that are much more sensitive to the membrane environment, on the 

other hand, were more weakly correlated with the RMSD values (Table S3).

What matters most in real structure prediction applications is the ability to select one or few 

native-like models from a set of decoys. Table 3 shows average RMSD1 and RMSD2 values 

for the top 1 and top 10 best-scoring models (details are shown in Table S4). In all cases, the 

RMSD values of the selected models are significantly larger than what would be the optimal 

selections based on the lowest RMSD values. There is relatively little variation between 

scoring functions although IMM1 may perform slightly better than other functions in 

picking the single best model while HDGBvdW does somewhat worse than all of the other 

soring functions. These results highlight again the challenges of reliably selecting native-like 

models from decoy set 1.

Scoring of Decoy Set 2

The decoy set 1 generated by the Baker lab consists of models that deviate significantly from 

the native structures with RMSD values as high as 25 Å. As discussed above, ranking these 

models is difficult and apparently driven mostly by distinguishing optimal packing 

interactions. This gives little opportunity for membrane-focused scoring functions to show 

their potential. The decoy set 2 was generated to cover the conformational space between the 

best decoys in set 1 and the native structures and reassess how membrane-focused scoring 

functions perform on such models.

Fig. 3 shows the scores as a function of RMSD2 for decoy set 2. In all cases, there is, again, 

good native state discrimination. In addition, it is immediately apparent that the correlation 

between the scores and RMSD is better than for set 1 with the scores following a funnel-

shaped decline towards the native state. The average decoy scores are slightly higher in set 2 

compared to set 1 as a result of different degrees of relaxation of the models.

Tables S5–S7 provide a detailed quantitative analysis while Table 4 summarizes the results. 

Large z-scores confirm good native state discrimination even as the native state is 

approached more closely. Z-scores are higher again for the HDGB-based models and lower 

for DFIRE. Correlation coefficients of scores vs. RMSD increased significantly over the 

results for set 1 indicating a much better ability to provide relative ranking when models 

come closer to the native state. Interestingly, correlations were now highest for the GB-based 

models suggesting that the membrane environment is a more critical factor for scoring the 
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decoys in set 2. This is further illustrated by the much larger correlations of the electrostatic 

terms in the implicit membrane models with RMSD when soring the decoys in set 2 (see 

Table S8) compared to the almost entirely absent correlation when scoring decoys in set 1 

(see Table S3). The GB-based scoring functions also do well with selecting the top-scoring 

models close to the native. Especially the HDGB-based scoring function did well in 

selecting the top 10 structures close to the native. As an example, Fig. 4 shows the decoys 

that were selected by the HDGBvdW-scoring function for each of the proteins. It is readily 

apparent that all of the models are very close to the native structures While IMM1 still 

performs similarly compared to the GB-based models, DFIRE cannot match the 

performance of the implicit-membrane based models when scoring the models in set 2.

Finally, we examined in more detail the question of how to choose the best membrane width. 

Generally, hydrophobic mismatch between a protein and a given membrane model would be 

expected to either lead to membrane deformations and/or lipid raft formation so that the 

effective membrane width in the local vicinity should match the hydrophobic profile of a 

given membrane protein structure. This, in turn, suggests that scoring performance may be 

improved when the most likely membrane width is estimated for a given structure and the 

corresponding width is then used for the implicit membrane model when scoring decoys. 

The optimal membrane width for a given structure essentially depends on the hydropathy 

profile of a given structure along the membrane normal after finding the optimal membrane 

positioning. We obtained estimates of the width of the hydrophobic region for the five 

systems studied from the Orientations of Proteins in Membranes (OPM) database73 (see 

Table 5). In the implicit membrane models, we would expect that this measure should 

approximately match the energetic midpoint between the polar head-group and solvent 

environment and the membrane interior. In the HDGB models, this may correspond to the 

point where the dielectric profile reaches about half of the bulk solvent value, which is 

roughly between the position of the glycerol and phosphate groups in phospholipid bilayers. 

