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Summary

Stem cells undergo extensive metabolic rewiring during reprogramming, proliferation and 

differentiation, and numerous studies have demonstrated a significant role of metabolism in 

controlling stem cell fates. Recent applications of metabolomics, the study of concentrations and 

fluxes of small molecules in cells, have advanced efforts to characterize and maturate stem cell 

fates, assess drug toxicity in stem cell tissue models, identify biomarkers, and study the effects of 

environment on metabolic pathways in stem cells and their progeny. Looking to the future, 

combining metabolomics with other -omics approaches will provide a deeper understanding of the 

complex regulatory mechanisms of stem cells.

Introduction

Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced 

pluripotent stem cells (iPSCs) have the ability to self-renew indefinitely and differentiate to 

any of the three germ layers [1,2]. In addition to potential applications in regenerative 

therapies, PSCs provide opportunities to model developmental progression and disease 

phenotypes, and can be used for drug screening and toxicity testing applications [3]. Major 

challenges to achieving the full potential of PSCs include identifying conditions that 

maintain their stemness and developing processes that effectively differentiate and mature 

PSCs to desired specialized cell types [3]. Another challenge is the development of 

phenotypic assays that employ stem cell-derived cells and tissues to expedite the process of 

drug screening and also provide mechanistic understanding of drug effects on human 

systems.

Metabolism and associated epigenetic remodeling have been found to play a crucial role in 

maintaining human PSC (hPSC) stemness and regulating differentiation [4–9••]. 

Metabolomics, the study of the complete set of small molecules or metabolites in a cell, is a 

reproducible, accurate and sensitive tool to analyze metabolic changes [10]. Metabolomics 

can also classify different cell types based on their molecular signatures [11], identify 
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metabolite biomarkers in biological samples [12], and assess the effects of different drugs on 

cells and tissues [13]. In this review, we will highlight advances in applications of 

metabolomics in the PSC field in the past five years and discuss the challenges and future 

directions in employing metabolomics to advance in vitro and in vivo applications of PSCs.

Metabolite regulation of stem cell fate

Metabolism plays a crucial role in PSC survival, proliferation, and differentiation. 

Alterations in energy requirements during PSC homeostasis and differentiation can lead to 

significant changes in metabolic pathway utilization [14]. Specifically, during and after 

reprogramming to iPSCs, glycolysis is the predominant pathway for ATP generation and this 

is essential for hPSC maintenance and self-renewal [14,15]. Aerobic glycolysis is also 

common in other rapidly proliferating cells including cancer cells [16]. A hypotheses for 

utilization of aerobic glycolosis for energy generation in cancer cells is that glycolytic 

intermediates are used for nucleotide and protein synthesis to support increased proliferation 

[16]. Whether this is true for PSCs is still an open question. Importantly, the switch of 

energy generation from glycolysis to oxidative phosphorylation is sufficient to induce 

differentiation in PSCs [8], suggesting a role of glycolysis in PSC self-renewal. Other 

metabolic pathways, including lipid metabolism, have also shown to be enriched in PSCs 

and have been modulated to enhance iPSC reprogramming efficiency [17•].

One of the mechanisms by which metabolites can directly control PSC fate is by altering the 

epigenetic landscape [4–7•,14,18–20••]. S-adenosyl methionine (SAM) donates methyl 

groups for histone and DNA methylation, and levels of intracellular SAM can regulate 

methylation potential. Several metabolites have been shown to affect SAM levels, including 

methionine and threonine. Deprivation of methionine [5••] or threonine (in mouse ESCs) 

[18,19] in culture medium led to a rapid decrease in SAM and triggered histone and DNA 

demethylation, thereby increasing hPSC differentiation. Extended culture in methionine-

deprived medium resulted in increased apoptosis [5••].

Histone methylation potential of naive human embryonic stem cells (hESCs) is reduced by 

increased activity of nicotinamide N-methyltransferase (NNMT) [6••]. NNMT catalyzes the 

conversion of SAM to 1-methylnicotinamide, which acts as a methyl sink [21] and is 

responsible for low levels of SAM. Histone/DNA demethylation is an equally important 

process in epigenetic regulation and it was shown that the intracellular α-ketoglutarate (α-

KG) to succinate ratio regulates ten-eleven translocation (Tet)-dependent DNA 

demethylation, which is crucial for maintaining pluripotency in mouse ESCs [20••]. Directly 

altering this ratio of α-KG/succinate by supplementation of α-KG supported self-renewal 

while supplementation of succinate promoted differentiation, providing further evidence for 

metabolic regulation of pluripotency in mouse ESCs [20••].

