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Abstract

Rho GTPases control cell division, motility, adhesion, vesicular trafficking and phagocytosis, 

which may affect progression and/or prognosis of cancers. Here, we investigated associations 

between genetic variants of Rho GTPases-related genes and cutaneous melanoma-specific survival 

(CMSS) by re-analyzing a published melanoma genome-wide association study (GWAS) and 

validating the results in another melanoma GWAS. In the single-locus analysis of 36,018 SNPs in 
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129 Rho-related genes, 427 SNPs were significantly associated with CMSS (P<0.050 and false-

positive report probability <0.2) in the discovery dataset, and five SNPs were replicated in the 

validation dataset. Among these, four SNPs (i.e., RHOU rs10916352 G>C, ARHGAP22 
rs3851552 T>C, ARHGAP44 rs72635537 C>T and ARHGEF10 rs7826362 A>T) were 

independently predictive of CMSS (a meta-analysis derived P=9.04×10−4, 9.58×10−4, 1.21×10−4 

and 8.47×10−4, respectively). Additionally, patients with an increasing number of unfavorable 

genotypes (NUGs) of these loci had markedly reduced CMSS in both discovery dataset and 

validation dataset (Ptrend=1.47×10−7 and 3.12×10−5). The model including the NUGs and clinical 

variables demonstrated a significant improvement in predicting the five-year CMSS. Moreover, 

rs10916352C and rs3851552C alleles were significantly associated with an increased mRNA 

expression levels of RHOU (P=1.8×10−6) and ARHGAP22 (P=5.0×10−6), respectively. These 

results may provide promising prognostic biomarkers for CM personalized management and 

treatment.
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Introduction

Cutaneous melanoma (CM), one of the most lethal skin cancers, is a leading cause of cancer 

mortality in the United States. In 2017, an estimated of 87,110 new cases will be diagnosed 

and 9,730 cases will die of CM 1. Unlike several other major cancers, including lung, 

bronchus, colon and rectal cancers, that have manifested declining trends, CM has 

demonstrated a stably high mortality rate for the past two decades 2 and continues to 

represent a significant public health concern. Risk-stratified management, based on accurate 

staging systems and prognostic information, is a key in addressing CM-related mortality 3. 

However, current staging systems have insufficient discriminative power to provide accurate 

clinical prognostication of the disease 4, thus hampering personalized clinical assessment. 

Therefore, there is an urgent need to identify new prognostic indicators improved 

discriminative power.

Germline genetic variants, such as single nucleotide polymorphisms (SNPs), may provide 

additional information beyond current clinical staging and pathologic prognostic 

assessment 5. Recent years have witnessed much success of genome-wide association 

studies (GWAS) in identifying SNPs that are associated with increased CM risks 6. 

Subsequent pathway analyses of GWAS datasets have further detected several functional 

SNPs that are associated with CM survival, after adjusting for clinical and pathologic 

prognostic features, including stage, and presence of primary tumor Breslow thickness and 

ulceration. Examples of proposed prognostic SNPs include those mapped to genes involved 

in angiogenesis and lymphangiogenesis pathways 7, Fanconi anemia pathway 8, Hippo 

pathway 9, Notch pathway 10 and vitamin D pathway 11. In summary, analyzing genotyping 

data of genes functioning in pivotal biological pathways or processes can provide clues for 

molecular mechanisms underlying melanocyte carcinogenesis and CM progression.
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Rho GTPases act as a molecular switch and have been implicated in controlling cell 

division, motility, cell adhesion, vesicular trafficking as well as phagocytosis and 

transcriptional regulation 12. The activity of Rho proteins is determined by two different 

states: active GTP-bound states and inactive GDP-bound states that can be controlled by 

their regulatory proteins. Three classes of such regulatory proteins, including guanine 

nucleotide exchange factors (GEFs), upregulate Rho activity by catalyzing the exchange of 

GDP for GTP; GTPases-activating proteins (GAPs) inhibit Rho activity by stimulation of the 

GTP hydrolysis, while guanine nucleotide dissociation inhibitors (GDIs) act as molecular 

chaperones and prevent activation by sequestering GTPases away from GEFs 12.

Given their unique functions, Rho GTPases and their related regulators may be implicated in 

tumor progression. Evidence from the previous studies has indicated that deregulation of 

Rho GTPases and the related regulators is associated with cancer development, invasion and 

metastasis 13. A series of melanoma studies have shown that the Rho GTPases and the 

related regulators play a vital role in melanoma cell motility and metastasis 14, 15. 

