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Abstract: We formed a database gathering the wavefront aberrations of 50 healthy eyes meas-
ured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of
236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database,
we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye.
Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between
blinks. We noted that, on average, temporal wavefront variance exhibits an−2 power-law with
radial ordern and temporal spectra follow af −1.5 power-law with temporal frequencyf . From
these statistics, we then extract guidelines for designing an adaptive optics system. For instance,
we show the residual wavefront error evolution as a function of the number of corrected modes
and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics perfor-
mance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at
higher rates.

© 2017 Optical Society of America
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1. Introduction

Ultra-high resolution retinal imaging has proven to be a useful tool to diagnose retinal disorders
at the earliest stages, to monitor the progression of retinal diseases as well as the effect of
new curative drugs, and to improve our understanding of the eye [1]. Such imaging systems
need adaptive optics (AO) that provide real-time correction of both low and high order ocular
aberrations in order to attain diffraction-limited performance over medium to large pupils [2–
4]. Current state-of-the-art AO-assisted retinal imaging research systems yield unprecedented
resolution, making individual retinal cell stimulation [5] and rod photoreceptor imaging [6]
possible. Nevertheless, effort still has to be made to reduce their cost and size, and to ensure
that the highest performance is reached for any patient. This is all the more crucial for emerging
therapeutic applications such as AO-assisted laser surgery [7], which require highly reliable
systems working consistently on all patients.

In order to better understand the limitations of current AO systems, it is very informative to
analyze the AO error budget,i.e., to list and quantify the various contributors to the residual
wavefront variance remaining after AO correction. The main terms typically considered are: the
wavefront sensing error, in particular due to the noise on the wavefront sensor camera; the fitting
error, due to the fact that a deformable mirror with a finite number of actuators cannot perfectly
compensate the ocular aberrations; and the temporal error due to the time lag between sensing
and correction. Such an analysis was carried out on a few eyes by Evanset al., so as to identify
the main sources of residual wavefront variance on their specific apparatus [8].

Apart from characterizing existing devices, the error budget can also be a powerful tool to
design future systems: after expressing the various terms as a function of the AO system param-
eters (AO loop frequency, number of actuators in the deformable mirror, etc. . . ) and specifying
a target value for the total residual wavefront variance, a parametric analysis can be performed
to select the AO system parameters which actually meet this target value. Of course, this para-
metric study must rely on a statistical model of the ocular aberrations.

For static aberration, such a statistical model does exist: two large studies have analyzed the
spatial statistics of the static ocular aberrations over the population [9, 10], from which Doble
et al. have derived the required specifications of the corrector depending on the targeted per-
formance [11,12]. Unfortunately, our knowledge on the temporal statistics underlying dynamic
aberrations is still incomplete. Time-varying aberrations have been the object of many stud-
ies [13–19], but only a few of them have collected high spatial resolution data , and only at a
moderate temporal resolution (100 Hz) [16, 17]. Finally, up to now, not enough measurements
were taken to draw a statistically relevant model of the dynamic ocular aberrations (the aberra-
tions were characterized on 1 to 6 eyes at most). It seems all the more important to assess the
temporal statistics of the dynamic aberrations, in order to show that experimental AO systems
are often limited by the frame rate of the AO loop [8,14].

In this paper, we present the first characterization of ocular aberrations with both high tem-
poral (sampling frequency at 236 Hz) and spatial (22 lenslets across a 7-mm diameter pupil)
resolution, on a large population consisting of 50 healthy eyes, in order to come up with a statis-
tical description of dynamic ocular aberrations reflecting the inter-subject variability. Then,we
analyze the resulting implications on the AO error budget through the simulation of a close-loop
wavefront correction. We then propose practical tools for AO system design, such as considering
the evolution of the residual wavefront error when increasing the number of corrected modes,
or when increasing the frame rate of the AO loop.

First, in Sect. 2, we present details on the population, on the setup and on the data processing
involved in the study. Then, in Sect. 3, we report our findings on the statistics of dynamic aber-
rations in our population. Finally, in Sect. 4, we use the data from the aberration measurements
to analyze AO error budget terms.
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2. Methods

2.1. Experimental set-up

We have built a custom-designed Shack-Hartmann (SH) wavefront sensor (WFS) to character-
ize the dynamic aberrations of the eye. A diagram of the full system can be found in Fig. 1. It
comprises four units: an injection unit delivering the near infrared WFS beacon at 833 nm; an
eye unit coming down to the eye (real/artificial); an analysis unit collecting the back-scattered
light from the eye on two instruments, the WFS and a pupil camera; and a reference unit com-
posed of a reference eye used to calibrate the system (in particular, to acquire the reference SH
spots).

Fig. 1. Schematic drawing of the experimental set-up, comprising a Reference Unit (used to
acquire the reference wavefront), an Injection Unit creating a point source on the retina and
an Analysis Unit with a custom-made Shack-Hartmann Wavefront Sensor (SH WFS), in
parallel with a pupil camera.(L: lens - associated focal lengths are reported on the schematic
drawing, BS: beam splitter, M: mirror). All pupil planes (marked with P) are optically
conjugated.