Moussaieff et al. [7•] provided evidence that glycolytic acetyl-CoA affects histone 

acetylation in hPSCs. The authors showed that glycolytic production of acetyl-CoA 

promoted histone acetylation in PSCs and that modulation of glycolysis was sufficient to 

regulate pluripotency [7•]. There are several other metabolites which affect histone 

acetylation [22] and abundances of these metabolites can, therefore, affect PSC fates. 
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Metabolites that affect histone post-translational modifications, such as acetylation, 

methylation, and phosphorylation, will also likely regulate global protein modifications that 

modulate stem cell pluripotency and differentiation. Onjiko et al. [9•] used single cell 

capillary electrophoresis-electrospray ionization mass spectrometry to show that different 

cell types in the 16-cell embryos of the South African clawed frog contained different 

quantities of metabolites. Additionally, changing metabolite concentrations altered cell 

migration during gastrulation, which in turn influenced the differentiation fates of these 

cells, indicating the importance of the balance of metabolites in determining the fates of 

stem cells during development [9•]. Overall, these studies highlight the important role 

metabolite concentrations play in regulation of protein post-translational modifications, 

epigenetics, and pluripotency and differentiation fates in stem cells.

Metabolism affects maturation of PSC-derived cells

In addition to regulation of stem cell fate, recent studies have also highlighted an important 

role of metabolism in maturation of hPSC-derived cell types [23••,24•]. For example, adult 

cardiomyocytes (CMs) primarily utilize fatty acid metabolism while immature hPSC-CMs 

rely on oxidative phosphorylation for energy generation [25]. A recent study by Kuppusamy 

et al. [23••] identified that the let-7 family of miRNAs (let-7i and let-7g) are upregulated in 

adult CMs. They showed that overexpression of let-7 miRNAs, whose targets involve genes 

in fatty acid metabolism and oxidative phosphorylation pathways, promoted maturation of 

hESC-CMs accompanied by a metabolic switch to fatty acid oxidation [23••].

Similarly, hPSC-derived hepatocytes exhibit different toxicity responses than adult human 

hepatocytes [26]. For example, hPSC-derived hepatocytes express lower levels of 

cytochrome P450 (CYP450), which is important for metabolic transformation of lipids and 

for xenobiotic transformation, than adult hepatocytes [27]. Avior et al. [24•] observed 

metabolic maturation driven by microbial-derived metabolites, including lithocholic acid and 

vitamin K2, in hPSC-derived hepatocytes. They observed greater than 8-fold induction of 

CYP450 expression and were able to predict the TC50 (concentration causing 50% cell 

death) for several toxins with very high accuracy. These studies highlight the significant role 

metabolites and metabolic pathways play in maturation of hPSC-derived cell types. A 

summary of the effects of metabolites and pathways on altering the PSC fate is shown in 

Figure 1.

Identifying metabolic signatures and biomarkers via metabolomics

Cell types can be characterized by distinct and unique metabolite profiles. Several studies 

have profiled metabolite changes in hPSCs and hPSC-derived cells [8,11,28–30]. Yanes et 

al. [8] showed distinct metabolic changes in hESCs on differentiation to ectoderm and 

mesoderm and identified metabolic pathways that regulate hPSC differentiation. For 

example, eicosanoid pathway inhibition maintained pluripotency while substrates for 

oxidative metabolism, including fatty acids and acyl carnitines, promoted neurogenesis and 

cardiogenesis [8]. Panopoulos et al. [11], Varum et al. [28] and Meissen et al. [30] identified 

metabolic differences between ESCs, iPSCs and their somatic derivatives. Despite the 

epigenetic and functional similarities of ESCs and iPSCs [31], Panopoulos et al. [11] 
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observed significant metabolic changes in unsaturated fatty acid metabolites, SAM, 

hypoxanthine and inosine. Based on gene expression analysis of glucose metabolism 

pathways, oxygen consumption rates and lactate production, Panopoulos et al. [11] and 

Varum et al. [28] concluded that hPSCs primarily relied on glycolysis to meet their energy 

demands. Meissen et al. [30] identified significant metabolic differences in mouse ESCs and 

iPSCs, mainly in amino acids and suggested differences in polyamine pathway activity due 

to significant differences in putrescine and 5-amthylthioadenosine (Table 1).

