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Abstract

This study was conducted to evaluate if extracellular polysaccharides (EPS) are used by

Streptococcus mutans (Sm) biofilm during night starvation, contributing to enamel deminerali-

zation increasing occurred during daily sugar exposure. Sm biofilms were formed during 5

days on bovine enamel slabs of known surface hardness (SH). The biofilms were exposed to

sucrose 10% or glucose + fructose 10.5% (carbohydrates that differ on EPS formation), 8x/

day but were maintained in starvation during the night. Biofilm samples were harvested during

two moments, on the end of the 4th day and in the morning of the 5th day, conditions of sugar

abundance and starvation, respectively. The slabs were also collected to evaluate the per-

centage of surface hardness loss (%SHL). The biofilms were analyzed for EPS soluble and

insoluble and intracellular polysaccharides (IPS), viable bacteria (CFU), biofilm architecture

and biomass. pH, calcium and acid concentration were determined in the culture medium.

The data were analyzed by two-way ANOVA followed by Tukey’s test or Student’s t-test. The

effect of the factor carbohydrate treatment for polysaccharide analysis was significant (p <
0.05) but not the harvest moment (p > 0.05). Larger amounts of soluble and insoluble EPS

and IPS were formed in the sucrose group when compared to glucose + fructose group (p <
0.05), but they were not metabolized during starvation time (S-EPS, p = 0.93; I-EPS, p = 0.11;

and IPS = 0.96). Greater enamel %SHL was also found for the sucrose group (p < 0.05) but

the demineralization did not increase during starvation (p = 0.09). In conclusion, the findings

suggest that EPS metabolization by S. mutans during night starvation do not contribute to

increase enamel demineralization occurred during the daily abundance of sugar.

Introduction

Dental caries is a biofilm-sugar related disease that depends on biofilm accumulation on tooth

surface and its frequent exposure to dietary carbohydrates [1]. The cariogenic biofilm forms

and grows on dental surfaces in a dynamic condition in which the exposure to dietary carbo-

hydrates occurs intermittently [2]. During the day, the biofilm is frequently exposed to short

periods of great amount of carbohydrates, followed by long periods of non-exposure between
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the meals and overnight. These episodes are known as "feast" and "famine" periods and they

are determinant for bacterial metabolism and biofilm growth [3, 4, 5]. In “feast” periods, bacte-

rium such as S. mutans is able to store the excess of available carbohydrate as intracellular poly-

saccharides (IPS), which act as an energy reserve source in “famine” periods [6, 7]. Besides the

IPS storage, glucosyl- and fructosyltransferases enzymes produced by S. mutans synthesize

extracellular polysaccharides (EPS) when sucrose is the available carbohydrate [8, 9, 10].

EPS produced from sucrose contribute to microbial attachment and shifts on matrix tridi-

mensional organization, mainly enhancing its porosity [11, 12, 13]. This structural change

favors acid diffusion through the biofilm and pH fall next to the tooth surface, increasing

enamel demineralization [14]. Additionally, it has been suggested that EPS could be an extra-

cellular energy reserve, in which soluble glucans and fructans could be degraded by specific

hydrolases, releasing glucose and fructose to be metabolized, producing acids [10, 15, 16, 17].

Once the degradation of EPS might occur during "famine" periods, the acid produced in a

non-removed biofilm may extend the enamel demineralization especially during the night

when salivary flow rate is low [18]. Furthermore, the effect of EPS metabolization on enamel

demineralization has not been experimentally shown. The degradation of EPS has only been

studied using planktonic cells [19, 20] and it was already reported that isolated or non-

adsorbed enzymes could not simulate what happens in an organized biofilm [12, 21, 22].

Moreover, previous studies indicated that bacteria under starvation moments would have a

different metabolic activity from those grown under constant nutrient exposure [23,24].

Therefore, considering that there is no data evaluating the effect of EPS degradation on

enamel demineralization, the present study was carried out using a S. mutans cariogenic bio-

film model subjected to intermittent periods of abundance and starvation of sucrose or equi-

molecular mixture of glucose and fructose. While sucrose is a source for IPS and EPS storage

during energy abundance, glucose and fructose are only a source for IPS synthesis. Thus, it

was possible to evaluate the degradation of EPS as an energy source during overnight starva-

tion of carbohydrate and the consequent effect on enamel demineralization.

Materials and methods

Experimental design

An in vitro, randomized and blinded factorial (2x2) study was conducted using a validated car-

iogenic biofilm model [5, 25, 26]. The study was approved by the Research and Ethics Com-

mittee of the Piracicaba Dental School, University of Campinas (142/2014). The factors under

study were type of carbohydrate (sucrose or a mixture of glucose + fructose) to feed the bio-

films during the day, and biofilm harvest moment (at the end of the day after the last sugar

treatment, situation of sugar abundance, or after overnight starvation), generating 4 experi-

mental groups: (1) glucose + fructose abundance, (2) glucose + fructose starvation, (3) sucrose

abundance, and (4) sucrose starvation. Sucrose and glucose + fructose are acidogenic carbohy-

drates and are stored as IPS, but only sucrose is substrate for EPS formation. S. mutans UA159

biofilms were formed on bovine enamel slabs, selected by surface hardness and randomized

into the experimental groups (n = 12/group). The saliva-coated slabs were used to biofilms

grown in ultrafiltered tryptone-yeast extract broth (UTYEB). The biofilms were exposed 8

times a day to 5.25% glucose + 5.25% fructose solution or 10% sucrose solution. Biofilm sam-

ples were harvested during two moments, at the end of the 4th day and on the morning of the