Additionally, reports have also demonstrated that aberrant expression of CDC42, RHOC, 

GEF-H1 and DLC1 (one of the GAPs) is associated with CM survival 16–19. Given these 

findings, we hypothesized that genetic variants in genes encoding Rho GTPases and the 

related regulators would be associated with CM-specific survival (CMSS).

Materials and Methods

Study populations and genotyping data

We used a GWAS dataset from The University of Texas MD Anderson Cancer Center 

(MDACC) study as the discovery dataset and another GWAS dataset from the Nurses’ 

Health Study and the Health Professionals Follow-up Study conducted by Harvard Brigham 

and Women’s Hospital as the validation dataset. The study protocols were approved by 

Institutional Review Boards at both MDACC and Harvard Brigham and Women’s Hospital 

with a written informed consent from each of the subjects.

The MDACC discovery dataset included 858 non-Hispanic white CM patients who had 

complete information for clinical variables 8. The genotypes were called by using the 

BeadStudio algorithm at John Hopkins University Center for Inherited Disease Research. 

Genome-wide imputation was conducted with the MACH software based on the 1000 

Genomes Project, phase I v2 CEU data. SNPs with a minor allele frequency ≥ 0.05, a 

genotyping rate ≥ 95%, and Hardy-Weinberg equilibrium P-value ≥ 1×10−5 were included in 

the present study. The MDACC dataset can be accessed at the Database of Genotypes and 

Phenotypes (dbGaP: http://www.ncbi.nlm.nih.gov/gap) with an accession number 

phs000187.v1.p1.

The replication dataset from Harvard GWAS have been described previously 11, 20. 

Genotyping was performed using the Illumina HumanHap610 array. Genome-wide 

imputation was also performed using the MACH program based on the 1000 Genomes 

Project (Utah Residents with Northern and Western European Ancestry data, phase I v3). 

SNPs with imputation quality r2 ≥ 0.8 and minor allele frequency ≥ 0.05 in each study were 
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used in the present study. This led to 409 non-Hispanic white patients to be included in the 

validation and final analysis 11.

Gene and SNP selection

Based on the search of gene bases of the HUGO Gene Nomenclature Committee at the 

European Bioinformatics Institute (HGNC: http://www.genenames.org/), 20 genes encoding 

Rho GTPases, 66 genes encoding Rho GEFs and 50 genes encoding Rho GAPs were 

identified. Through the literature we used 21, we identified only three genes (ARHGDIA, 

ARHGDIB and ARHGDIG) that encode Rho GDIs in humans. In total, 129 autosome genes 

encoding the Rho GTPases and related regulators were selected after excluding nine genes in 

the X chromosome and one pseudogene (Table S1). SNPs within these 129 genes and their 

2-kb flanking regions were extracted from the MDACC dataset.

Statistical methods

CMSS was defined as the time from the diagnosis of disease to the date of CM-related death 

or the date of the last follow-up, whichever came first. Deaths with non-CM causes were 

considered censored. Cox proportional hazards regression analysis was conducted to assess 

associations between SNPs (with an additive model) and CMSS using the GenABEL 

package of R software. Although the Bonferroni method for multiple test correction can 

control the family-wise error rate efficiently, assuming that all SNPs under investigation are 

independent, it will lead to an over-correction due to a high level of correlations among 

SNPs in GWAS studies, particularly as a result of imputation that provided the majority of 

SNPs used in the present pathway-based hypothesis-driven study. Therefore, we used the 

less strident false-positive report probability (FPRP) method for multiple test correction to 

generate a better discriminatory set of SNPs from the MDACC study for further validation in 

the Harvard study 22. We assigned a prior probability of 0.1 to detect a HR of 1.5 for the 

genotypes and alleles of SNPs with an elevated risk. Only those SNPs with a FPRP value < 

0.2 were considered worthy of subsequent validation in the Harvard dataset. Linkage 

disequilibrium (LD) analysis was performed by HaploView 4.2 according to European 

populations from the 1000 Genomes Project with pairwise r2=0.6 as a cut-off value. 