This point is about 2 Å further away from the membrane center than the end of the 

hydrocarbon acyl chain region that commonly defines what is meant by membrane width in 

the implicit membrane models. Therefore, we assumed that an optimal implicit membrane 

model should use a width that is about 4 Å less than the hydrophobic region predicted by 

OPM. Accordingly, we analyzed for the HDGB-based models whether selecting the results 

corresponding to the closest membrane width to the estimated hydrophobic width for each of 

the five protein systems would improve the overall performance. The results are shown in 

Table 5. Essentially, we find that choosing the optimal width for each structure leads to good 

results but is not significantly better than just selecting the overall best-performing implicit 

membrane widths (27–28.5Å). This may be due to challenges in accurately estimating the 

optimal membrane width for a given system and/or simply reflect that uncertainties in our 

scoring protocol are still large enough for the subtleties of choosing slightly non-optimal 

membrane widths not to matter.

DISCUSSION and CONCLUSIONS

The main goal of the present work was to test how new GB-based implicit membrane 

models and an improved optimization protocol for positioning decoys in the membrane can 

perform with protein structure prediction and refinement applications in mind. The previous 
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study by Yuzlenko and Lazaridis.44 established that implicit membrane-based models may 

be applicable for the scoring of membrane proteins. Here, we show that extensive 

optimization of the orientation and placement of a given decoy in the membrane appears to 

be important in improving scoring performance. Furthermore, we found that the real benefit 

of such scoring functions only comes into play when decoys come sufficiently close to the 

native structure. In decoy sets that involve structures far away from the native state, such as 

the Baker set used previously and again here, the main factor for distinguishing better 

models appears to be mostly related to packing and much less to the presence of the 

membrane environment. Hence, the practical insight from this study is that the initial 

sampling and scoring of membrane protein structures could very well be driven by 

knowledge-based functions such as DFIRE but as conformations closer to the native state 

are explored, for example during protein structure refinement, the use of scoring functions 

that accurately represent the membrane environment becomes essential. The GB-based 

models, GBSW and HDGB and in particular our recent HDGBvdW model, perform very 

well, especially for decoy set 2 involving models close to the native state. This suggests that 

this protocol would be especially well-suited for future applications in the refinement of 

membrane protein structures.

While the scoring of decoys close to the native state is quite good, further improvements 

could be gained by improved force fields or further improvements in the implicit membrane 

models, e.g. by allowing the dynamic deformation of membranes.74 The development of 

specific knowledge-based scoring functions for membrane proteins could avoid some of the 

inherent problems with force-field based scoring such as noise, but another possibility is the 

application of general statistical methods to reduce noise in scoring functions that exhibit 

funnel-shape characteristics75–76. When scoring decoys very close to the experimental 

structures, an accurate representation of the conditions under which the structure was 

determined, e.g. crystallization in the presence of detergent, becomes important. Future 

efforts may focus on this aspect as well, although it is not clear that exactly targeting a 

crystal structure obtained under non-biological conditions would result in the most useful 

predictions.30

The membrane-protein scoring protocol presented here is available via CHARMM56 and the 

MMTSB Tool Set70 but the protocol was also implemented in form of a web server available 

at http://feiglab.org/memscore to provide broader community access.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ABNR adopted-basis Newton-Raphson

BRD7 bacteriorhodopsin 7

CHARMM Chemistry at Harvard Molecular Mechanics

DFIRE distance-scaled finite ideal-gas reference state score

fmr5 fumarate reductase 5

DPPC dipalmitoyl-phosphatidylcholine

EEF1 effective energy function 1

GB generalized Born

GBSW generalized Born with simple switching

HDGB heterogeneous dielectric generalized Born

HDGBvdW heterogeneous dielectric generalized Born with van der Waals terms

IMM1 implicit membrane model 1

ltpA lactose permease A

MD molecular dynamics

MMTSB Multiscale Modeling Tools in Structural Biology

OPM orientations of proteins in membranes

PDB Protein Data Bank

RHOD rhodopsin

RMSD root mean square deviation

RMSD1 RMSD based on least-squares fit without considering differences in 

orientation

RMSD2 RMSD based on least-squares fit that preserves orientation and position 

within the membrane

SASA solvent-accessible surface area

SD steepest descent

VATP V-ATPase
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Figure 1. 
Scoring protocol applied to protein decoys in set 1 and set 2.
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Figure. 2. 
Relative energy vs. RMSD2 for decoy set1 for each protein. RMSD2 values were calculated 