5th day, conditions of sugar abundance and starvation, respectively. Intracellular and extracel-

lular polysaccharides (soluble and insoluble), biofilm dry weight and the number of viable cells

were analyzed. During the biofilm growth, the culture medium was changed twice daily and

the pH and calcium concentration were measured. The concentration of organic compounds
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(acids and ethanol) present in the medium were also evaluated. Enamel demineralization was

calculated by percentage of surface hardness loss (%SHL). Confocal laser scanning microscopy

was used to visualize the biofilm organization (bacterial cells and EPS), the images were three-

dimensional reconstructed and the biomass (cells and EPS quantified together) was calculated.

The hypothesis under study was that EPS are metabolized during night starvation, increasing

enamel demineralization occurred during daily sucrose exposure. Three independent experi-

ments were carried out and the data were statistically analyzed according to the factorial design

of this study, considering enamel slab as a statistical block (n = 12).

Enamel slabs preparation

Enamel slabs (4 x 7 x 1 mm) were obtained from bovine incisors [5]. The teeth were obtained

from a local slaughterhouse, which is regulated by national legislation to follow sanitary stan-

dards. The bovine incisors were not collected for research purpose, and they were obtained

after slaughtering. The teeth crowns were sectioned using a low-speed diamond blade to obtain

enamel slabs. The surfaces were ground and polished using aluminum oxide abrasive papers

(#400, #600 and #1200) and 1 μm diamond paste in a grinder machine (Phoenix Beta, Buehler,

USA). The surface hardness (SH) was determined using a Knoop indenter (Future-Tech FM,

Kawasaki, Japan) in which three indentations spaced 100 μm from each other were performed

with 50 g load for 5 s on the polished surface center. The slabs with intra-variability higher

than 10% were excluded and the selected slabs were randomized into the groups. The slabs

were placed in 24-well culture plates, in vertical position using a metallic holder, and submitted

to sterilization by exposure to ethylene oxide.

Biofilm model

The cariogenic biofilm model was previously described by Ccahuana-Vasquez and Cury

(2010). Streptococcus mutans UA159 reference strain [27] was used in the experiment and cul-

tures stored at -80˚C were first grown on Columbia blood agar (CBA). To prepare the inocu-

lum, S. mutans colonies were transferred to ultrafiltered tryptone-yeast extract broth (UTYEB)

supplemented with 1% glucose and incubated overnight at 37˚C, 10% CO2. The cells were cen-

trifuged, washed with saline solution, and resuspended in fresh UTYEB. The cell suspension

was standardized in a spectrophotometer at OD600 of 1.6 ± 0.5 to obtain the bacterial inocu-

lum. Prior to bacterial cell adhesion, the slabs were immersed in human saliva to form the

acquired pellicle. Fresh stimulated whole saliva was collected from the same two healthy

donors for each experiment. Salivary flow was stimulated by chewing a plastic paraffin film

and the saliva was collected in 50 mL polypropylene tubes on ice for 30 minutes. The saliva

was pooled, centrifuged (10,000 g, 4˚C, 10 min) and filtered (0.22 μm) [25]. The enamel slabs

were immersed into human saliva at 37˚C for 30 min [5] to form the acquired pellicle. Saliva-

coated slabs were transferred to wells containing 2 mL of fresh UTYEB with 1% glucose and

the bacterial inoculum (1:500 v/v), and were incubated for 8 h to promote initial adhesion of

the microorganisms. Only in the adhesion phase, the UTYEB pH 7.0 was strongly buffered

(10x higher than the usual phosphate concentration) to avoid pH drop and enamel deminerali-

zation during this phase. After adhesion, the slabs were transferred to fresh UTYEB pH 7.0

with 0.1 mM glucose (salivary basal concentration) and incubated overnight at 37˚C, 10% CO2

for 16 h. At the beginning of 2nd day, the biofilms were exposed to episodes of “feast” and

“famine” comprised of 8 daily exposures to carbohydrate solutions: 10% sucrose or a combina-

tion of 5.25% glucose and 5.25% fructose at predetermined times (08:00, 09:30, 11:00, 12:00,

13:30, 15:00, 16:00 and 17:30 h) for 3 min [25, 26]. After the cariogenic challenge, enamel slabs

were rinsed 3 times in 0.9% NaCl solution, and placed back into the culture media. The culture
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media was changed twice daily, before the first challenge and after the last one. The pH was

immediately evaluated after the change and the medium of each well was stored individually in

microcentrifuge tubes at -80˚C for later quantification of organic compounds and calcium con-

centration. At the end of the 4th day of biofilm formation, just after the last treatment, the bio-

films were rinsed and remained during 10 min in fresh saline solution as standardized in a pilot

study. This step was to avoid carrying any carbohydrate of the medium that could interfere in

polysaccharide analysis. Half of the slabs with biofilms were collect for abundance condition

evaluation. The other half was placed in fresh culture medium without glucose basal concentra-

tion, and at beginning of the 5th day, the biofilms were collected in starvation condition, after 16

h of night fasting (overnight starvation). The biofilm harvest was performed by sonication at 7

watts for 30 s as described by Ccahuana-Vasquez and Cury (2010). The slabs were used to evalu-

ate enamel demineralization and the suspension was used for biofilm analyses.