Potential functions of SNPs were predicted by RegulomeDB (http://www.regulomedb.org/), 

SNPinfo Web Server (http://snpinfo.niehs.nih.gov/) and HaploReg 23. The stepwise Cox 

regression model including validated SNPs and clinical variables was performed to choose 

the independent SNPs. Pooled hazards ratio (HR) and 95% confidence interval (CI) were 

calculated by the meta-analysis using PLINK 1.07. Cochran’s Q statistics and I2 were 

carried out to access an inter-study heterogeneity. Fixed-effects models were used when no 

heterogeneity was found between two studies (Q-test P-value > 0.10 and I2 < 25.0%); 

otherwise, random-effects models were used. To evaluate the joint effects of the SNPs, we 

combined risk genotypes and risk alleles of each identified SNP into two different variables 

as the number of unfavorable genotypes (NUGs) and the number of risk alleles, respectively, 

and both were used as a genetic risk score for further analysis. Kaplan-Meier estimation of 

survival functions and Log-rank tests were used to evaluate the combined effects of risk 

genotypes on CMSS. The receiver operating characteristic (ROC) curve was performed to 

estimate area under the curve (AUC) from the logistic regression model. Delong’s test was 

perform to compare the AUCs across different models. A time-dependent ROC analysis was 
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performed with the survival ROC package of R software 24. The expression quantitative trait 

loci expression quantitative trait loci (eQTL) analysis was performed using data from the 

1000 Genomes Project and the GTEx Portal 25, 26. All analyses were performed using SAS 

(version 9.1.3; SAS Institute, Cary, NC), unless otherwise specified. Figure S1 provides the 

study flow chart, illustrating procedures of analyses performed in the present study.

Results

Basic characteristics of study populations

The present study included 858 patients from the MDACC GWAS and 409 patients from the 

Harvard GWAS (Table S2). All the subjects were non-Hispanic white. The details of clinical 

information including age, sex, tumor stage, Breslow thickness, ulceration of tumor, tumor 

cell mitotic rate and survival outcomes were available in the MDACC study, while only age, 

sex and survival outcomes were available in the Harvard study. In the MDACC study, 

slightly more patients were men (496, 57.8%) and older than 50 years old (487, 56.8%), 

having a median follow-up time of 81.1 months and 95 (11.07%) died of CM at the last 

follow-up. Univariate Cox regression analysis indicated that age, sex, stage, Breslow 

thickness, ulceration and mitotic rate were significantly associated with CMSS. In the 

Harvard study, however, much more patients were women (271, 66.3%) and older than 50 

years old (337, 82.3%), having a relatively longer median follow-up time (179 months) and 

57 (11.5%) died of CM at the last follow-up. Univariate Cox regression analysis indicated 

that only age was significantly associated with CMSS.

Survival analysis of SNPs and CMSS

As shown in Figure S1, a total of 5,289 genotyped and 30,732 imputed SNPs were extracted 

in the MDACC discovery dataset. We found that 2,453 SNPs were significantly associated 

with CMSS at P < 0.05 in the single-locus analysis with an additive genetic model by Cox 

regression analysis, in which 427 SNPs had FPRPs < 0.20. Then, those loci were further 

subjected for validation. As summarized in Table 1, five SNPs in four genes remained 

statistically significant with P < 0.05 in the Harvard study and in the same direction of 

effects as detected by the MDACC study. RHOU rs10916352, ARHGAP22 rs3851552, 

ARHGAP44 rs72635537 and ARHGEF10 rs7826362 were significantly associated with 

poorer survival, while SNP RHOU rs7555155 was associated with better survival in both 

studies. Meta-analysis confirmed that the same associations remained, and the five SNPs 

were not significantly heterogeneous in effects across the two studies.

Four independent SNPs as CM survival predictors

We further performed LD analysis of the two SNPs in RHOU, and found that they were in 

moderate LD (r2 = 0.66). Functional prediction by SNPinfo and RegulomeDB indicated that 

RHOU rs3851552, ARHGAP22 rs3851552 and ARHGEF10 rs7826362 had a RegulomeDB 

scores of 5, 6 and 5, respectively, which suggests that these SNPs may be located in the 

transcription factor binding or DNase I regulating sites (Table S3). We also searched for 

their moderate linked SNPs (r2 ≥0.60) and made further functional annotation by HaploReg 