Dawud et al. [29] found cell type-specific metabolic signatures in hESCs and human 

embryonal carcinoma cells, including differences in cell membrane components, despite 

similarities in concentrations of glycolysis pathway components. Recent studies have also 

reported metabolic signatures of hPSC-derived cell types including hPSC-derived vascular 

endothelial and smooth muscle cells [32], and CMs [33•].

Identifying molecular signatures can be useful in applications including purification of 

specific cell types based on their metabolic pathways [33•], assessing the efficiency of 

generating a target cell type based on the activity of specific pathways [17•] or comparing 

hPSC-derived cells with their primary counterparts [34]. Tohyama et al. [33•] developed an 

approach for purification of mouse and human PSC-derived CMs based on the significant 

differences in the glucose and lactate metabolism between CMs and other cell types. Only 

CMs were able to metabolize lactate in glucose-depleted culture medium and authors were 

able to achieve up to 99% CM purity. Pei et al. [17•] used lipid droplet abundance as a 

marker for reprogramming and determined that Rab32 improved iPSC reprogramming 

efficiency by enhancing lipid biosynthesis.

Metabolomics in iPSC-based disease modeling

Recent studies have employed disease-specific iPSC models to study the metabolic changes 

the disease state imparts on specific cell populations [35–37]. For example, Paulsen et al. 

[35] demonstrated that neural progenitor cells (NPCs) differentiated from iPSCs 

reprogrammed from schizophrenia (SZP) patients generated more reactive oxygen species 

(ROS) and consumed more oxygen compared to NPCs derived from control iPSC lines. 

Importantly, this difference was only evident in NPC-SZP and not the patient fibroblasts or 

undifferentiated iPSCs. Interestingly, valproate treatment was able to restore the ROS levels 

similar to control, however extramitochondrial oxygen consumption was significantly 

increased due to valproate treatment in both NPC-control and NPC-SZP.

Imazumi et al. [36] and Cooper et al. [37] generated iPSCs from Parkinson’s disease (PD) 

patients harboring mutations in PARK2 [36] or PINK1 and LRRK2 [37] and observed 

several metabolic phenotypes, including increased ROS-mediated stress which led to 

reduced glutathione levels exclusively in iPSC-derived neurons (and not iPSCs or iPSC-

derived fibroblasts) as compared to control iPSCderived neurons [36,37]. The PD iPSC-

neurons also exhibited aberrations in mitochondrial morphology and impaired mitochondrial 

homeostasis [36,37], which was rescued by coenzyme Q10, rapamycin, or the LRRK2 

kinase inhibitor GW5074 [37], further highlighting the value of metabolomics in assessing 
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phenotypes in iPSC-based disease models and identifying potential therapeutic targets 

(Figure 2).

Applications of metabolomics in identifying the effects of teratogens on 

PSCs

Several studies have used metabolomics to understand the effects of different drugs on stem 

cell metabolism [13,38–41]. West et al. [13] and Kleinstreuer et al. [38] detected teratogens 

and also identified biomarkers of developmental toxicity by quantifying metabolic changes 

in the hESC secretome in response to drug dosing. Palmer et al. [41] quantified the 

secretome of hESC-derived embryoid bodies, neural progenitors, and neurons in response to 

different doses of ethanol (EtOH) exposure to identify metabolic changes and biochemical 

pathways which play a role in alcohol-induced developmental neurotoxicity. They observed 

statistically significant changes due to EtOH exposure in all the three cell types, although 

none of the responses were common to all cell types. Based on these results, the authors 

suggested 5’-methylthioadenosine (MTA) and thyroxine as potential biomarkers for alcohol 

toxicity during early stages of development (Table 1).

West et al. [39] used GC-MS based metabolomics to assess the effects of several steroid 

hormones on the metabolism of hESC-derived germ-like cells and developed models to 

distinguish the effects of different hormones on metabolism. Combining transcriptomic and 

metabolomic analysis, Stechow et al. [40] identified cisplatin-regulated pathways in human 

PSCs, including nucleotide metabolism, the urea cycle, and arginine and proline 

metabolism. Several anti-oxidant associated metabolites and p53-regulated enzymes also 

showed significant enrichment due to genotoxic stress induced by cisplatin. These studies 

highlight the sensitivity of metabolism to drugs and hormones and the potential of hPSCs in 

drug toxicology screening (Figure 2).