Biofilm analyses

An aliquot of 100 μL of the biofilm suspension was ten-fold serially diluted in saline solution

until 1:107. Two drops of 20 μL of each dilution were plated on Todd-Hewitt broth (THB) plus

agar and incubated at 37˚C, 10% CO2 for 48 h and the counts of the colony forming unit

(CFU) was performed with the aid of a stereoscopic microscope [5, 28, 29]. The extraction of

extracellular polysaccharides, soluble (S-EPS) and insoluble (I-EPS), and intracellular polysac-

charides (IPS) was performed as described by Aires et al. (2008) from an aliquot of 400 μL of

the sonicated biofilm suspension [30]. The amount of total carbohydrates was quantified by

the phenol sulfuric method [31] using glucose as standard. Another aliquot of 400 μL of the

sonicated biofilm suspension was added in pre-weigh microcentrifuge tubes to perform the

biofilm dry weight analysis. The dry weight was determined by the difference between the final

and initial weight of the microcentrifuge tubes [5, 29].

Culture medium analysis

The pH of the culture medium was evaluated twice a day at each medium change as an indicator

of biofilm acidogenicity. The pH measurement was performed using a pH microelectrode (Accu-

met; Cole-Parmer, USA) coupled to a pHmeter (Procyon SA-720, Olı́mpia, Brazil) calibrated with

pH standards of 4.0 and 7.0, performed directly inside the wells, just after the medium change.

Then, the culture medium was stored for calcium concentration analysis and organic compounds

quantification. The Arsenazo III colorimetric method [32] was used to assess calcium concentra-

tion in 10 μL of medium from each sample. The absorbance was read at a wavelength of 650 nm

in 96-well plates using a Multiskan Spectrum (Thermo Scientific) microplate reader [25]. The

results were expressed as calcium concentration (mM) in function of the time of biofilm forma-

tion, and as cumulative calcium (μg) released from enamel (the sum of total quantity of calcium

released from enamel to the medium until the harvest moments of abundance and starvation).

The concentration of organic compounds (mM) was also performed at the two harvest moments.

High Performance Liquid Chromatography (Alliance 2795, Waters, USA) was used with a refrac-

tive index detector and an Aminex HP-87H column (Bio-Rad Laboratories, USA) [33]. Standard

curves of lactic, acetic and formic acids, and ethanol were used to calculate the concentration

of each organic compound in samples. Triplicates of two independent experiments were used

(n = 6).

Enamel demineralization assessment

After biofilm removal, the slabs were used to evaluate the enamel demineralization. The SH

was performed again by three indentations 100 μm apart from the initial SH measurement and
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the percentage of surface hardness loss (% SHL) was calculated as follows: (baseline SH—SH

after assay × 100)/baseline SH [14].

Confocal laser scanning microscopy (CLSM)

To visualize the architecture of biofilms formed under exposure to glucose + fructose or sucrose

at abundance and starvation moments, additional enamel slabs were used. The extracellular

matrix was labeled during the biofilm development with 1 μM Alexa Fluor 647—dextran conju-

gate (molecular weight, 10,000; Excitation 650 nm/ Emission 668 nm; Thermo Scientific, USA)

added to the culture medium. At the end of development, the biofilms were fixed in 4% parafor-

maldehyde (PBS, pH 7.2) for 30 min. S. mutans cells were stained with 2.5 μM SYTO-9 green

fluorescent nucleic acid (Excitation 485 nm/ Emission 498 nm; Thermo Scientific, USA) under

protection from light for 20 min [34, 35]. The stained biofilms were mounted on coverslips con-

taining 10 μL of Mowiol, a glycerol based mounting medium for fluorescent staining [36]. The

stained biofilms were examined using a DMI 6000 CS inverted microscope coupled to TCS SP5

computer-operated confocal laser scanning system (Leica Microsystems CMS, Mannheim, Ger-

many) using 40x oil immersion objective (numeric aperture 1.25). An Ar-ion laser tuned at 488

nm and a He-Ne laser at 633 nm were used for excitation. Two enamel slabs were used for each

condition evaluated. Five randomly sites were selected in the central area of the biofilms, avoid-

ing the edges. Series of images were obtained from the enamel surface to the biofilm top at 1 μm

distance each in the Z axis [37]. The images of the biofilms were used for three-dimensional

reconstruction with the ImageJ software [38], and to calculate the biofilm biomass (μm3/μm2)

using the Comstat 2 software [39, 40]. Although the images of bacteria and EPS were obtained

from different channels in CLSM, the biomass was calculated considering cells and EPS as a sin-

gle channel. Therefore, biomass represents bacterial cells and EPS together.

Statistical analysis

Data were analyzed by two-way ANOVA, considering the factors carbohydrate (glucose + fruc-

tose or sucrose) and biofilm harvest moment (abundance or starvation), followed by Tukey’s

HSD Test. Student’s t-test was used to evaluate differences between the carbohydrates for pH

and calcium concentration values at each time point (8, 24, 32, 48, 56, 72, 80 and 96 h). The

statistical analysis was done using SAS software (SAS Institute Inc., version 8.01, Cary, N.C.,

USA) employing a significance level fixed at 5%. Assumptions of homogeneity of variances

and normal distribution of errors were checked for all tested response variables using the Kol-

mogorov-Smirnov test. Data that violated the assumptions were transformed to square-root

(biofilm dry weight, %SHL and cumulative calcium released from enamel) and to log10 (CFU

counts, CFU counts/mg biofilm dry weight, polysaccharides, organic compounds).