for Cα atoms at the optimized positions along the membrane. Energies were taken relative to 

the native state energies. Columns are corresponding to different membrane widths, rows are 

corresponding to the different models. Color codes are as follow: BRD7: yellow diamonds; 

fmr5: blue squares; ltpA: green triangles; RHOD: cyan circles; VATP: red crosses. Relative 

DFIRE scores are shown in the last row for the structures optimized by HDGBvdW 

simulations.
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Figure. 3. 
Relative energy vs. RMSD2 distributions for decoy set 2 for each protein and scoring 

function as in Fig. 2.
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Figure 4. 
Native structures (red) of the proteins and the decoy structures (green) with the lowest 

energies obtained by the HDGBvdW model using a 28.5 Å membrane width.
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Table 1

Z-scores for native state discrimination in decoy set 1.

Scoring function Full protocol w/o optimization of membrane orientation w/o MD Yuzlenko and Lazaridis38

IMM1 2.97 (0.8) 2.10 (0.7) 2.25 (1.3) 1.9

IMM1-p36 3.74 (0.9) 2.79 (0.8) 2.99 (1.5) 2.5

GBSW 3.85 (1.3) 2.71 (0.9) 3.12 (1.6) 2.9

HDGBv2 4.22 (1.4) 3.33 (1.0) 3.57 (1.8) 2.8*

HDGBv3 4.27 (1.3) 3.23 (0.9) 3.30 (1.3) –

HDGBvdW 4.03 (1.3) 2.97 (0.9) 2.98 (1.2) –

DFIRE 2.35 (0.9) 2.38 (1.0) 2.06 (0.9) –

Average z-scores over proteins for a membrane width of 28.5 Å (not applicable for DFIRE). Results are compared between scores calculated for the 
full protocol, without optimization of the membrane orientation, and without the MD step. Results reported previously by Yuzlenko and 

Lazaridis38 are also shown for comparison. Values given in parentheses indicate standard deviations with respect to variations between different 
proteins.

*
using the older HDGBv1 dielectric and non-polar profiles
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Table 3

Top-scoring models selected from decoy set 1.

Scoring function RMSD1 [Å] RMSD2 [Å]

top-1 top-10 top-1 top-10

IMM1 11.10 (3.3) 11.86 (3.3) 11.33 (3.1) 12.22 (3.2)

IMM1-p36 11.50 (4.2) 11.90 (3.7) 11.83 (4.0) 12.29 (3.4)

GBSW 12.59 (3.7) 11.80 (3.6) 12.94 (3.7) 12.09 (3.6)

HDGBv2 11.18 (4.3) 11.80 (4.0) 12.15 (4.4) 12.20 (4.0)

HDGBv3 11.48 (4.2) 11.73 (3.9) 11.97 (4.1) 12.07 (3.9)

HDGBvdW 12.79 (3.4) 12.26 (3.5) 13.16 (3.5) 12.61 (3.5)

DFIRE 12.24 (5.2) 11.78 (4.0) 12.64 (4.8) 12.16 (4.0)

optimal 8.16 (2.7) 9.31 (3.3) 8.23 (2.7) 9.64 (3.3)

Average RMSD1 and RMSD2 values for top-scoring models (best, top-1, and average over best 10, top-10) with different scores for a membrane 

width of 28.5 Å (not applicable for DFIRE) using the full scoring protocol. Theoretically optimal values based on selecting the best models using 
RMSD instead of a scoring function are shown for reference. The optimal values vary slightly for different scoring functions because of different 
optimization and the given values are averaged over all scoring functions. Values given in parentheses indicate standard deviations with respect to 
variations between different proteins.
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