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Abstract

A subset of women who are exposed to infection during pregnancy have an increased risk of 

giving birth to a child who will later be diagnosed with a neurodevelopmental or neuropsychiatric 

disorder. Although epidemiology studies have primarily focused on the association between 

maternal infection and an increased risk of offspring schizophrenia (SZ), mounting evidence 

indicates that maternal infection may also increase the risk of autism spectrum disorder (ASD). A 

number of factors, including genetic susceptibility, the intensity and timing of the infection, and 

exposure to additional aversive postnatal events, may influence the extent to which maternal 

infection alters fetal brain development and which disease phenotype (ASD; SZ; other 

neurodevelopmental disorders) is expressed. Preclinical animal models provide a test bed to 

systematically evaluate the effects of maternal infection on fetal brain development, determine the 

relevance to human CNS disorders, and to evaluate novel preventative and therapeutic strategies. 

Maternal immune activation (MIA) models in mice, rats, and nonhuman primates suggest that the 

maternal immune response is the critical link between exposure to infection during pregnancy and 

subsequent changes in brain and behavioral development of offspring. However, differences in the 

type, severity, and timing of prenatal immune challenge paired with inconsistencies in behavioral 

phenotyping approaches have hindered the translation of preclinical results to human studies. Here 

we highlight the promises and limitations of the MIA model as a preclinical tool to study prenatal 

risk factors for ASD, and suggest specific changes to improve reproducibility and maximize 

translational potential.
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Prenatal Immune Challenge in Humans

Autism spectrum disorder (ASD) is a heterogeneous collection of neurodevelopmental 

disorders characterized by early onset deficits in social behavior and communication, paired 

with repetitive behaviors and restricted interests (1). Although underlying genetic and 

environmental cause(s) remain unknown for most ASD cases, recent evidence suggests that 

the prenatal immune environment may be a particularly promising area of ASD etiology 

research (2-4). This interest stems in part from our growing appreciation that immune 

signaling molecules play a key role in all stages of fetal brain development (5, 6). 

Experiences that alter the maternal-fetal immune environment, such as exposure to infection 

during pregnancy, may disrupt the finely orchestrated events of neural development and 

increase the risk of offspring central nervous system (CNS) disorders (7, 8). Although ASD 

is among the CNS disorders associated with prenatal exposure to infection, the field is not 

without controversy (9-13). Initial evidence was based primarily on case studies of ASD 

following prenatal exposure to infectious agents, such as rubella or cytolomegalovirus 

(14-19). More recently, epidemiological studies have reported increased risk of ASD 

associated with maternal infection during pregnancy, though results vary depending on 

gestational timing of the exposure, type of infectious agent and intensity of the maternal 

immune response. For example, an exploratory population-based sample of all children born 

in Denmark from 1980 through 2005 found no overall association between maternal 

infection diagnosis and ASD over the course of the entire pregnancy, but did report a nearly 

threefold increased risk for ASD following hospitalization for viral infection in the first 

trimester as well as an increased risk following hospitalization for bacterial infections in the 

second trimester (20). Self-report data obtained from a subset of the Denmark population 

study also failed to detect an association between common infections during pregnancy and 

an increased risk of ASD (21), though influenza exposure was specifically associated with a 

nearly twofold risk of ASD and febrile episodes greater than one week were associated with 

a nearly threefold increase. A study from Kaiser Permanente Northern California found that 

fever during pregnancy, particularly fever experienced without taking anti-fever medication, 

was associated with an increased risk of ASD, though overall experiences of maternal 

influenza exposure were not associated with an increased risk in this study (22). A 

subsequent study found that maternal infections diagnosed in a hospital setting, presumably 

associated with more severe infections, were associated with an increased risk of ASD, 

while infections diagnosed in outpatient settings were not associated ASD (23). 