Results

For the amounts of polysaccharides, the statistical analyses showed a significant difference for the

factor carbohydrate (p< 0.05), however no differences were observed for the harvest moment

(S-EPS, p = 0.93; I-EPS, p = 0.11; and IPS = 0.96) and for the interaction effect between the two

factors (carbohydrate and harvest moment) (S-EPS, p = 0.82; I-EPS, p = 0.08; and IPS = 0.70).

The same statistical pattern was observed for the variables: biofilm dry weight, CFU per biofilm

dry weight, %SHL and biomass. The amounts of intracellular (IPS), and soluble (S-EPS) and

insoluble (I-EPS) extracellular polysaccharides in biofilms formed under daily exposure to

sucrose were higher, when compared to those found in biofilms exposed to glucose + fructose

(Fig 1) (p< 0.05).
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The biofilm dry weight was much higher when the biofilm was formed under sucrose expo-

sure than those formed with glucose + fructose (p< 0.05), and no significant change was

observed after overnight starvation. On the other hand, there was no effect for the carbohy-

drate (p = 0.20) and neither for the harvest moment (p = 0.07) on the CFU counts (Table 1).

When CFU counts were normalized by the biofilm dry weight, a greater number of viable cells

per volume of biofilm was observed in the group exposed to glucose and fructose (p< 0.05)

(Table 1). CLSM images showed extracellular polysaccharides (red) only synthesized in bio-

films exposed to sucrose (Fig 2). In glucose + fructose group, only S. mutans cells (green) were

visualized. It was also possible to observe that biofilm under sucrose treatment presented

higher biomass (Table 1 and Fig 2), which is in accordance to EPS analysis (Fig 1) and biofilm

dry weight (Table 1).

Fig 1. Amounts (μg) per enamel slab of extracellular polysaccharides, soluble (S-EPS) and insoluble

(I-EPS), and intracellular polysaccharides (IPS) according to the treatments (glucose + fructose or

sucrose) and the harvest moment (abundance or starvation). Distinct capital letters indicate significant

statistically differences among groups for each polysaccharide type (p < 0.05) (Mean ± SD; n = 12).

https://doi.org/10.1371/journal.pone.0181168.g001

Table 1. Mean ± SD (n = 12) of biofilm dry weight (mg), CFU counts (Log10), CFU counts /mg biofilm dry weight (CFU Log10/mg), %SHL, cumulative

calcium released from enamel (μg) and biomass (μm3/μm2) according to the treatments (glucose + fructose or sucrose) and the harvest moment

(abundance or starvation).

Analysis

Carbohydrate Biofilm harvest

moment

Biofilm dry

weight (mg)¤
CFU counts

(CFU Log10) *
(CFU Log10)/mg

biofilm dry weight *
%SHL¤ Cumulative Ca++

released from enamel

(µg) ¤

Biomass $

(μm3/μm2)

Glucose

+ Fructose

abundance 0.4 ± 0.2 A 7.4 ± 1.1 A 12.3 ± 1.1 A 14.5 ± 7.1 A 24.7 ± 14.8 A 22.3 ± 5.9 A

starvation 0.6 ± 0.4 A 7.8 ± 1.2 A 15.4 ± 7.5 A 11.9 ± 4.6 A 17.1 ± 10.7 A 23.7 ± 7.9 A

Sucrose abundance 1.6 ± 0.3 B 7.6 ± 1.0 A 4.8 ± .3.0 B 41.4 ± 6.5 B 85.1 ± 29.9 B 36.2 ± 8.4 B

starvation 1.6 ± 0.3 B 8.3 ± 0.5 A 5.4 ± 1.2 B 34.7 ± 7.7 B 33.2 ± 24.4 A 36.1 ± 7.1 B

Distinct capital letters indicate significant statistically differences (p < 0.05) among groups for each variable (values within columns).

* The values were transformed to log10.

¤ The values were transformed to square-root.
$ Biomass refers to bacterial cells and EPS

https://doi.org/10.1371/journal.pone.0181168.t001
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The pH values of the culture medium were lower in the group exposed to sucrose. This differ-

ence was observed from 56 h, which corresponds to 2nd day of biofilm development under cario-

genic challenge, when it started to be mature [36] (Fig 3). Lower amount of acids was produced

by S. mutans when biofilm was formed under glucose + fructose exposure, when compared to

sucrose (p< 0.05). Among the acids, lactic acid was the most produced in both treatment groups,

showing significant effect for the factors carbohydrate and harvest moment (p< 0.05). The values

of lactic acid produced by biofilms exposed to sucrose were 2 times higher than those observed in

the group treated with the combined monosaccharides (p< 0.05). Acetic acid was produced in

small amounts and only the carbohydrate factor had a significant effect (p< 0.05). Ethanol was

also produced as a final compound of the carbohydrate metabolism being significant only to the

harvest moment factor (p< 0.05) (Fig 4). In starvation condition, acid production was lower for

both glucose + fructose and sucrose groups, but it occurred even after removal of all carbohydrate

sources (p< 0.05).

