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Abstract

An analytical solution is obtained for steady flow of Quemada-type fluids in a circular tube driven 

by a constant pressure gradient. Expressions are derived for velocity distribution and for 

volumetric flow rate as a function of pressure gradient or wall shear stress.
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Introduction

Rheology of concentrated suspensions has been an active area of research for several 

decades. Numerous models have been formulated for fluids with internal structure; some of 

the models derived from first physical principles, while others formulated as empirical fits to 

experimental data. Quemada (1978 a, b) formulated a rheological model for concentrated 

suspensions based on physical arguments. The model introduces an intrinsic viscosity that, 

generally, is governed by a kinetic equation. In case of simple shear flow, the intrinsic 

viscosity becomes a function of local shear rate and concentration of suspended particles. 

Quemada's model is an extension of the well-known Casson's rheological model (Casson, 

1959) with one additional rheological parameter; thus, it contains three rheological 

parameters. The principal difference between the two models is that Casson's model is 

characterized by a yield shear stress and, hence, the viscosity approaches infinity as shear 

rate approaches zero, whereas in Quemada's model viscosity assumes a large, but finite, 

value as shear rate goes to zero.

The Quemada model has been used extensively in recent years in applications to flow of 

blood (Quemada, 1978b, 1983; Lerche and Oelke, 1990; Cokelet and Goldsmith, 1991), 

microemulsions (Langevin, 1986), food pastes (Doublier et al., 1987), and coal slurries 

(Lapasin and Pricl, 1992), to name a few. It has been shown to be one of the most accurate 

hemorheological models; the model is in excellent agreement with experimental data 

(Easthope and Brooks, 1980). However, the practical applications of the model are 
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significantly hampered by the lack of analytical expressions for velocity profiles and 

volumetric flow rate versus pressure gradient for simple “viscometric” flows. Of particular 

importance is the problem of steady fully developed flow in a circular tube driven by a 

constant pressure gradient. Solutions of this problem have been obtained numerically 

(Cokelet and Goldsmith, 1991).

This paper presents an exact analytical solution for steady fully developed flow of Quemada-

type fluid in a circular tube. Closed-form expressions are derived for velocity profile and for 

volumetric flow rate as a function of pressure gradient or wall shear stress.

Formulation of the problem

A cylindrical coordinate system (r, θ, z) is chosen with the z-axis along the axis of the tube. 

Quemada's model (Quemada, 1978 a, b) for non-Newtonian shear viscosity can be 

formulated as follows. If H is the local concentration of suspended particles, and ηp is the 

viscosity of the suspending fluid, then the absolute value of the shear stress, τ = |τrz|, for a 

steady fully developed flow can be expressed in terms of the non-Newtonian shear viscosity, 

η, and the shear rate, γ̇ = |dνz/dr|:

(1)

where

(2)

and k is an intrinsic viscosity. The intrinsic viscosity is expressed in terms of three Quemada 

parameters, k0, k∞, and γc:

(3)

Parameters k0, k∞, and γc are, generally, functions of particle concentration, H.

Equations (1 – 3) can be recast as

(4)

where the new parameters τ0, η∞, and λ are expressed in terms of the Quemada parameters:
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(5)

(6)

(7)

When written in this form, the Quemada model reduces to the Casson model as λ → 0. In 

the Casson model, τ0 is the yield shear stress and η∞ is the asymptotic viscosity at large 

shear rates. At very small shear rates, γ̇ ≪ λ, Eq. (4) describes a Newtonian fluid with a 

viscosity

(8)

In the following analysis it would be convenient to use Eq. (4) as a representation of the 

Quemada model; note that Eqs. (1) – (3) and Eq. (4) are equivalent for steady shear flow. We 

consider steady fully developed flow of the Quemada fluid in a circular tube of radius R 
driven by a constant pressure gradient P = (pin – pout)/L, where pin and pout are the inlet and 

outlet pressures, respectively, and L is the tube length. Because the problem is axisymmetric 

and the flow is fully developed, only the axial velocity component, νz(r), is considered; the 

other two components are equal to zero. In the following section, expressions for shear rate, 

γ̇(r), velocity, νz(r), and volumetric flow rate, Q(P), are derived.

Solution

Writing the momentum equation in the z direction and integrating it, we find that shear 

stress is a linear function of r

(9)

Thus, shear stress at the wall is τw = PR/2. It is convenient to introduce dimensionless 

variables and parameters:
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(10)

Note that 0 ≤ ξ ≤ 1, α ≥ 0, and −1 ≤ q ≤ 1. The extreme values of q correspond to Newtonian 

(q = −1) and Casson (q = 1) fluids, respectively.