Quantification of cytokines, chemokines and other inflammatory markers obtained from 

archived maternal sera (24, 25) and amniotic fluid (26, 27) lends further support to the link 

between maternal infection and increased ASD risk, though studies have yielded mixed 

results (28, 29). Although there is a clear need for additional epidemiological studies, the 

current data suggest that, at least for a subset of women, exposure to infection during 

pregnancy may increase the risk of ASD or other CNS disorders (30, 31).
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Modeling Prenatal Immune Challenge in Animals

The diversity of infectious agents associated with an increased risk of CNS disorders 

suggests that the maternal immune response may be the common link between prenatal 

immune challenge and altered fetal brain development. This maternal immune activation 
(MIA) hypothesis has been tested in animal models by activating the immune system during 

pregnancy using a variety of immunogens and then observing changes in offspring brain and 

behavioral development that parallel features of human CNS disorders (for reviews, (32-35). 

Here we focus specifically on MIA models utilizing the immune activating agent, 

polyinosinic-polycytidylic acid (PolyIC), a double stranded RNA molecule that stimulates 

an immune response through activation of tolllike receptor TLR-3 (36). In the past decade, a 

number of laboratories have adopted the PolyIC model as means of activating the maternal 

immune response in a controlled and temporally restricted manner (37). However, many 

questions remain regarding the link between prenatal immune challenge and disease-specific 

outcomes associated with ASD, SZ or other CNS disorders (34). In some MIA models, the 

brain and behavior phenotypes of the offspring have been interpreted as being highly 

relevant to SZ, while others have focused on the relevance of the model to ASD. The 

emerging consensus among leaders in the field is that prenatal infection may be relevant to a 

number of CNS diseases and restricting interpretation to a specific human disorder may limit 

the utility and relevance of the MIA model (38, 39). Rather, prenatal immune challenge may 

serve as a “disease primer” into an altered trajectory of fetal brain development that, in 

combination with other genetic and environmental factors, may ultimately result in the 

emergence of ASD, SZ, or other CNS disorders (40). Here we evaluate the validity of the 

MIA model within the context of ASD, but readily acknowledge that the prenatal immune 

challenge model is likely relevant to a number of neurodevelopmental and neuropsychiatric 

diseases.

Assessing Validity of the MIA Model

Developing valid animal models to study complex human brain diseases, such as ASD, 

poses a major challenge to preclinical research efforts (41-43). Historically, the validity of 

animal models has been determined by: (i) Construct validity - etiological relevance of the 

model to human disease(s), (ii) Face validity -resemblance of outcome measures of the 

model to features of the human disease and (iii) Predictive validity -response of the model to 

therapeutic agents used to treat the human disease (44). A valid animal model of ASD is 

expected to stem from an etiologically relevant experimental paradigm and produce an 

animal that exhibits species-specific changes in behavior related to core features of ASD, 

such as early onset deficits in social behavior and communication, repetitive behaviors or 

restricted interests (45). Here we apply standard assessments of validity to evaluate the MIA 

model as a preclinical tool to study ASD, but first acknowledge changes underway as a 

result of the NIH led Research Domain Criteria (RDoC) initiative. RDoC provides a novel 

framework for psychiatric disorder research that utilizes a dimensional classification based 

on genes, neural circuits and behavioral constructs rather than traditional DSM criteria (46). 

Although there is tremendous potential for RDoC to improve translation of basic and clinical 

neurodevelopmental disorder research (47), we are still in the earliest stages of applying 

RDoC approaches (48, 49). Rather than evaluating the validity of the MIA model from an 
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RDoC perspective, we will instead highlight features of RDoC that we can integrate into our 

interpretation of preclinical models.

Cross-species comparisons, for example, allow preclinical researchers to compare the effects 

of prenatal immune challenge on evolutionarily conserved behavioral and biological 

outcome measures (50, 51). The PolyIC MIA model has attracted investigators with 

expertise in mouse, rat and nonhuman primate models, which in turn, has allowed the field 

to capitalize on the unique advantages of each species. Mice have been a favored species in 

biomedical research for years, in part due to their relative low cost and unparalleled genetic 

manipulations. Mouse models have laid the foundation for understanding the effects of MIA 

on fetal brain development and will undoubtedly continue to be an important species in MIA 

research, especially in models that incorporate genetic susceptibility. There are, however, 

limitations in relying on a single species to study complex human brain disorders, such as 