The calcium concentration in culture medium during biofilm development was higher in

sucrose group (p< 0.05). This higher quantity released from enamel was seen from 32 h of

biofilm development and became more evident with the biofilm maturation (Fig 5), mainly at

Fig 2. Tridimensional reconstruction of CLSM images of S. mutans biofilms formed under exposure to glucose + fructose (A and B) or sucrose (C

and D) 8x/daily. Images A and C show biofilms visualized at abundance moment, while images B and D at starvation moment. In green, S. mutans cells stained

with SYTO 9. In red, extracellular polysaccharides labeled with Alexa Fluor 647—dextran conjugate. Oil immersion objective of 40x (numeric aperture 1.25).

https://doi.org/10.1371/journal.pone.0181168.g002
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the end of the 4th day (abundance condition) (p< 0.05). This behavior was consistent with

the pH (Fig 3) and %SHL (Table 1) data. Higher %SHL was observed in enamel slabs in the

sucrose group, which differed statistically from the group treated with the combined monosac-

charides (p<0.05). Under sucrose exposure, the enamel slabs lost around 30 to 40% of

Fig 3. pH values of the culture medium according to the biofilm treatments (glucose + fructose or

sucrose) and biofilm development time (h) as an indicator of biofilm acidogenicity. Time points at 80 h

and 96 h refer to the harvest moment at abundance and starvation of carbohydrates, respectively. Asterisks

indicate statistically significant difference between treatments at the time point evaluated (p < 0.05).

(Means ± SD; n = 12).

https://doi.org/10.1371/journal.pone.0181168.g003

Fig 4. Concentration of organic compounds (mM) in the culture medium according to the biofilm

treatments (glucose + fructose or sucrose) and the harvest moment (abundance or starvation).

Distinct capital letters indicate significant statistically differences among groups for each type organic

compound (p < 0.05). (Mean ± SD; n = 6).

https://doi.org/10.1371/journal.pone.0181168.g004
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hardness, while those exposed to glucose + fructose lost around 15%. No significant effect was

observed in relation to harvest moment to the %SHL data (Table 1).

The cumulative calcium released from enamel showed higher amount of calcium released

when the biofilm was exposed to sucrose, however only in the harvest moment of abundance

(p< 0.05) (Table 1). The cumulative calcium values from the group exposed to sucrose at star-

vation period were similar to the groups exposed to glucose + fructose, regardless of the har-

vest moment (abundance or starvation).

Discussion

In this study, we used a validated S. mutans biofilm model for caries study [5] to evaluate the

degradation of extracellular polysaccharides (EPS) as an energy source during overnight star-

vation of carbohydrate and the consequent effect on enamel demineralization. Once this

approach has not been performed using biofilms, this study seems to be a pioneer in the field.

The experimental design using different carbohydrates allowed us to develop biofilms with

EPS (sucrose) or without them (glucose + fructose), however, for both groups, bacterial cells

could also storage intracellular polysaccharides (IPS), which could also be used as an energy

source. Our findings showed no reduction in the amounts of EPS and IPS (Fig 1), and no

increase in enamel demineralization after the overnight period of starvation (Table 1). The

non-reduction of EPS and IPS quantities may indicate that they were not metabolized during

the starvation period, or that they were metabolized in a small amount, just to maintain the

bacterial basal metabolism, causing no additional damage to the enamel.

The lack of increase in enamel demineralization was confirmed not only by the percentage

of surface hardness loss (%SHL) (Table 1), but also by the calcium concentration in the culture

medium (Fig 5). Thus, the known cariogenicity of sucrose [8, 10, 41, 42] was evidenced in our

study. The sucrose group presented %SHL almost 3 times higher than the glucose + fructose

group (p< 0.05) (Table 1). However, no difference in the %SHL was observed between the

abundance and starvation moments for each group. In order to verify the enamel

Fig 5. Calcium concentration (mM) in the culture medium according to the biofilm treatments

(glucose + fructose or sucrose) and biofilm development time (h). Time points at 80 h and 96 h refer to

the harvest moment at abundance and starvation of carbohydrates, respectively. Asterisks indicate

statistically significant difference between treatments at the time point evaluated (p < 0.05). (Mean ± SD,

n = 12).

https://doi.org/10.1371/journal.pone.0181168.g005
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demineralization using a more sensitive analysis, we also evaluated the calcium concentration

in the culture medium. Although higher amounts of calcium in the medium were observed for

the sucrose group (Fig 5; p< 0.05) after the abundance period (80 h), no increase (p> 0.05) in

the calcium concentration was detected when both groups were compared after the overnight

starvation period (96 h). This finding could strengthen and confirm that there was no increase

in enamel demineralization during the starvation period by the EPS or IPS use.

Calcium kinetics (Fig 5) inversely follows the pH’s dynamic (Fig 3) occurred into biofilm

[25]. Therefore, higher acid production caused higher enamel demineralization, releasing

more calcium from the enamel to the culture medium. Lower pH values were observed for the

group exposed to sucrose after the abundance period from the second day of cariogenic chal-

lenge (56 and 80 h) (Fig 3). Even using solutions with equimolar concentration of carbohy-

drates, the pH values for the sucrose group were lower than the glucose + fructose group. The

lower pH is explained by the EPS in the matrix that are only synthesized in the presence of

sucrose [8]. It is known that EPS change the biofilm structure by the increase of the matrix

porosity, which favors acid diffusion and pH drops nearby the enamel surface [4, 11]. In addi-

tion, micro-compartments formed within the biofilm matrix could generate heterogeneous

environments keeping the pH low for longer periods [13, 43], increasing the cariogenic chal-

lenge. In our study, during the cariogenic challenges, the acids produced by bacteria in the bio-

film caused the enamel demineralization [44]. Calcium was continuously released from

enamel to the biofilm, and from the biofilm to the medium. The same occurred for the acids

produced. Therefore, the calcium and acid concentration in the medium reflect the cariogenic

process occurred on the enamel surface in contact with the biofilm.