The injection unit, which aims to create an artificial source on the retina for wavefront sensing,
uses a 833-nm SLD (Superluminescent Diode) (EXALOS) with a 50-nm spectral bandwidth.
Spatial noise introduced by speckle is substantially reduced by the short coherence length of the
SLD (although an even further reduction may be possible by insertion of a scanning mirror [13]).
Moreover, pupil plane residual speckles, induced by scatterers having a typical lateral size of
1µm, are larger than the subaperture diameter (see also Fig. 10 in App. A for experimental
evidence). As a consequence the authors believe that speckle noise has a negligible impact on
WFS data. A focus correction is provided for ametropic subjects through ophthalmic lenses
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which were inserted in the injection unit (and thus not seen by the WFS). The injection unit also
offers filtration of specular corneal reflections through an annular pupil stop in pupil space (in
the eye pupil space, the external and internal diameters are 5 mm and 2.1 mm respectively), and
a fixation target, which is the WFS beacon itself at infinity (this is possible because a part of its
spectrum is in the visible range). The SLD is also used as a reference source in reference unit.

The analysis unit splits into a pupil camera (used in the scope of this paper only as a guide
to position the eye pupil) and a WFS, designed to provide highly resolved measurements of the
ocular wavefront. Thus, it features a 31×33 lenslet array (143µm subaperture diameter and
3.6 mm focal length) and a sCMOS (Scientific Complementary Metal-Oxide-Semiconductor)
camera (Pco.Edge) running at 236 Hz (i.e. grabbing 236 images per second) with a 450×480
pixels region of interest, leading to a 10 mm maximum pupil. An optical relay is used to image
the lenslet focal plane to the detector plane. Typically for a 7-mm diameter pupil, 22 lenslets
were illuminated across the diameter and the pupil field allowed displacements of the pupil
of ±1.5 mm, which was high enough given the fact that the subjects were stabilized by a chin
and forehead rest in order to prevent head movements. A field stop on the analysis path corre-
sponding to approximately 1.2° on the retina is used to limit stray light and multiply-scattered
background light, at the cost of a reduced range of measurable sphere, limited to±2.3 D at
833 nm.

2.2. Population

A total of 50 healthy eyes were examined with the aberrometer, 4 of which had undergone
LASIK surgery. 29 people took part in the study. Most eyes were in the 23-38 years old range,
as shown in Fig. 2(a). Concerning the refractive correction of our population, it was low; av-
erage spherical equivalent,M [20], of our population was−0.1 D and the associated standard
deviation was 0.5 D; average cylindrical components,J0 andJ45 [20], were zero (see Fig. 2(b),
2(c) and 2(d)). These values of refractive error were taken from the spectacle prescription of our
population. As a consequence, they are±0.125 D accurate at best and effective for the visible
spectrum (optimal at 570 nm [21]). Given the longitudinal chromatic aberration (LCA) report-
ed between our operating wavelength (833 nm) and 570 nm [22, 23], we expect a shift of the
reported average spherical equivalent towards positive values at 833 nm.

2.3. Data acquisition and reduction procedure

Measurements were performed in normal conditions without any pupil dilation, nor cycloplegia,
in a dark room, leading to the largest accessible natural pupil dilation. Such conditions have been
considered in other studies of time-varying ocular aberrations [14–16].

All patients signed an informed consent form, as defined in our institution review board proce-
dure (CPP Ile-de-France). Prior to the subject’s arrival, background and reference images were
acquired on the WFS. Then, the procedure was done as follows: focus of the WFS beacon was
approximately adjusted given the spectacle prescription of the subject and taking into account
the LCA between 570 nm and 833 nm; it was then fine-tuned through a subjective adjustment
until the image of the WFS beacon appeared to the subject as a well-focused point source (this
adjustment was done at low power); the optical power of the SLD was then set to get 29µW on
the eye unit (that is a tenth of the maximum permitted power by the ANSI Z136.1 norm for a
coherent source at 833 nm and a 0.16-cm2-illuminated surface on the cornea) ; the patient was
asked to blink just before the acquisition started and to stay still and stare at the fixation target
(WFS beacon itself) for the duration of the video acquisition (20 seconds per eye).

The raw data consisted of 50 series of 20-second-long WFS camera sequences at 236 Hz
(complemented with the 50 associated reference slopes and WFS camera background acquisi-
tions performed right after each patient acquisition). Long-exposure background images were
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Fig. 2. Description of the 50-eye population regarding (a) age, (b) spherical equivalent, (c)
cylindrical component J0, (d) cylindrical component J45. Spherical equivalent and cylin-
drical components were taken from the spectacle prescription of our population.

subtracted to get rid of spatial noise and ambient stray light. Then for all 50 eyes, we extract-
ed a continuous 3.4 s time sequence (i.e., 808 frames) without blinks. From these 50 series
of 3.4-second-long background-subtracted WFS sequences, we derived the ocular aberrations
following the procedure described below.

Slope computation SH spot centroids were determined by computing an adaptive threshold-
ed center of gravity within each subaperture image, and then subtracting the reference centroids
(computed with the same method on the WFS reference measurements, acquired on the refer-
ence source right after patient acquisition).