Assessing the effect of environment on stem cell metabolism

In addition to studying the effects of drugs, metabolomics has also been used to understand 

the effect of medium components [42,43••], physiological and atmospheric oxygen 

concentrations [44,45•], 2D vs. 3D culture [46], and enzymatic passaging [47] on stem cell 

metabolism. Batch-to-batch variation in media can negatively impact the reproducibility of 

stem cell culture and differentiation. MacIntyre et al. [42] correlated metabolite 

concentrations in conditioned medium by human foreskin fibroblasts (HFFs) at different 

passages to their ability to maintain hESCs in culture (Table 1). HFF metabolism changed 

with extended culture, metabolite content of the conditioned media at different passages may 

account for differences in maintenance capability of hESCs by HFF-conditioned media [42].

Forristal et al. [45•] reported that hESCs cultured at 5% oxygen showed increased glucose 

consumption and lactate production as compared to hESCs cultured at atmospheric 

conditions (20% oxygen). A comprehensive analysis of metabolic fluxes was performed by 

Turner et al. [44] in hESCs cultured in atmospheric vs. hypoxic (2% oxygen) conditions. 

Although hESCs utilized glucose via aerobic and anaerobic glycolysis in both atmospheric 

and hypoxic conditions, they also utilized glutamine as the carbon source for oxidative 
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phosphorylation to maximize the ATP production in atmospheric conditions, with amino 

acids as the major substrates for tricarboxylic acid (TCA) cycle. A recent study by Zhang et 

al. [43••] also reported the ability of hPSCs to utilize the TCA cycle in addition to glycolysis 

for energy generation depending on the availability of lipids in the media (Table 1).

Azarin et al. [46] studied the impact of 2D vs. 3D culture of hESCs on their cell cycle and 

metabolism and observed negligible changes in lactate-glucose ratios due to 3D culture, 

although they did report that 100 μm diameter hESC colonies contained higher lactate-

glucose ratios than larger 3D colonies; the smaller colonies also exhibited less spontaneous 

differentiation than larger colonies [48], perhaps indicating a relationship between lactate-

glucose ratio and hPSC self-renewal. Similarly, different methods of enzymatic passaging of 

hPSCs resulted in reduction of lipogenesis and glucose utilization in the central carbon 

metabolism as compared to non-enzymatic dissociation [47] (Table 1). Together, these 

studies demonstrate that identifying hPSC metabolic responses to culture conditions can be 

used to improve culture efficiency and robustness.

Conclusions and Future Perspectives

Recent studies have proven that metabolic changes and metabolite abundances can regulate 

PSC fates by affecting the epigenetic landscape in stem cells [4,5,18]. Patient-derived iPSCs 

are increasingly being used as in vitro models [49] to identify these metabolic alterations 

and predict new therapeutic targets to reverse or rescue the metabolic dysfunction in 

diseases. Advances in genome editing technologies like CRISPR-Cas9 can also be used to 

introduce mutations to study the effects of genetic disease on metabolism [50]. Recent 

studies have shown that understanding unique metabolic requirements can be used to 

develop strategies for efficient purification of specific cell types [33•] and that metabolic 

pathways play critical role in regulating cell maturation [23••]. Combining metabolomics 

with metabolic flux analysis (MFA) has the potential to provide deeper insight into how 

differentiation affects metabolism in stem cells and should prove useful in developing 

strategies to enhance pluripotency or differentiation fates in stem cells by modulating 

metabolic pathways [20••,43••,47,51].

There are numerous successful demonstrations of the application of metabolomics for 

toxicological screening in PSCs and PSC-derived cells, especially in studying developmental 

disorders [13]. Metabolomics has also been used to understand and optimize the impact of 

culture conditions on stem cell maintenance and differentiation. Different aspects of stem 

cell biology can also be assessed using metabolomics, including profiling the secretome and 

investigating interactions between stem cells and other cell types or substrates, and probing 

effects of geometry, organization, and density of stem cells in 2D and 3D culture. Advances 

in spectroscopic techniques have improved the sensitivity and reproducibility of 

metabolomics data, yet several challenges remain [10]. Even though we are able to measure 

metabolites to picomolar sensitivity using mass spectrometry approaches, accurate 

identification of these metabolites is still a challenge [10]. Differences in experimental 

methods, cell status, profiling approaches, and data processing and analysis have to be 

considered when comparing metabolic signatures. In the stem cell field, where the media 

and culture conditions can vary from lab to lab and are continually evolving, comparing 
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results from different studies is particularly difficult. Detailed guidelines for sample 

preparation and analysis can overcome some of these challenges [52]. When combined with 

other -omics approaches, metabolomics promises to offer unprecedented insight into 

interactions between metabolic and signaling pathways that regulate stem cell fate.
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Highlights

• Metabolism regulates stem cell fate by altering epigenetic markers

• Metabolite signatures can be used to characterize differences between cell 

types

• Metabolomics can be used to identify biomarkers of developmental toxicity to 

drugs

• Metabolomics has also been used to optimize stem cell culture conditions
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Figure 1. Regulation of PSC fate and maturation by metabolites and metabolic pathways
Epigenetic regulation plays a significant role in maintaining the pluripotent state of PSCs. 