(Table S4). For example, SNP rs7555155 may disrupt the motif of Zfp105, whereas 

rs10916352 is located in the DNase I hypersensitive sites and may disrupt the motifs of 
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Foxq1, GR and HNF1, and has a linear correlation with mRNA expression of its 

corresponding gene RHOU. Two SNPs in ARHGAP44, in a moderate linkage with our 

identified SNP rs72635537, were predicted to disrupt protein motifs. Considering all the 

functional prediction results of the five SNPs, we included RHOU rs10916352, ARHGAP22 
rs3851552, ARHGAP44 rs72635537 and ARHGEF10 rs7826362 as functional SNPs to 

build the model for CMSS prediction. They remained significantly associated with CMSS 

when included together with clinical characteristics in a stepwise Cox model in MDACC 

study (Table S5). Taken all together, we selected RHOU rs3851552, ARHGAP22 
rs3851552, ARHGAP44 rs72635537 and ARHGEF10 rs7826362 as the final independent 

SNPs for further analyses (Regional association plots were shown in Figure 1). In the 

MDACC study, risk of death was significantly increased with the number of rs10916352 C, 

rs3851552 C, rs72635537 T and rs7826362 T alleles (trend test: P = 0.012, 0.016, 0.004 and 

0.012, respectively, Table 2) and similar results were observed in the Harvard study (trend 

test: P = 0.047, 0.024, 0.018 and 0.022, respectively, Table 2). Consistently, individuals with 

genotypes of rs3851552 CC+TC, rs7263553 TT+CT and rs7826362 TT+AT had a poorer 

CMSS, compared with those harboring the wild-type genotypes of each SNP in the MDACC 

study (P = 0.004, 0.003 and 0.029, respectively) and the Harvard study (P = 0.005, 0.019 and 

0.045, respectively). However, the significant dominant effect of rs10916352 CC+GC 

genotypes was observed in the MDACC study (P = 0.003), but not in the Harvard study (P = 

0.167).

Combined effects of the four independent SNPs

For ease of interpretation of the joint effect of the four significant SNPs, we combined risk 

genotypes of rs10916352 CC+GC, rs3851552 CC+TC, rs7263553 TT+CT and rs7826362 

TT+CT into a single variable as number of unfavorable genotypes (NUGs) (Table 3). The 

trend test indicated that an increased number of NUGs was associated with an increased risk 

of death in both the MDACC (P = 1.47×10−7) and Harvard studies (P = 3.12×10−5). We 

further divided the combined NUGs into two groups: a low-risk group (0–2 NUGs) and a 

high-risk group (3–4 NUGs), and found that the hazards ratio (HRs) of death for the high-

risk group was 2.62 times [95% confidence interval (CI) = 1.73–3.96, P = 5.39×10−6] and 

2.52 times (95% CI = 1.43–4.45, P = 1.43×10−3) in the MDACC and Harvard studies, 

respectively (Table 3), when compared with the low-risk group. For the visual effect, we 

used Kaplan-Meier curves to depict associations between NUGs and CMSS (Figure 2). We 

also performed the genetic risk score analysis by using the method of simple additive 

summing up the number of risk alleles in both the MDACC and Harvard studies. As with a 

small number of events in lower and higher risk categories (Table S6), a new combined 

model was employed for survival analysis (Table S7). Individuals with either 3–4 or 5–7 risk 

alleles had an increased HR, compared with those with 0–2 risk alleles in the MDACC 

study. The trend test showed that an HR significantly increased as the number of risk alleles 

increased, which was also consistently observed in the Harvard study. Additionally, it is 

apparent that results of the combined analysis of risk alleles are very consistent with that of 

risk genotypes in the both datasets.
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Stratified analyses for associations between NUGs and CMSS

As shown in Table S8, compared with those with 0–2 NUGs, those with 2–4 NUGs had 

significantly poorer CMSS in the presence or absence of clinical variables in most of the 

stratified subgroups, except for the subgroups of metastasis and mitotic rate ≤ 1 /mm2. 

Heterogeneity was observed only in the subgroup of stage (P = 0.008).