Analysis pupil We first computed the area of the SH WFS that is illuminated during the
whole 3.4 s time sequence. Since the size of the eye pupil varied over the population and the
eye moved over the acquisition [24],we defined a 5 mm analysis pupilPanalysis inside the area
corresponding to the intersection of all eye pupils recorded through the sequence of interest
(3.4 s). Similar analysis pupil, ranging from 4 to 5.8 mm, was adopted in time-varying ocular
aberrations studies [13–19]

Wavefront reconstruction For each sequence (i.e., for each eye), we built an analytic WFS
modelMWFS(Panalysis) linking the Zernike coefficients to the slopes of the subapertures within
Panalysis (with at least 50 % of their surface insidePanalysis). The Zernike coefficients , at
time t, {ai (t , eye)} are then estimated from the measured slopesS(t , eye) with a least-square
estimation through:

{ai(t , eye)} = M
†

WFS
(Panalysis) · S(t , eye), (1)

with † denoting the generalized inverse. Given the number of subapertures encompassed by the
chosen analysis pupil (16× 16), only the Zernike coefficients up to 45 (ie up to the 8th radial
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order) were considered for the 5-mm diameter analysis pupil. In the end, the time-varying wave
aberration functionW could fully be described on the 5-mm diameter analysis pupil for each
eye as an expansion of Zernike polynomialsZ4 (focus) toZ45 as:

W (t , eye) =
45∑

i=4

ai(t , eye) · Zi , (2)

with Zernike polynomials ranked according to Noll’s convention [25] (see Sect. 2.4).

2.4. Definitions and notations

Our wavefront data depends on time, space and population. Mean and variance on these data
can therefore be computed over these three variables. We adopt the following notations:

• mean and standard deviation over time of a quantityx will be denotedx andσt (x);

• the distribution ofx over the population will be reported asmean ± SD, wheremean

indicates the mean value ofx over the population andSD the standard deviation ofx over
the population;

• the Squared WaveFront Error (SWFE) defined as the time-averaged sum of the squared
Zernike coefficients over all modes (or over modes of a specific radial order) was used
to quantify the level of aberrations; it splits into a static SWFE and a dynamic SWFE, as
follows:

SWFE=
∑

i

a2
i
=
∑

i

ai
2

︸ ︷︷ ︸

SWFEstat

+
∑

i

(σt (ai))
2

︸          ︷︷          ︸

SWFEdyn

. (3)

Zernike polynomials are ranked according to Noll’s convention and recalled on Fig. 3 from the
2nd to the 4th radial order. In accordance with convention, we will refer to aberration modes
with a radial order greater than or equal to 3 as Higher-Order Aberrations.

m = 0 m = 1 m = 2 m = 3 m = 4
Z4 Z5 Z6

n = 2

Z7 Z8 Z9 Z10

n = 3

Z11 Z12 Z13 Z14 Z15

n = 4

Fig. 3. Zernike polynomialsZi from the 2nd to the 4th radial order ordered according to
Noll’s convention by increasing radial ordern (the degree of the polynomial) and increasing
azimuthal frequencym (the number of cycles of the sinusoidal function) with odd indexes
i indicating the Zernike function is in sine phase and even indexes indicating the Zernike
function is in cosine phase.
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2.5. Accuracy of our aberrometry data

In order to assess the level of precision of our aberrometry data, we considered the following
wavefront sensing error SWFEWFS budget:

SWFEWFS = SWFEaliasing + SWFEnoise + SWFENCPA. (4)

We checked that thealiasingerrorSWFEaliasing, which represents the error due to the limited
sampling of the WFS as compared to the spatial dynamics of the ocular aberrations, could be
ignored given the high number of lenslets encompassed by the pupil (16× 16) [11,12].

The noiseerror term SWFEnoise corresponds to the propagation of the WFS camera de-
tection noise (see Sect. 4.1 for further details). It splits (as in Eq. (3)) into a dynamic part –
quantified experimentally as 2.0 × 10−4 µm2±1.5 × 10−4 µm2 (mean ± SD) on a 5-mm diam-
eter pupil – and a static part which could be neglected considering that the detection noise is
centered.

TheNon-Common Path Aberrations (NCPA)error term SWFENCPA is brought by the non-
common path aberrations between the reference eye and the artificial eye (refer to the set-up
description in Sect. 2.1). Its static part amounted to 1.5 × 10−3 µm2 on a 5-mm diameter pupil;
its dynamic part, linked to the local turbulence on the optical bench, was shown to be negligible
compared to the noise error.

To conclude, the wavefront sensing error was:

SWFEWFS = SWFEdyn
noise

︸        ︷︷        ︸

2.0 × 10−4 µm2

+SWFEstat
NCPA

︸         ︷︷         ︸

1.5 × 10−3 µm2

. (5)

Note that measurements were performed without cycloplegia, which may slightly change 2nd

order statistics.

3. Experimental characterization of ocular aberrations

We analyzed the spatio-temporal statistics of the aberration distribution over our population,
first on static aberrations, then on dynamic aberrations.

3.1. Static aberrations of our population

We analyzed thestaticaberrationsai(eye) of our 3.4-second-long sequences (ai(eye) being the
time average ofai(t , eye), see Sect. 2.4). For each mode, Fig. 4(a) shows the mean level and
standard deviation of static aberrations over the population. We observe declining mean values
(Fig. 4(b) - further detail below) and standard deviations (Fig. 4(a)) with radial order.