Solving Eq. (4) to express γ̇ in terms of τ, and using Eq. (9), after simple algebraic 

transformations we express shear rate γ̇ in terms of dimensionless radial coordinate, ξ,

(11)

Substituting (11) into the equation dνz/dr = −γ̇, and integrating this equation together with 

boundary condition νz(R) = 0, we obtain velocity profile; in dimensionless form

(12)

The normalizing factor, PR2/4η∞, represents the maximum velocity of a Newtonian fluid 

with viscosity η∞. When q → 1 (e.g., when λ → 0), Eq. (12) reduces to Casson's velocity 

profile. For q→ – 1 or α → 0, Eq. (12) reduces to parabolic velocity profile. Figure 1 shows 

a family of velocity profiles for different values of parameters α and q. Note the parabolic 

profiles ν = 1 – ξ2 for q = −1 and α = 0; the Casson profile corresponding to q = 1 has a flat 

core of radius ξc = α2.

To express the volumetric flow rate, Q, in terms of the pressure gradient, P, we will use the 

relationship

(13)

where γ̇ = f(τ). Combining Eqs. (9) and (11) with Eq. (13) and integrating, we obtain, after 

somewhat lengthy transformations,
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(14)

(15)

Here, P1, P2, …, P8 are polynomials in powers of q:

(16)

When q→ 1, Eq. (14) reduces to Casson's equation

(17)

in which α = (τ0/τw)1/2, 0 ≤ α < 1; for α ≥ 1 there is no flow. Figure 2 shows F as a function 

of α and q. Note the monotonic decrease of F with increasing q and increasing α. This 

behavior for large values of α is not evident from Eq. (15) that contains positive powers of 

α. However, when the square root and the logarithmic terms are expanded in inverse powers 

of α, all positive powers of α cancel out; an asymptotic expression for function F for large α 
is

(18)
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From (10) we have q = 1 – 2(η∞/η0)1/2, thus F→ (1 – q)2/4 = η∞/η0, as α → ∞; here, 

viscosity η0 is expressed by Eq. (8).

The ratio of maximum velocity, νmax = νz|r = 0, and mean velocity, νmean = Q/πR2, 

characterizes the shape of velocity profile; the ratio can be expressed in terms of 

dimensionless variables νmax/νmean = 2ν|ξ = 0/F. This ratio is equal to 2 in the case of flow 

of a Newtonian fluid, and approaches 1 for flow of a Casson fluid when shear rate at the wall 

approaches zero (i.e., τw → τ0 or α → 1). Note that in the latter case both the maximum 

velocity and mean velocity approach zero. Figure 3 depicts the velocity ratio as a function of 

α for different values of q. To better understand the asymptotic behavior of the velocity ratio 

as q → 1, we introduce a parameter ε = 1 – q, and using Eqs. (12) and (15), calculate the 

leading terms in the corresponding asymptotic expansions for small ε.

For α ≤ 1

(19)

These leading terms correspond to a Casson fluid.

For α > 1

(20)

For α ≫ 1, expanding ν and F in (20) in powers of 1/α, we obtain

(21)

in accordance with Eq. (18). In Fig. 3 the limiting curve corresponding to q → 1, α > 1 does 

not represent a physical solution, whereas the curve corresponding to q → 1, α ≤ 1 

represents Casson's fluid.

Equations (12) and (15) can be extended to the case of two-phase flow with a core of 

suspension with a constant concentration of particles, described as a Quemada fluid, and a 

concentric layer of a Newtonian fluid adjacent to the walls.
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Fig. 1. 
Normalized velocity profiles, ν = νz/(PR2/4η∞), for steady fully-developed flow in a tube 

as a function of normalized radius, ξ = r/R, for a) α = 0.4 and different values of q, and b) q 
= 0.6 and different values of α. Cases α = 0 and q = −1 correspond to Poiseuille flow of a 

Newtonian fluid, case q = 1 corresponds to Casson flow
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Fig. 2. 
Function F(α, q), given by Eq. (15); a) versus α for several values of q; b) versus q for 

several values of α. F = 1 for α = 0 and for q = −1 (Newtonian fluid); F = 0 for q = 1 and α 
≥ 1 (Casson fluid, τ ≤ τ0)
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Fig. 3. 
Maximum-to-mean velocity ratio, νmax/νmean = 2ν|ξ = 0/F, as a function of α for −1 ≤ q ≤ 1. 

Note the sensitive dependence of the function on q when q → 1. The limiting curves for q 
→ 1 are obtained from Eqs. (19) for α ≤ 1 and Eqs. (20) for α > 1
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