Time dependent AUC and ROC curves for CMSS prediction

Using time-dependent AUC of the ROC curves as criteria, we further evaluated predictive 

value of the unfavorable genotypes. As shown in Figure 2, the time-dependent AUC plot 

indicated an improved prediction performance with the addition of NUGs to the model with 

clinicalpathologic factors from the beginning of the follow-up and remaining over time, 

compared with clinicalpathologic factors only. As classification of five-year CMSS, the 

AUC was significantly increased from 86.0% to 88.5% (P = 0.019), when adding NUGs to 

the clinical variables as classifiers in the ROC curve (Figure 2).

eQTLs analyses

We further conducted eQTLs analysis using data from the GTEx Portal, which only included 

RHOU rs10916352 and ARHGAP22 rs3851552 in transformed fibroblasts derived from 

donors’ tissues. Rs10916352C and rs3851552C alleles were associated with a significant 

increase in mRNA expression levels of RHOU (P = 1.8×10−6) and ARHGAP22 (P = 

5.0×10−6) in an additive genetic model (Figure 3), respectively. However, no significant 

associations were observed in 373 Europeans from the 1000 Genomes Project (data not 

shown).

Discussion

In the present study, we evaluated associations of germline genetic variants in genes 

encoding Rho GTPases and the related regulators with CMSS, using available genotyping 

data from two published CM GWAS datasets. We found that genetic variants of RHOU 
rs10916352, ARHGAP22 rs3851552, ARHGAP44 rs72635537 and ARHGEF10 rs7826362 

may individually or jointly modulate CMSS. We also observed that incorporating the 

number of NUGs of these risk SNPs significantly improved prediction accuracy of the 

model including the variables known to predict CMSS. Our results suggested the potential 

biological roles of Rho GTPases in CM progression.

The most crucial function of the Rho GTPases, which is correlated with progression of 

cancer, is the regulation of actin and cytoskeleton organization involved in cancer invasion 

and migration. The available information on the functions of Rho proteins is mostly derived 

from the study of three members: Rac1, RhoA and Cdc42. The underlying mechanisms 

include regulating the formation of lamellipodia and membrane ruffles, focal adhesion 

complexes and contractile actomyosin filaments, and formation of filopodia 27. Abnormal 

expression of RHO genes has been observed to be associated with invasion of several tumor 

types, including breast cancer, gastric carcinoma, testicular germ cell tumors, and colon 

cancer 13 as well as melanoma 19. However, no studies have reported a role of genetic 

variants encoding Rho and the related regulators in predicting clinical outcomes of cancer.
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Our analysis identified four significant SNPs mapped to four genes encoding a member of 

Rho GTPases (RHOU), two members of GAPs (ARHGAP22 and ARHGAP44), and a 

member of GEFs (ARHGEF10). RHOU is upregulated by the Wnt1 signaling in Wnt1-

transformed mouse mammary cells to promote filopodium formation and stress fiber 

dissolution 28, and has been reported to regulate tumor cell invasion in prostate cancer by 

functioning similarly as the Cdc42 small GTPase 29. While ARHGAP22 and ARHGAP44 

trigger local Rac-GTP hydrolysis, thus reducing actin polymerization required for filopodia 

formation 14, 30. For example, in melanoma cell movement, ARHGAP22 can be activated to 

suppress mesenchymal movement by inactivating Rac 14. ARHGEF10 is located near a 

cancer related region, chromosome arm 8p. Loss of chromosome arm 8p has been found in 

urothelial carcinoma and other epithelial cancers and associated with more advanced tumor 

stage 31. Genetic variant in ARHGEF10 may affect the binding affinity of the Sp1 

transcriptional factor, which in turn may increase transcription of the ARHGEF10 gene, 

leading to high expression of RhoA 32. Considering these crucial biological implications, we 

inferred that the four genes may play a part in tumor progression. As the four identified 

genes hosting the four significant SNPs, respectively, we conjectured that there might be a 

strong combined effect of these four SNPs on survival of CM patients. Indeed, our analysis 

confirmed that the combined effect of the four risk genotypes outweighed that of individual 

genotypes, hinting the existence of a possible interaction network among the four genes. 

Their molecular mechanism in melanoma invasion and migration is worthy for further study.