Average static defocus measured on a 5-mm diameter pupil isa4 = 0.04µm±0.47µm over
the population, which corresponds to a spherical equivalentM = −0.05 D±0.52 D. This is in
agreement with the average spherical equivalent given by the spectacle prescription of the 50-
eye subpopulation, which was−0.1 D±0.5 D. Concerning Higher-Order modes, the distribution
of each mode in our population, except spherical aberration (Z11), is roughly centered around
zero. Average static spherical aberration measured on a 5-mm diameter pupil is slightly positive
(a11 = 0.06µm±0.05µm).

Mean static SWFE, which correspond to the mean over the population of the static SWFE
(equal to

∑

i
ai

2, see Eq. (3)), is a good indicator of the level of static aberration of a typical

eye. Figure 4(b) reports the contribution of each radial order to the total static SWFE, show-
ing decreasing SWFE with radial order (showing that mean values decrease with radial order).
Second-order aberrations represent 87 % of the total static aberrations; this depends highly on
the population, we remind the reader that ours presents reduced static aberrations (withM, J0
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(a) (b)

Fig. 4. Distribution of the static part of the aberrations over the population for a 5-mm
diameter pupil. (a) Zernike coefficients from the 2nd to the 8th radial order over the 50-
eye subpopulation. Symbols indicate mean values ofai and error bars plus and minus one
standard deviation from the mean values. (b) Contribution of each radial order to the total
static SWFE. Symbols indicate mean values of

∑

i∈n thradial order (ai (eye))
2 and error

bars plus one standard deviation from the mean values.

andJ45 closed to zero, see Sect. 2.2). For the remaining orders, we note that 73 % of the energy
of Higher-Order Aberrations (3rd order and above) are concentrated in the 3rd order, 20 % in the
4th, 4 % in the 5th, 2 % in the 6th and 1 % in the 7th. This is consistent with the distribution of
static aberrations and the description of the mean eye in previous studies [9,10,26].

3.2. Description of the dynamic aberrations of our population

3.2.1. Time series and dynamic SWFE

Figure 5 shows the time series of the first Zernike coefficients for a typical eye, grouped by
radial order. Strong low frequency variations can be seen for low orders, with spikes or steps
roughly every 0.5 s. The traces show smaller temporal variance for higher radial orders.

This smaller temporal variance for high order modes is confirmed statistically in our popula-
tion in Fig. 6(a), where the distribution of the dynamic part of the aberrations (i.e., the standard
deviation over time of the aberrations) for a 5-mm diameter pupil is presented.

Temporal variations of defocus are somewhat specific. They are quite high compared to the
temporal variations of astigmatism and vary a lot over the population. Peak-to-valley variations
of defocus amount to 0.21 D±0.09 D over our population. The standard deviation over time of
defocus, describing the RMS fluctuations of defocus, is 0.04 D±0.02 D (which is in agreement
with data reported by Charmanet al. for low target vergence [27]). The figure also points out
that, apart from defocus, all modes within a given radial order show similar mean value or
standard deviation over the population.

Figure 6(b) shows the dynamic SWFE summed over each radial ordern for a 5-mm diame-
ter pupil. The values follow approximately ann−2 power-law with radial ordern, shown as a
straight line on Fig. 6(b).

3.2.2. Relative importance of static and dynamic SWFE

From the comparison of the dynamic SWFE (given in Fig. 6(b)) and the static SWFE (given in
Fig. 4(b)), we infer that the dynamic part of the aberrations represent 2% and the static part 98%
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(a) (b) (c)

Fig. 5. Experimental example of temporal series of Zernike coefficients from the 2nd to
the 4th radial order on one eye across a 5-mm diameter pupil during a 3.4-second-long se-
quence. Modes are attributed different colors and are specified beside the traces. The traces
have been vertically shifted for clarity. As a consequence, mean values do not represent
static aberrations. (a) Second-order dynamic aberrations (a4, a5, a6). (b) Third-order dy-
namic aberrations (a7, a8, a9, a10). (c) Fourth-order dynamic aberrations (a11, a12, a13,
a14, a15).

(a) (b)

Fig. 6. Distribution of the dynamic part of the aberrations over the population. (a) Zernike
coefficients from the 2nd to the 8th radial order over the population across a 5-mm diameter
pupil. Symbols indicate mean values ofσt (ai (eye)) and error bars indicate plus and minus
one standard deviation (over the population) from the mean values. (b) Contribution of each
radial order to the total dynamic SWFE for a 5-mm diameter pupil. Symbols indicate mean
values of

∑

i∈n thradial order (σt (ai (eye)))2 and error bars indicate plus one standard
deviation from the mean values. A linear fit, represented by the solid line, models the
dynamic SWFE by an−2 power-law.
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of the total SWFE, considering radial orders from the 2nd to the 8th. In fact, dynamic SWFE is
below 2.0 × 10−2 µm2 for all eyes of our population, in other words, the corresponding Strehl
ratio (SR) (considering only this error) is 33 % at worst (see Table 1). If considering the best
quintile (i.e.the best 20 % eyes), the error is below 3.4 × 10−3 µm2, corresponding to a SR of
82 %.

Table 1. Repartition over the population of the dynamic SWFE and associated Strehl ratio

(SR). Strehl ratios are computed at 833 nm as :SR = exp
(

− 4π2

λ2 · SWFEdyn
)

.