The higher acid production for the biofilm exposed to sucrose (Fig 4) cannot be explained

either by the counts of S. mutans cells, because they were similar for the sucrose and glucose

+ fructose groups at both harvest moment (Table 1). The difference in the sucrose group was

the presence of EPS in the matrix. In addition to modifying the biofilm architecture [43], the

synthesized EPS also increased the biofilm volume (Table 1). The biofilm formed under sucrose

exposure was 3 times heavier than the glucose + fructose group (p< 0.05) (Table 1), which

could represent from 10 to 40% of the biofilm dry weight [10, 12]. Tridimensional images of the

biofilms (Fig 2) and biomass data (Table 1) also showed that difference (p< 0.05). Taking into

account CFU counts normalized by biofilm dry weight and biomass data, it was possible to

infer that more cells per volume were present in the biofilm exposed to glucose + fructose,

because in this condition there were no EPS. On the other hand, the biofilm exposed to sucrose

showed less cells per volume, suggesting EPS could determine the bacterial density in biofilms

[17]. The cells dispersed into EPS matrix would be easily exposed to sugars, due to higher poros-

ity of the biofilm [11], which could allow more acid production and IPS storage, when com-

pared to the packed cells in the biofilm without EPS (glucose + fructose). This could also

explain the great amount of IPS formed in the group exposed to sucrose (Table 1). Thus, the

increase in biofilm cariogenicity can be better understood by changes occurred in matrix com-

position and structure, and not simply by the counts of bacterial cells in biofilms [43].

The presence of EPS in dental biofilm matrix has been reported as an important virulence

factor for caries development [8, 13, 14, 41, 43]. A study reported increased expression of a

gene related to EPS degradation (dexA) in S. mutans mature biofilms [42], and another showed

the non-utilization of IPS when sucrose was present [6], both suggesting that EPS from biofilm

matrix could be used as an extracellular energy source [15, 17]. It was already demonstrated in

planktonic cultures that other oral microorganisms could produce EPS and degrade them

[20]. However, the EPS produced by Streptococcus mutans seem to be far less soluble and more

resistant to dextranase action [20]. EPS degradation was not observed in our study using a S.

mutans biofilm model. One of the reasons why there was no difference for EPS quantities
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between the two harvest moments might be due to the starvation period. Maybe a longer fast-

ing period could trigger the metabolization of polysaccharides by the cells to obtain energy.

Another reason could be that bacterial cells just break and use small ending fragments of the

EPS, which had not been detected by the phenol sulfuric method. Therefore, future studies

using a longer period of starvation or a methodology using radiolabelled sucrose in the fructo-

syl (3H) and glucosyl (14C) moieties, instead of the phenol sulfuric method, might be useful to

clarify EPS metabolization.

Considering that the used S. mutans biofilm model simulates the "feast” and “famine" epi-

sodes that occur into the mouth, the EPS metabolism during starvation may not be sufficient

to increase the biofilm cariogenicity, but the high carbohydrate exposure frequency occurred

during the day. In summary, the findings suggest that EPS metabolization by S. mutans during

night starvation do not contribute to increase the enamel demineralization occurred during

the daily abundance of sugar.
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8. Rölla G. Why is sucrose so cariogenic? The role of glucosyltransferases and polysaccharides. Scand J

Dent Res. 1989; 97:115–119. PMID: 2523085

9. Bowen WH. Do we need to be concerned about dental caries in the coming millennium? Crit Rev Oral

Biol Med 2002; 13:126–31. PMID: 12097355

10. Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. The role of sucrose in cariogenic dental biofilm for-

mation-new insight. J Dent Res 2006; 85:878–887. https://doi.org/10.1177/154405910608501002

PMID: 16998125

11. Dibdin GH, Shellis RP. Physical and biochemical studies of Streptococcus mutans sediments suggest

new factors linking the cariogenicity of plaque with its extracellular polysaccharide content. J Dent Res

1988; 67:890–895. https://doi.org/10.1177/00220345880670060101 PMID: 3170900

12. Bowen WH, Koo H. Biology of Streptococcus mutans—derived glucosyltransferases: role in extracellu-

lar matrix formation of cariogenic biofilms. Caries Res. 2011; 45:69–86.

13. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic bio-

film. J Dent Res 2013; 92:1065–1073. https://doi.org/10.1177/0022034513504218 PMID: 24045647

14. Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP. Biochemical composition and

cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res

2000; 34:491–497. PMID: 11093024

15. Wood JM. The amount, distribution and metabolism of soluble polysaccharides in human dental plaque.

Arch Oral Biol. 1967; 12:849–858. PMID: 5231456

16. Whiting GC, Sutcliffe IC, Russell RR. Metabolism of polysaccharides by the Streptococcus mutans

dexB gene product. J Gen Microbiol 1993; 139:2019–2026. https://doi.org/10.1099/00221287-139-9-

2019 PMID: 7504068

17. Colby SM, Russell RR. Sugar metabolism by mutans streptococci. Soc Appl Bacteriol Symp Ser 1997;

26:80–88.