ASD. Rat models offer many of the advantages of mouse models in terms of cost, short 

gestational period, and the potential for genetic modifications, but also have more complex 

brains and display an enriched repertoire of social behavior (52). Given that impairments in 

social cognition are features of both ASD and SZ (53), the field of MIA research may 

benefit from species that allow for a more sophisticated evaluation of reciprocal social 

interactions. Rhesus monkeys live in large social hierarchies and communicate with a variety 

of social signals, including vocalizations, facial expressions and body postures (54). Brain 

regions underlying these complex behaviors show similar patterns of activity in humans and 

nonhuman primates (55), but are less well developed in rodents (56). Although the 

nonhuman primate model may provide a bridge from rodent models to human disease (57), 

the increased costs and ethical considerations constrain the use of nonhuman primates in 

research. Below we apply cross-species comparisons to evaluate the validity of the PolyIC 

MIA model as a preclinical tool to study ASD etiology, highlighting the unique 

contributions of mice, rat and nonhuman primate models.

(i) Construct Validity

The MIA model demonstrates high construct validity as prenatal exposure to infection has 

been implicated in the etiology of ASD (30). It is, however, important to recognize that the 

MIA model evaluates a single environmental risk factor while ASD likely results from a 

complex interplay of genetic and environmental factors. Single risk factor models are thus 

expected to produce a circumscribed series of brain and behavioral alterations, rather than 

the full symptomatology of complex human CNS disorders, such ASD. This limitation is 

important to bear in mind when interpreting the face validity of the MIA (or any other single 

hit) models of human disease and is entirely consistent with newly defined RDoC 

approaches to preclinical research.

(ii) Face Validity

MIA offspring demonstrate impairments in behavior that have been interpreted as relevant to 

both SZ and ASD (34). This overlap in the MIA animal model is perhaps not surprising, 

given that ASD and SZ may have common prenatal origins as well as overlapping 

symptomatology (39). However, preclinical MIA model researchers with an interest in SZ 

will often utilize behavioral phenotyping tools that target the core features of SZ, while 

Careaga et al. Page 4

Biol Psychiatry. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



researchers interested in ASD may focus on core features of ASD. In the future, RDoc-

inspired MIA models may provide a solution to this problem by focusing on a specific 

clinical behaviors and the underlying neurobiology rather than attempting to model a 

disease-specific constellation of symptoms. There is also a need to evaluate the 

developmental trajectory of the model to understand how MIA impacts the developing brain, 

which neural circuits are altered, and how behavioral pathology emerges over time. 

However, the majority of PolyIC challenge models report behavioral deficits that emerge 

after puberty, a time line more consistent with the diagnostic window of early adulthood for 

SZ, rather than early childhood for ASD. Early developmental periods have not been well 

characterized in MIA models, especially in the realm of social development. Thus it is not 

clear if MIA models have failed to yield consistent ASD-relevant impairments, or if the 

ASD-relevant behaviors and early developmental time points have not been thoroughly 

evaluated. Here we will focus specifically on interpreting the face validity of PolyIC MIA 

models that have yielded offspring with phenotypes relevant to the core features of ASD: (i) 

Social interactions and communication, (ii) Repetitive behaviors/restricted interests (Table 

1). The reader is referred to a series of comprehensive MIA model reviews for a broader 

summary of associated ASD symptoms, such as anxiety, intellectual disability, sensory 

processing deficits, and seizures (32-35).

Given that impaired social functioning is the defining feature of ASD, we would expect a 

valid animal model to exhibit deficits in species-typical social interactions and 

communication. However, manifestation of social challenges varies greatly among 

individuals with ASD (58), and will require sophisticated behavioral phenotyping tools to 

evaluate in preclinical models (59). Unfortunately, characterization of social communication 

and interaction in most MIA models has been limited to simplistic, high-throughput 

approaches that may not capture the complexity of species-typical social development. For 

example, although several MIA models report changes in rodent pup isolation ultrasonic 

vocalizations (USVs) (60-63), the communicative function of these early distress calls is not 

clear. Later assessments of social behavior in MIA mouse offspring have relied heavily upon 

on simplistic, automated tools, such as the three-chamber social approach test to quantify 

sociability as indexed by a preference for a social versus a nonsocial stimulus (64). Several 

laboratories have now reported that mice exposed to PolyIC challenge during gestation fail 

to demonstrate species typical preferences for the social stimulus when evaluated in 

adolescence or adulthood (60, 62, 63, 65-72), though deficits may be strain specific (61). 