Quintile 1-st (20 %) 2nd(40 %) 3rd(60 %) 4th(80 %) 5th(100 %)

SWFEdyn(µm2) 3.4 × 10−3 4.6 × 10−3 6.6 × 10−3 8.3 × 10−3 2.0 × 10−2

SR (%) 82 77 69 62 33

These statistics indicate that the dynamic part of the aberrations is very small on a time
scale of a few seconds (considering that our analysis sequence is 3.4 s long, so that all the
evolutions at frequencies below 0.3 Hz are seen as static). In terms of correction, it means that
an acceptable quality could be reached by compensating only for the quasi-static aberrations
(i.e., with a 0.3 Hz bandwidth).

Yet, for some applications, such as AO-assisted laser surgery [28], a 2× 10−2µm2 residual
SWFE may still be too high, calling for a correction not only of the (quasi-)static aberrations, but
also of the dynamic aberrations. To determine the specification for the AO sampling frequency,
we analyzed the frequency content of dynamic aberrations.

3.2.3. Temporal spectra

In order to study the frequency content of dynamic aberrations, we computed the power spectral
densities (PSD) of each time series of Zernike coefficients. As in [17], for all measurements,
we systematically removed any part of the signal that was related to the blink interval (e. g.
tear film break-up and build-up, eye movement). We observed linearly decreasing PSD with
frequencyf on a loglog scale, which confirms thef −p i power-law previously proposed to
model the temporal spectra of aberrations [13–18]. A typical example of temporal spectra of
Zernike coefficients is given in Fig. 7(a). The photon noise level is reached at around 60 Hz,
where a high frequency plateau appears. The level of this experimental noise plateau is in line
with the expected value computed analytically from the flux within the SH spot and SH spot
size (see Sect. 4.1 for details). Figure 7(a) also displays the local turbulence level on the optical
bench, calibrated on the reference source. This contributor is clearly negligible in the ocular
aberration measurements, which was checked for every eye and for every mode.

Figure 7(b) gives the distribution of the power-law exponent−pi for each Zernike modei over
the population. We based our estimation of the power-law exponent on the frequency content
between 2 and 40 Hz, in order to avoid the noise plateau at high frequency, and the noise on
spectrum estimation at low frequency (the analyzed 3.4-second-long sequence contains only
a few periods for frequencies below 2 Hz). This fit may therefore not accurately convey low
frequency features (such as defocus energetic peaks below a few Hertz previously reported
by Charmanet al. [27]). However, these features are well corrected by AO loops running at
a few Hertz, and our main interest in the present paper is high frequency adaptive optics loop
performance assessment, for which the power-law model proposed is well adapted. We obtained
the following power-law exponents:

• pi = 1.5± 0.2 for i = 4 (defocus), that is, a drop of−4.5 dB per octave,

• pi ≃ 1.3± 0.2 for 5≤ i ≤ 45, that is, a drop around−3.9 dB per octave.
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(a) (b)

Fig. 7. Power-law model of the temporal PSD of the aberration time series. (a) PSD of
vertical coma (a7) measured on a real eye, in blue. The solid line indicates the power-law
regressionf −p i . The dotted straight line indicates the theoretical noise level (see Sect. 4.1
for details). The dashed straight line indicates the experimental high-frequency plateau of
the temporal spectrum. For information, the level of local turbulence in the optical bench
is given in green (corresponding to an acquisition at high flux on an artificial eye).(b) Dis-
tribution of the power-law exponent for each Zernike modei up to the 8th order over the
population for a 5-mm diameter pupil. Symbols indicate mean values of−pi and error bars
plus and minus one standard deviation from the mean values.

Previous studies, although conducted on a more reduced population, reported temporal be-
havior [13–16, 29] within the error bars we obtained. With this study, we contribute additional
statistics on the distribution of the power-law exponent over the population and highlighted that
the power-law associated with defocus stands out from those of other modes. This power law
exponent typically ranges from−1.3 to −1.2, which is much lower than the−11/3 power law
exponent witnessed in atmospheric turbulence models [30]. While most Adaptive Optics con-
trol laws used in ophthalmology directly stem from astronomy, the data we present here may
help when revisiting AO system design in the context of ophthalmology.

All the statistics we derived from the data, as well as information on age, gender, Lasik case,
right-left eye of each subject, can be found inData File 1(supplementary data available for the
reader). Using these statistical data, it is possible to generate Zernike coefficient time series that
are typical of our population. A MATLAB code generating such series can be delivered upon
request from the corresponding author.

4. Implications for AO system performance

With this knowledge of the eye’s typical spatial and temporal aberration statistics, it is possible
to simulate the performance of any AO loop, and use this database as a tool for designing future
systems. We implemented a temporal simulation evaluating the residual aberrationsaires from
a closed-loop AO system based on an integrator control from the experimental time seriesai of
our aberrometry campaign (we call this thereplay mode).

Although some teams have tried to analyze the performance of their own apparatus, quantify-
ing the various contributors to the residual wavefront error in anerror budget[8], the analysis
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presented hereafter is to our knowledge the first attempt to provide general guidelines for de-
signing an AO system, via the quantification of the error budget terms as a function of its key
design parameters (i.e.number of corrected modes, adaptive optics loop frame rate, wavefront
sensing source power).