By searching public data from the GTEx Portal, we found that variant alleles of RHOU 
rs10916352C and ARHGAP22 rs3851552C were significantly associated with mRNA 

expression levels of the corresponding genes in skin fibroblasts. This biologic evidence 

demonstrated that RHOU and ARHGAP22 expression may be mediated by these putatively 

functional SNPs, possibly explaining the associations with CMSS. It has been reported that 

other micro-environmental factors, such as endothelial cells, immune cells, soluble 

molecules, and the extracellular matrix, can interact with host fibroblasts to drive tumor 

progression and even drug resistance 33. A member of Rho GAPs, ARHGAP35, has been 

also reported to regulate expression of Cav1 in fibroblasts and facilitates remodeling of peri- 

and intra-tumoral microenvironments to promote tumor invasion 34. As the CMSS-

associated SNPs in RHOU and ARHGAP22 can modulate the expression of the 

corresponding mRNA in the skin fibroblasts, their roles in regulation of melanoma 

microenvironment are warrant to be investigated.

There are several limitations of the present study. The first limitation is the lack of complete 

clinical data in the Harvard dataset used for validation. In addition, neither of the two 

datasets had information on any systemic therapies received by the patients with an 

advanced or aggressive disease. However, no heterogeneity was observed when the two 

datasets were combined, not in the results of their meta-analysis. Second, we used a less 

stringent FPRP method to control for multiple comparisons in the discovery dataset 35. 

Although this may lead to more false positive findings, it is noteworthy that consistent 

effects of the identified SNPs on CMSS in both the discovery and validation datasets were 

observed and that two SNPs, RHOU rs10916352 and ARHGAP22 rs3851552, have potential 

functions in regulating mRNA expression. Third, although we demonstrated independent 

and combined effects of the four genetic variants on CMSS, no direct biological experiments 
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were conducted in vitro or in vivo for additional validations. Further functional 

investigations are warranted to investigate the exact function of these SNPs or genes on 

melanoma progression.

In conclusion, our present study identified the role of RHOU rs10916352, ARHGAP22 
rs3851552, ARHGAP44 rs72635537 and ARHGEF10 rs7826362 in CMSS as assessed in 

two independent GWAS datasets. Given the importance of Rho GTPases and the related 

regulators in the invasion and migration of cancer cell, these genetic variants may represent 

promising prognostic biomarkers for CM personalized management and treatment.
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AUC area under the curve
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Novelty and Impact

Rho GTPases control cell division, motility, adhesion, vesicular trafficking and 

phagocytosis, which may affect progression and/or prognosis of cancers. In the current 

study, we investigated associations between genetic variants of Rho GTPases-related 

genes and cutaneous melanoma survival by using datasets from two genome-wide 

association studies. Four SNPs in four genes, RHOU, ARHGAP22, ARHGAP44, and 

ARHGEF10, showed individually or jointly predicted effects on survival, suggesting a 

potential role of those genes in melanoma progression.
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Figure 1. 
Regional association plot for the independent SNPs in The University of Texas MD 

Anderson cancer Center (MDACC) dataset. Single nucleotide polymorphisms (SNPs) in the 

region of 200 kb up- or down-stream of RHOU rs10916352 (a), ARHGAP22 rs3851552 (b), 

ARHGAP44 rs72635537 (c), and ARHGEF10 rs7826362 (d). Data points are colored 

according to the level of linkage disequilibrium (LD) of each pair of SNPs based on the 

hg19/1000 Genomes European population. The left-hand y-axis shows P values for 

associations with individual SNPs, which is plotted as −log10 (P) against chromosome base-

pair position; the right-hand y-axis shows the recombination rate estimated from HapMap 

Data Rel 22/phase II European population; the selected SNPs were pointed with the red 

arrows.
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Figure 2. 
The four independent SNPs and melanoma survival. a–d. Kaplan–Meier survival curves of 

the combined risk genotypes: the exact numbers of unfavorable genotypes (NUGs) (a) in 

MDACC study and (c) in the Harvard study; dichotomized groups of the NUGs (b) in the 

MDACC study and (d) in the Harvard study. e–f. Time-dependent area under the curve 

(AUC) and receiver operating characteristic (ROC) curve estimation for prediction of 

melanoma-specific survival. (e) Time-dependent AUC estimation, based on age, sex, 

Breslow thickness, stage, ulceration, mitotic rate and the NUGs in the MDACC study and (f) 

five-year melanoma-specific survival prediction by ROC curve in the MDACC study.

Liu et al. Page 14

Int J Cancer. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The expression quantitative trait loci analysis (eQTLs) from the Genotype-Tissue Expression 

(GTEx) project for (a) RHOU rs10916352 and (b) ARHGAP22 rs3851552 in an additive 

genetic model.
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