Only a small number of studies have evaluated the effects of MIA on complex, reciprocal 

social interactions. Given that MIA offspring show preliminary evidence of impaired social 

communication (62, 63) reciprocal interactions (73), these data suggest that additional 

studies utilizing a more comprehensive social development battery (45) are warranted.

The enhanced social repertoire and strain specific differences of the rat model (74) may 

provide a test bed to evaluate the effects of MIA on social development, though early social 

interactions have not been thoroughly characterized in the rat MIA model (75). Preliminary 

evidence also suggests that the nonhuman primate may provide a valuable tool to bridge the 

gap between rodent models and patient populations. For example, juvenile monkeys exposed 

to PolyIC at the end of the first or second trimester produce fewer “coo calls” (76), an 

affiliative vocalization that parallels features of human speech (77). The first-trimester MIA 
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exposed monkey offspring also deviated from species-typical social behavior by 

inappropriately approaching an unfamiliar animal, perhaps due to impairments in social 

processing later observed in a non-invasive eye tracking paradigm (78). The atypical social 

processing in the nonhuman primate MIA model parallels results from eye tracking studies 

in both ASD and SZ patient populations (79, 80), thus extending the results of rodent MIA 

models to more human-like behaviors amenable to RDoC interpretation.

In addition to deficits in social behavior, individuals with ASD also exhibit restricted, 

repetitive patterns of behavior, interests, or activities that can be modeled in animals (81). 

Mice prenatally exposed to PolyIC exhibit high levels of repetitive behaviors in marble 

burying and self-grooming tests (60-63, 68). Likewise, monkeys prenatally exposed to 

PolyIC at the end of the first or second trimester produce motor stereotypies and/or self-

directed behaviors more frequently than controls (76). Higher order behavioral inflexibility 

can also be assayed in animal models with tasks, such as reversal learning paradigms, that 

require animals to modify their behaviors to adapt to changed conditions. PolyIC immune 

challenge models have yielded inconsistent results in this domain. Mice prenatally exposed 

to PolyIC at mid-gestation exhibited a slight trend towards enhanced reversal learning (82, 

83), while mice with later exposure exhibited slower reversal learning (83). Mid to late 

gestational exposure to PolyIC in rats was found to induce deficits in reversal learning 

without affecting spatial acquisition (84), though other studies have reported inconsistent 

results (85, 86). Further investigation from a standardized cross-species battery of tests is 

needed to understand the impact of prenatal immune challenge on restricted interests and 

repetitive behaviors.

Animal models also provide an opportunity to improve translation between preclinical and 

clinical research efforts by identifying neural circuits associated with behavioral phenotypes 

through in vivo neuroimaging and postmortem histological studies (87). Although ASD 

lacks a unifying neuropathological signature, several hallmark features of the disorder have 

been documented in the MIA model (88, 89). For example, mice offspring born to dams 

injected with PolyIC demonstrate a spatially localized deficit in Purkinje cells (69, 90), 

which has been described in postmortem ASD tissue (91). Similarly, MIA exposed mice also 

demonstrate impaired expression parvalbumin and reelin (83, 92, 93), cellular markers 

expressed by distinct GABAergic interneuron populations that are also implicated in ASD 

neuropathology (94). Excessive microglial activation has been reported in a subset of 

postmortem ASD cases, though these findings may not be reflective of the majority of 

individuals with ASD (95-99). Microglia data generated from MIA models have also been 

inconsistent. Preliminary studies in rodents provided evidence of microglial activation 

following prenatal PolyIC challenge (73, 100, 101), though subsequent studies have failed to 

replicate these results (102-107). The MIA model does, however, produce long-lasting 

changes in brain cytokines (102, 108), consistent with reports of neuroinflammation in ASD. 