Adaptive optics performance specification is usually expressed in terms of Strehl Ratio,
which can be approximated asSR ≃ exp

(

− 4π2

λ2 · SWFE
)

. It is then logical to analyze resid-
ual aberrations through an SWFE budget. Such a simplified error budget can be expressed as:

SWFEres = SWFEfitting + SWFEtemporal + SWFEnoise + SWFEaliasing + SWFENCPAre f
︸                                                         ︷︷                                                         ︸

SWFEWFS

,

(6)
where SWFEWFS represents the wavefront sensing error (see Sect.2.5 and Eq. (4)), which we
consider limited to SWFEnoise in what follows, SWFEfitting the error due to the limited num-
ber of actuators of the deformable mirror, and SWFEtemporal the error due to the time lag
between sensing and correction.

4.1. Noise error

The measurement noise error of the WFS, referred to as SWFEnoise, corresponds to the prop-
agation of the WFS camera detection noise onto the WFS measurements. Knowing the WFS
beacon source power and the typical reflectance of the retina (see App. A), the noise error made
on each Zernike coefficient can be computed as follows:

• the varianceσ2
cog of the error on spot center of gravity estimation due to the detection

noise is estimated using prior knowledge of the image distribution and the detector pa-
rameters (i.e.spatial sampling, read-out-noise), as proposed by Roussetet al. in the case
of a Gaussian-shaped spot [31];

• SWFE on each mode coefficient is then obtained by multiplying this centroid error vari-
anceσ2

cog by a modal coefficientαi (given by Rigautet al. [32]).

Next, we can provide guidelines to compute centroid error varianceσ2
cog in the specific case of

adaptive optics in the eye.
Centroid error varianceσ2

cog divides into a read-out noise contributorσ2
ron and a photon

noise contributorσ2
ph

. The latter can be further divided into a term originating from the pho-
tons in the SH spot corresponding to the flux of interest for centroid computation, and a term
σ2

phbg
originating from the multiply-back-scattered photons forming the background flux of

the SH images. Assuming a uniform background, this background photon noise behaves as an
additional read-out noise, and is often greater than the actual camera read-out noise, which we
will hence ignore in what follows.

We reformulated Roussetet al.’s expressions [31] to derive the following expressions of
σ2

phs pot
andσ2

phbg
(expressed in phase difference at subaperture edges in rad2):






σ2
phs pot

=
4π2

(ln 2)λ2
·

1
Rdir

·
1

τNphinc

· Sspot

σ2
phbg

=
32π2

3λ2
·
ρbg

R2
dir

·
1

τNphinc

· S2
spot

(7)

with Sspot the area of the SH spot at half maximum (expressed in the retinal plane inµm2), Rdir

the directional reflectance,ρbg the reflectance accounting for the background flux per unit area
(see App. A for details ofRdir andρbg), λ the WFS wavelength,Nphinc

the number of photons
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entering the eye through the pupil andτ afactor comprising the double pass transmission of the
ocular media, the quantum efficiency of the WFS camera as well as the transmission of the
system from the eye to the WFS camera. This indicates that background photon noise is all
the more important when the background reflectance is high, compared with the directional
reflectance.

These two formulas show that photon noise is higher when the SH spots are large, which
stresses the importance of emmetropic correction on the way into the eye.

4.2. Fitting error

The fitting error, referred to as SWFEfitting, is due to the limited number of actuators of the
deformable mirror, leading to an imperfect correction of both static and dynamic aberrations. It
can thus be split into a static and a dynamic part.

Figure 8 shows the evolution of the total fitting error that encompasses 20 %, 40 %, 60 %,
80 % and 100 % of our population as a function of the number of corrected Zernike modes. The
fitting error drops rapidly until the first 12 Zernike modes are corrected (i.e., radial orders up
to the 4th). This is in agreement with what we stated earlier (see Sect. 3.1), that 93% of the
Higher-Order Aberrations of our population are concentrated in the 3rd and 4th orders. Figure 8
also presents the static part of the fitting error and highlights the fact that the static part of the
fitting error prevails over the dynamic part, especially for low radial orders.

These results provide a tool for selecting the number of actuators of the deformable mirror.
For instance, it indicates that when the deformable mirror compensates for the first 18 Zernike
modes (i.e., radial orders up to the 5th), 80 % of the population should have a total fitting error
under 0.004µm2 which corresponds to a Strehl ratio loss of 20 % at 833 nm; for the first 36
Zernike modes, 80 % of the population should have a total fitting error under 0.001µm2, which
corresponds to a Strehl ratio loss of 6 % at 833 nm.

Fig. 8. Fitting error in terms of SWFE as a function of the number of corrected Zernike
modesNcorrected (e.g., Ncorrected = 3 corresponds to the case where defocus, vertical
and oblique astigmatisms are corrected) for various portions of the population corrected.
For one eye, the total fitting error is calculated as: SWFEfitting =

∑

uncorrected modes(ai )
2+

∑

uncorrected modes

(

σt (aires )
)2

, with the first term corresponding to the static part of the
fitting error, represented by solid lines on the graph, and the second term corresponding to
the dynamic part, represented by dashed lines on the graph.
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4.3. Temporal error

The temporal error, referred to as SWFEtemporal, is due to the finite AO loop frequency lead-
ing to a delay between an evolution of the aberrations and its correction. The slower the loop
frequency, the longer the delay, hence the greater the temporal error. This error is logically com-
puted on the modes corrected by the loop (the contribution of the uncorrected modes to the error
budget does not depend on the loop frequency, and falls into the fitting error term defined in Sect.
4.2). We considered an AO system running at a sampling frequencyfs , and correcting the first
Ncorrected Zernike modes (piston, tip and tilt excluded) through an integral control featuring a
2-frame delay and a loop gainG fixed to 0.5 (ensuring the usual stability margins [33]).