18. Dawes C. Circadian rhythms in human salivary flow rate and composition. The J Physiol 1972; 220(3):

529–545 PMID: 5016036

19. Walker GJ, Hare MD, Morrey-Jones JG. Activity of fructanase in batch cultures of oral streptococci. Car-

bohydr Res 1983; 113:101–112. PMID: 6839310

20. Schachtele CF, Loken AE, Schmitt MK. Use of specifically labeled sucrose for comparison of extracellu-

lar glucan and fructan metabolism by oral streptococci. Infect Immun 1972; 5:263–266. PMID: 4564402

21. Kopec LK, Vacca-Smith AM, Bowen WH. Structural aspects of glucans formed in solution and on the

surface of hydroxyapatite. Glycobiology 1997; 7:929–934. PMID: 9363435

22. Aires CP, Tenuta LMA, Carbonero ER, Sassaki GL, Iacomini M, Cury JA. Structural characterization of

exopolysaccharides from biofilm of a cariogenic streptococci. Carbohydr Polym 2011; 84:1215–1220.

23. Huis in ‘t Veld JH, Backer Dirks O. Intracellular polysaccharide metabolism in Streptococcus mutans.

Caries Res 1978; 12:243–249 PMID: 279404

24. Zhu M, Takenaka S, Sato M, Hoshino E. Influence of starvation and biofilm formation on acid resistance

of Streptococcus mutans. Oral Microbiol Immunol 2001; 16:24–27. PMID: 11169135

25. Fernández CE, Tenuta LM, Cury JA. Validation of a cariogenic biofilm model to evaluate the effect of

fluoride on enamel and root dentine demineralization. PLoS one. 2016 Jan 5; 11(1):e0146478. https://

doi.org/10.1371/journal.pone.0146478 PMID: 26731743

Exopolysaccharides degradation and enamel demineralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0181168 July 17, 2017 12 / 13

https://doi.org/10.1159/000077753
http://www.ncbi.nlm.nih.gov/pubmed/15153687
https://doi.org/10.1099/mic.0.26082-0
http://www.ncbi.nlm.nih.gov/pubmed/12624191
https://doi.org/10.1177/08959374970110012001
https://doi.org/10.1177/08959374970110012001
http://www.ncbi.nlm.nih.gov/pubmed/9524445
http://www.ncbi.nlm.nih.gov/pubmed/9488248
http://www.ncbi.nlm.nih.gov/pubmed/20658029
https://doi.org/10.1128/JB.00425-09
http://www.ncbi.nlm.nih.gov/pubmed/19801415
https://doi.org/10.1177/0022034515606045
http://www.ncbi.nlm.nih.gov/pubmed/26377570
http://www.ncbi.nlm.nih.gov/pubmed/2523085
http://www.ncbi.nlm.nih.gov/pubmed/12097355
https://doi.org/10.1177/154405910608501002
http://www.ncbi.nlm.nih.gov/pubmed/16998125
https://doi.org/10.1177/00220345880670060101
http://www.ncbi.nlm.nih.gov/pubmed/3170900
https://doi.org/10.1177/0022034513504218
http://www.ncbi.nlm.nih.gov/pubmed/24045647
http://www.ncbi.nlm.nih.gov/pubmed/11093024
http://www.ncbi.nlm.nih.gov/pubmed/5231456
https://doi.org/10.1099/00221287-139-9-2019
https://doi.org/10.1099/00221287-139-9-2019
http://www.ncbi.nlm.nih.gov/pubmed/7504068
http://www.ncbi.nlm.nih.gov/pubmed/5016036
http://www.ncbi.nlm.nih.gov/pubmed/6839310
http://www.ncbi.nlm.nih.gov/pubmed/4564402
http://www.ncbi.nlm.nih.gov/pubmed/9363435
http://www.ncbi.nlm.nih.gov/pubmed/279404
http://www.ncbi.nlm.nih.gov/pubmed/11169135
https://doi.org/10.1371/journal.pone.0146478
https://doi.org/10.1371/journal.pone.0146478
http://www.ncbi.nlm.nih.gov/pubmed/26731743
https://doi.org/10.1371/journal.pone.0181168


26. Fernández CE, Giacaman RA, Tenuta LM, Cury JA. Effect of the probiotic Lactobacillus rhamnosus

LB21 on the cariogenicity of Streptococcus mutans UA159 in a dual-species biofilm model. Caries Res

2015; 49:583–590. https://doi.org/10.1159/000439315 PMID: 26451810

27. AjdićD, McShan WM, McLaughlin RE, SavićG, Chang J, Carson MB, et al. Genome sequence of

Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 2002; 99:14434–

9. https://doi.org/10.1073/pnas.172501299 PMID: 12397186

28. Tenuta LM, Ricomini Filho AP, Del Bel Cury AA, Cury JA. Effect of sucrose on the selection of mutans

streptococci and lactobacilli in dental biofilm formed in situ. Caries Res 2006; 40:546–549. https://doi.

org/10.1159/000095656 PMID: 17063028

29. Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, et al. Inhibition of Streptococcus

mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob

Chemother 2003; 52:782–789. https://doi.org/10.1093/jac/dkg449 PMID: 14563892

30. Aires CP, Del Bel Cury AA, Tenuta LM, Klein MI, Koo H, Duarte S, et al. Effect of starch and sucrose on

dental biofilm formation and on root dentine demineralization. Caries Res. 2008; 42(5):380–6. https://

doi.org/10.1159/000154783 PMID: 18781066

31. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar

and related substances. Anal Chem 1956; 28:350–356.