Preliminary evaluation of brain pathology in the nonhuman model indicates that prenatal 

immune challenge also impacts dendritic morphology in the dorsolateral prefrontal cortex 

(109). Although longitudinal neuroimaging data have yielded a wealth of information in 

rodent MIA models (35), these studies have not been carried out in the nonhuman primate 

model.
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(iii) Predictive Validity

Predictive validity addresses the specificity of the animal model to treatments that are 

effective in the human disease (i.e., treatments that ameliorate the human symptoms should 

also reverse pathological features in the animal model). Antipsychotic drug administration 

delivered to immature MIA exposed rodent offspring attenuates the emergence of brain and 

behavioral abnormalities associated with SZ (110-112), though similar studies in humans 

have yielded mixed results (113). The MIA model may prove to be a valuable test-bed for 

novel therapeutic interventions targeting the core symptoms of ASD. For example, MIA 

mouse offspring treated with antipurinergic therapy (APT) (69, 70) or the gut bacterium 

Bacteroides fragilis (62) exhibit improved behavioral outcomes. Future studies are needed to 

explore emerging clinical (114) and preclinical (68, 73, 115) treatments targeting the 

immune system as a promising area of research for ASD drug discovery efforts.

Promises and Limitations of the MIA Model

Differences in the type, severity, and timing of prenatal immune challenge likely contribute 

to the outcomes of the MIA model in ways we are just beginning to understand (116, 117). 

Given that preclinical research is under increasing pressure to improve reproducibility (118, 

119), the MIA model will undoubtedly benefit from renewed interest in refining 

experimental design standards (120). However, MIA models are also faced with a series of 

unique challenges that can be broken down into three major areas: (i) Lack of paradigm 
consensus – PolyIC induced MIA models utilize an array of approaches that vary in dose, 

route of administration, number of injections and gestational timing, resulting in 

dramatically different maternal cytokines profiles (83). Doses of PolyIC in rodent MIA 

models typically range from 1mg/kg to 20mg/kg, which can result in a range of maternal 

immune response properties and subsequent brain and behavioral outcomes in the offspring 

(82, 105, 121). Although higher doses of PolyIC are associated with more pronounced 

behavioral deficits (as well as litter loss) (82, 121, 122), recent evidence indicates that even 

low doses of PolyIC can induce long-lasting changes in brain development (123). . 

Methodological variability in the PolyIC model undoubtedly contributes to inconsistent 

results and has made it increasingly challenging to replicate outcomes, compare across 

studies and establish standard protocol guidelines. Perhaps more concerning, the lack of a 

consistent PolyIC challenge paradigm may have masked fundamental problems with the 

actual immune activating agents. ii) Inconsistencies in immune-activating reagents – Despite 

the fact that PolyIC is a synthetic analog used to activate the maternal immune response in a 

controlled and temporally restricted manner, variations in production standards can have 

significant effects on its ability to drive an immune response. PolyIC consists of a chain of 

double stranded inosine (I) and cytidine (C) which can vary in length/molecular weight and 

demonstrate different immune activating properties in ex vivo paradigms (124, 125 ). Recent 

in vivo evaluation of PolyIC in a rat model confirms that the same dosage of high-molecular-

weight PolyIC can elicit a cytokine response nearly a magnitude in degree higher when 

compared with low-molecular-weight PolyIC (126). Given that the molecular weight of 

PolyIC is not reported by most vendors, and that the composition and preparation 

instructions can differ substantially from vendor to vendor, as well as between batches from 

the same vendors, different lots of PolyIC likely have dramatically different immunological 

properties (127). The need to establish consistent immune stimulation agents is of 
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paramount importance for the field. (iii) Lack of maternal cytokine data – These first two 

issues can be addressed, in part, by quantifying and reporting cytokine data from the 

pregnant dams as an index of which cytokines are driving the deleterious effects on brain 

development. Unfortunately, relatively few PolyIC challenge models measure or report dam 

cytokine data (128-132) (Table 2), and those that do often focus exclusively on a single 

cytokine, such as IL-6. Although IL-6 plays a critical role in the MIA model (72), it is 

unlikely that any single cytokine on its own is responsible for the deficits observed in MIA 