Figure 9 shows the evolution of the temporal error that encompasses 20 %, 40 %, 60 %, 80 %
and 100 % of our population as a function of the sampling frequency. In Fig. 9(a), the case where
the first 18 Zernike modes (i.e., up to the 5th radial order) are corrected is presented, and in Fig.
9(b), the case where the first 42 Zernike modes (i.e., up to the 8th radial order) are corrected
(that is, here, the best possible spatial correction). We remind that this error is by definition the
sum of the individual temporal errors over allcorrectedmodes. By construction the temporal
error is therefore higher with larger number of modes.

(a) (b)

Fig. 9. Temporal error SWFEtemporal as a function of the sampling frequencyfs for
various portions of the population corrected. For each eye, the temporal error is calculated

as SWFEtemporal =
∑Ncorrected

i=1

(

σt (aires )
)2

. The temporal fitting error is shown in
solid lines for a 0.5 loop gain and in dashed lines for a 0.1 loop gain. Symbols at 0 Hz
indicate the dynamic SWFE obtained without any correction. (a) For a number of corrected
Zernike modesNcorrected of 18 (i.e., up to the 5th radial order). (b) For a number of
corrected Zernike modesNcorrected of 42 (i.e., up to the 8th radial order). Zernike modes
piston, tip and tilt were excluded.

These results provide a tool for selecting the sampling frequency. For instance, it indicates
that at 50 Hz, the temporal error should be under approximately 0.004µm2 for 80 % of the
population when the first 42 Zernike modes are corrected, which corresponds to a Strehl ratio
loss of 20 % at 833 nm. We can see that the temporal error drops rapidly until the sampling
frequency reaches approximately 50 Hz to 70 Hz. A factor 2 to 3 in performance is gained
when increasing the sampling frequency from 20 Hz to 50 Hz, while to gain another factor 2 in
performance, the sampling frequency would have to be higher than 200 Hz.

At fs = 0 Hz, the dynamic SWFE of Table 1 (corresponding to the temporal fluctuation-
s of the aberrations without any correction) were reported (cross symbols). We observe that
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below 20 Hz, the residual error is higher than these cross symbols corresponding to the level
of dynamic aberrations without any correction. In other words, the loop tends to amplify the
dynamic aberrations. This behavior is not surprising as frequencies at aroundfs/8 are slightly
amplified with an integrator control for a 0.5 loop gain, and as we previously mentioned that
for some modes (especially the most energetic ones,e.g., defocus), low frequency components
sometimes stand out. One should probably consider using an LQG control law to reject these
high-energy low-frequency components, which has been very successfully applied for high reso-
lution imaging in astronomy [34,35]. More generally, such an LQG approach could incorporate
in the control strategy the specific spatio-temporal statistical structure of the eye aberrations.

4.4. Numerical application

Let us now illustrate how theses graphs may be used to select the parameters of an adaptive
optics loop for ophthalmology. Usually, the specification is expressed in terms of Strehl Ratio.
This translates into a residual SWFE that can be further divided between the different error
contributors. Let us consider a target Strehl ratio of 65 % at 833 nm over 80 % of the population.
This yields a residual SWFE of 7.6 × 10−3 µm2.

We choose to split this residual SWFE equally between the temporal and fitting errors (we
here neglect the other error terms of the AO error budget). Starting with the fitting error, Fig.
8 shows that in order to limit the fitting error to 3.8 × 10−3 µm2 over 80 % of the population,
at least 18 Zernike modes are to be corrected (see indications given by grey straight lines).
Then, considering 18 Zernike modes are corrected, Fig. 9(a) indicates the minimum sampling
frequency that is to be chosen so as to limit the temporal error to 3.8 × 10−3 µm2 over 80 %
of the population (see indications given by grey straight lines). It appears that to achieve the
desired performance with an integrator control featuring a 2-frame delay and a loop gain of
0.5, the AO system has to run at 40 Hz at least. Recent publications indeed present AO systems
with a rather high sampling frequency and also discuss its advantages, such as the AO flood-
illumination camera of Rhaet al. [36] and Meimonet al. [37] at 60 Hz and the AO scanning
laser ophthalmoscopy of Yuet al.at 110 Hz [38].

5. Conclusion

Whereas static aberrations are well documented [9], our knowledge on the dynamic aberrations
spatial and temporal statistics is still incomplete. In this paper, we have presented the first large
aberrometry campaign on dynamic ocular aberrations with both high temporal (custom-built
Shack-Hartmann aberrometer running at 236 Hz) and spatial (22 lenslets across a 7 mm diam-
eter pupil) resolution, conducted on a 50 healthy eye population. The statistical analyses were
performed on 3.4 s sequences without blinks on a subgroup of 50 eyes.