32. Vogel GL, Chow LC, Brown WE. A microanalytical procedure for the determination of calcium, phos-

phate and fluoride in enamel biopsy samples. Caries Res 1983; 17:23–31. PMID: 6571804

33. Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderón LA, et al. Saccha-

romyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale

bioethanol production. Microb Cell Fact 2015;30; 14:13. https://doi.org/10.1186/s12934-015-0196-6

PMID: 25633848

34. Koo H, Xiao J, Klein MI, Jeon JG. Exopolysaccharides produced by Streptococcus mutans glucosyl-

transferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol.

2010 Jun; 192(12):3024–32. https://doi.org/10.1128/JB.01649-09 PMID: 20233920

35. Xiao J, Koo H. Structural organization and dynamics of exopolysaccharide matrix and microcolonies for-

mation by Streptococcus mutans in biofilms. J Appl Microbiol 2010; 108:2103–2113. https://doi.org/10.

1111/j.1365-2672.2009.04616.x PMID: 19941630

36. Guggenheim M, Shapiro S, Gmür R, Guggenheim B. Spatial arrangements and associative behavior of

species in an in vitro oral biofilm model. Appl Environ Microbiol. 2001 Mar; 67(3):1343–50. https://doi.

org/10.1128/AEM.67.3.1343-1350.2001 PMID: 11229930

37. Lucena-Ferreira SC, Ricomini-Filho AP, Silva WJ, Cury JA, Cury AA. Influence of daily immersion in

denture cleanser on multispecies biofilm. Clin Oral Investig. 2014; 18(9):2179–2185. https://doi.org/10.

1007/s00784-014-1210-9 PMID: 24590620

38. Hartig SM. Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol 2013; 14:1–14.

39. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, et al. Quantification of biofilm

structures by the novel computer program COMSTAT. Microbiology. 2000 Oct; 146 (Pt 10):2395–407.

40. Vorregaard M. Comstat2—a modern 3D image analysis environment for biofilms, in Informatics and

Mathematical Modelling. Technical University of Denmark: Kongens Lyngby, Denmark, 2008.

41. Cury JA, Francisco SB, Del Bel Cury A, Tabchoury CPM. In situ study of sucrose exposure, mutans

streptococci in dental plaque and dental caries. Braz Dent J 2001 12:101–104. PMID: 11445910

42. Klein MI, Duarte S, Xiao J, Mitra S, Foster TH, Koo H. Structural and molecular basis of the role of

starch and sucrose in Streptococcus mutans biofilm development. Appl Environ Microbiol. 2009;

75:837–841. https://doi.org/10.1128/AEM.01299-08 PMID: 19028906

43. Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR 3rd, et al. The exopolysaccharide matrix

modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS

Pathog 2012; 8:e1002623. https://doi.org/10.1371/journal.ppat.1002623 PMID: 22496649

44. Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc. 2003 Dec;

69(11):722–4. PMID: 14653937

Exopolysaccharides degradation and enamel demineralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0181168 July 17, 2017 13 / 13

https://doi.org/10.1159/000439315
http://www.ncbi.nlm.nih.gov/pubmed/26451810
https://doi.org/10.1073/pnas.172501299
http://www.ncbi.nlm.nih.gov/pubmed/12397186
https://doi.org/10.1159/000095656
https://doi.org/10.1159/000095656
http://www.ncbi.nlm.nih.gov/pubmed/17063028
https://doi.org/10.1093/jac/dkg449
http://www.ncbi.nlm.nih.gov/pubmed/14563892
https://doi.org/10.1159/000154783
https://doi.org/10.1159/000154783
http://www.ncbi.nlm.nih.gov/pubmed/18781066
http://www.ncbi.nlm.nih.gov/pubmed/6571804
https://doi.org/10.1186/s12934-015-0196-6
http://www.ncbi.nlm.nih.gov/pubmed/25633848
https://doi.org/10.1128/JB.01649-09
http://www.ncbi.nlm.nih.gov/pubmed/20233920
https://doi.org/10.1111/j.1365-2672.2009.04616.x
https://doi.org/10.1111/j.1365-2672.2009.04616.x
http://www.ncbi.nlm.nih.gov/pubmed/19941630
https://doi.org/10.1128/AEM.67.3.1343-1350.2001
https://doi.org/10.1128/AEM.67.3.1343-1350.2001
http://www.ncbi.nlm.nih.gov/pubmed/11229930
https://doi.org/10.1007/s00784-014-1210-9
https://doi.org/10.1007/s00784-014-1210-9
http://www.ncbi.nlm.nih.gov/pubmed/24590620
http://www.ncbi.nlm.nih.gov/pubmed/11445910
https://doi.org/10.1128/AEM.01299-08
http://www.ncbi.nlm.nih.gov/pubmed/19028906
https://doi.org/10.1371/journal.ppat.1002623
http://www.ncbi.nlm.nih.gov/pubmed/22496649
http://www.ncbi.nlm.nih.gov/pubmed/14653937
https://doi.org/10.1371/journal.pone.0181168