(105). For example, a recent study highlights the role of IL-17, which is upregulated by IL-6, 

and may be a major contributor to pathology in the MIA model (60). This could be an 

important piece of the MIA puzzle and may help to explain some of the variance between 

studies, as IL-17 producing cells varies greatly between mouse colonies (133). Reinstating 

the use of dose response trials implemented by early PolyIC based MIA models (82, 121), 

reporting litter size/loss, and carrying out comprehensive evaluations of the maternal 

immune response will improve reproducibility efforts and provide insight into the 

mechanism by which prenatal immune challenge impacts fetal development.

In spite of these challenges, the MIA model provides an opportunity to systematically 

evaluate the effects of prenatal immune challenge in a controlled environment, exploring 

questions that cannot be examined in human studies. Recent MIA models have begun to 

identify the molecular mechanisms linking MIA, placental dysfunction and abnormal fetal 

development (123) and to compare the consequences of immune challenge at specific 

gestational time points (134). Adult mice exposed to PolyIC challenge at mid gestation (GD 

9) demonstrate deficits in the latent inhibition effects of associative learning, suppressed 

spatial exploration and impairments in sensorimotor gating, while PolyIC challenge later in 

gestation (GD 17) has a more restricted effect on behavior (83, 93, 130). Although MIA rat 

models comparing gestational timing have yielded mixed results (86, 116), the first 

nonhuman primate PolyIC model also indicates that early gestational exposure yields 

offspring with more pronounced behavioral impairments (76). It is, however, important to 

note that extrapolating gestational timing across species is not always straightforward, as the 

gestational period of rhesus monkeys (165 days) and humans (280 days) is much longer than 

that of mice/rats (18-23 days) (135). For example, first trimester prenatal immune challenge 

in primates coincides with massive neuron generation and extensive periods of cell 

migration and axon growth, which in the rodent occurs mostly in the third trimester and 

early postnatally (136, 137). Determining which neurodevelopmental processes are most 

vulnerable to prenatal immune challenge and how gestational timing may impact specific 

neural circuits and behaviors is one of the most important areas for future research in this 

field.

One of the most promising recent developments in the MIA model is the potential to 

combine prenatal immune challenge with other etiologically relevant risk factors. MIA 

combined with mutations in SZ (66, 138) or ASD (139, 140) relevant genes exacerbates 

aspects of the MIA mouse offspring behavioral phenotype. Likewise, exposure to aversive 

postnatal events, including maternal care by a surrogate mother exposed to an immune 

challenge during gestation (141-143) or exposure to juvenile stress (144), also exacerbate 

outcome measures of the mouse MIA model. Although the additive effects of postnatal 

stress has not been thoroughly explored in other species (145), the intriguing results from the 
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mouse studies suggest that the cumulative impacts of prenatal immune challenge and 

aversive postnatal stressors may provide insight into populations vulnerable to 

neurodevelopmental and neuropsychiatric disease. The challenge for the next generation of 

MIA models, is to integrate multiple etiologically relevant “hits” while improving the overall 

reproducibility of the model.

Future Directions

Given the heterogeneity of symptoms and complex etiology of ASD, it is not surprising that 

preclinical researchers have struggled to establish valid animal models (146). Although we 

would not expect a single-hit model to recapitulate the entire spectrum of brain and 

behavioral changes characteristic of ASD, here we provide evidence that prenatal immune 

challenge results in impairments to core features of ASD. We have also provided specific 

suggestions to improve the model, highlighting the need for (i) consistent MIA paradigms, 

(ii) standardization of immune activating agents, (iii) quantification and reporting of 

maternal cytokine data, (iv) expanding behavioral phenotyping tools to include a broad 

range of assessments throughout development and (iv) integrating longitudinal 

neuroimaging and postmortem pathology. With these changes, the MIA model may help us 

to understand which pregnancies are most vulnerable to prenatal immune challenge, which 

gestational time points are most sensitive, how to safely manage the maternal immune 

response during pregnancy to prevent deleterious effects on fetal brain development.
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