After comparing the static aberrations of our population to the bibliography, we could accu-
rately describe the spatial behavior of ocular aberrations up to the 8th radial order. In particular, 
we confirmed the previously reported f − p power-law model for the temporal spectrum of ocu-
lar aberrations on a wider population and provided statistics of the p exponent for each mode 
: it amounts to 1.5 for defocus and ranges from 1.2 and 1.3 for other modes ; moreover, the 
power-law exponents computed do not vary greatly over the population (standard deviation is 
about 0.2). All the statistics we derived from the data, as well as information on age, gender, 
Lasik case, right-left eye of each subject, can be found in Data File 1 (supplementary data 
avail-able for the reader). A MATLAB code generating statistically relevant Zernike coefficient 
time series is available upon request, and the authors are open to sharing raw data supporting 
this study, and support for using it.

With this knowledge of the eye’s typical spatial and temporal aberration statistics, it is possi-
ble to simulate the performance of any AO loop, and to use this database as a tool for design-
ing future systems. The analysis presented in this paper therefore provides AO design guide-
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lines, via the quantification of the error budget terms as a function of its key design parame-
ters (i.e.number of corrected modes, adaptive optics loop frame rate, wavefront sensing source
power). Beyond recommending using a 50 Hz AO loop rate, we quantify how much is lost by
decreasing the rate by a factor 2, and how much is gained by doubling it. This statistical model
of the eye’s aberrations could be incorporated in a Linear Quadratic Gaussian control scheme,
implementing a predictive control specifically tailored for the eye.

A. Analysis of the photons emerging from the eye and collected on the WFS
camera

A.1. Definitions

Let Nphinc
be the number of photons entering the eye from the WFS source. If the eye were a

100 % back-scattering Lambertian surface, the number of photons emerging from the eye would
then be given by:

N100 %
ph =

Ω

2π
· T · Nphinc

(8)

with Ω the solid angle subtended by the pupil from the point source formed on the retina by the
WFS beam andT the double-pass transmission of the ocular media, which is here considered
equal to 90 %.
However, only a small partN tot

ph
= Rtot ·N

100 %
ph

of this ideal amount of photons actually emerges
from the eye, the main portion of the incoming photons being transmitted or absorbed by the
retina [39, 40]. Among these emerging photons, a fractionRdir (thedirectionalreflectance) is
singly-back-scattered and forms the point source on the retina used for wavefront sensing, and
a fractionRbg is multiply-back-scattered and forms a diffusebackgroundlight patch on the
retina:

N tot
ph = Rtot · N

100 %
ph = Rdir · N

100 %
ph

︸          ︷︷          ︸

N dir
ph

+ Rbg · N
100 %
ph

︸         ︷︷         ︸

N
bg

ph

(9)

Unlike the directional photonsN dir
ph

coming from the WFS beacon, the amount of background

photonsN bg

ph
coming from the diffuse light patch depends on the field of viewS field considered

for photometric assessments. Let us assume thatS field is totally included in the diffuse light
patch formed on the retina, which we consider as approximately uniform. Then, only a portion
of Rbg , proportional toS field, actually contributes to the photons detected on the WFS:

N
bg

ph
= S field ·

Rbg

Sbg
︸︷︷︸

ρbg

·N100 %
ph (10)

whereSbg can be considered as the surface of the total diffuse light patch. The quantityρbg
denotes the background reflectance per unit of retinal field.

Therefore, the total amount of emerging photons collected by the WFS camera from a sub-
aperture in a field of viewS field is:

NWFS
ph

= τbench ·
[

Rdir + S field · ρbg
]

︸                     ︷︷                     ︸

R tot

·
ΩµL

2π
· T · Nphinc

(11)

with τbench the transmission of the system from the eye to the WFS camera,ΩµL the solid angle
subtended by the image of one subaperture at the pupil plane from the point source formed on
the retina by the WFS beam.
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A.2. Experimental assessment of retinal reflectance

Figure 10 presents a typical Shack-Hartmann wavefront sensor image. Experimentally, the total
reflectanceRtot was evaluated from the whole flux collected over the retinal field (set by the
field stop in our set-up), and the directional reflectanceRdir was derived from the flux within
the SH spots after diffuse background subtraction (the latter was assessed on the edge of the
subaperture images). This was done for each of the 50 eyes, and for each of the 808 WFS
frames of the 3.4-second-long background-subtracted WFS sequences.

Fig. 10. Example of Shack-Hartmann wavefront sensor image for one typical eye.

The average total retinal reflectance assessed on a retinal field of 1.2° (set by the field stop in
our experimental set-up) isRtot (1.2°) = 5.0 %±1.2 % (mean±SD) over our 69-eye population.
The average directional reflectance, evaluated from the flux within the SH spots, wasRdir =

3.7 %±1.4 %. These values are very stable over time, with a temporal standard deviation of both
total and directional reflectance,σt (Rtot ) andσt (Rdir ), worth 0.1 %±0.1 %.

It appears that retinal reflectance is rather uniform over our population, and constant over
time. We conclude that the background reflectance per unit of retinal fieldρbg is around
1.3 × 10−7 µm−2:

Rtot (1.2°) = 5.0 % ; Rdir = 3.7 % ; ρbg = 1.3 × 10−7 µm−2 (12)

These values would correspond to a total retinal reflectance of 5.7 % on a retinal field of
1.5° (we remind thatRtot = Rdir + S field · ρbg, see Eq. (11)), which is in line with the total
reflectance of approximately 6 %, given by van de Kraatset al. relative to a 1.5°-field at our
working wavelength [40].
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