For example, histone methylation and acetylation is affected by specific metabolites. Stem 

cells also show increased abundance of unsaturated metabolites and inhibition of the 

eicosanoid pathway can assist in maintenance of pluripotency. During differentiation, 

metabolism shifts from glycolysis to oxidative phosphorylation or fatty acid oxidation 

accompanied by a reduction in unsaturated metabolites. Metabolic pathway regulation can 

drive maturation of hPSC-CMs and hPSC-derived hepatocytes. Abbrev. SAM: S-adenosyl 

methionine, NNMT: Nicotinamide N-Methyltransferase, 1-MN: 1-methylnicotinamide, 

CoA: coenzyme A, CM: cardiomyocyte
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Figure 2. Applications of metabolomics in drug discovery using PSCs
Patient-derived iPSCs can serve as in vitro models for drug screening and identifying the 

metabolic consequences of disease-related genetic mutations. PSCs can also serve as models 

to assess developmental toxicity of several drugs and quantify the teratomagenicity of 

compounds. Abbrev. iPSCs: induced pluripotent stem cells, SZP: schizophrenia, PD: 

Parkindon’s disease, PSCs: pluripotent stem cells, ROS: reactive oxygen species
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Table 1

Summary of application of metabolomics to analyze the effects of culture conditions, drugs, and teratogens on 

PSCs and PSC-derived cells.

Effect
studied

Metabolites/pathways affected
(Sample type)

PSC lines Analytical
technique

Ref.

ESC vs.
iPSC vs.
somatic
cells

Unsaturated fatty acids ↓; SAM ↑, inosine
↑, hypoxanthine ↑ in iPSCs vs. ESCs
(intracellular)

hESCs,
mESCs, iPSCs

LC-MS, GC-
MS

[8,11,28,30]

hESCs vs.
hECCs

Octadecenoic acid ↑, glycerol-3-
phosphate ↑, 4-hydroxyproline ↑,
glutamic acid ↓, mannitol ↓, malic acid ↓,
GABA ↓ in hESCs compared to hECCs
(intracellular)

H9 (hESC),
NTERA2cl.D1
(hECC)

GC-MS [29]

Teratogens
vs. non-
teratogens

Arginine to asymmetric dimethylarginine
(ADMA) between 0.9 and 1.1 for non-
teratogens (except for ascorbic acid and
caffeine), GABA and malate are
increased while succinate is reduced due
to teratogens
(supernatant)

H9 (hESC) LC-MS [13,38]

Ethanol Embryoid bodies: MTA ↓ at higher dose
and succinyladenosine ↑ at both low and
high dose, thyroxine ↑ at lower dose
Neural Progenitors: Kynurenine ↑ at
lower dose of EtOH
Neurons: Indoleacetaldehyde ↑ at lower
dose
(supernatant)

H1, H9
(hESCs)

LC-MS [41]

Steroid
hormones

Estrogen: Lactate ↑, aspartate ↓, lysine ↓,
phospholipids ↓, threonine ↓, valine ↓
Testosterone: Glycerol ↑, glycogen ↑,
valine ↓
Progesterone: Organic acids ↓,
phenylalanine ↓, proline ↓, tyrosine ↓
Common: Glucose ↑ and fatty acids ↓,
inositol ↓ in germ-like cells
(intracellular)

BG01 (hESC),
IMR90-
derived iPSC

GC-MS [39]

Cisplatin Oxidized and reduced glutathione ↑, urea
↑, proline ↑, putrescine ↑, spermine ↑,
SAM ↑, several nucleotides were also
altered
(intracellular)

HM1 (mESC) NMR, LC-
MS

[40]

Passage
difference
of
conditioned
media

Higher lactate, alanine, formate and lower
tryptophan in HFF conditioned media
which supported hESC maintenance
(supernatant)

H9 (hESC) NMR [42]

5% vs. 20%
oxygen

Increased glucose consumption and
lactate production at 5% oxygen
(supernatant)

Hues7, Shef3
(hESCs)

Biochemistry
Analyzer

[45•]

2% oxygen
vs. 20%
oxygen

In addition to glycolysis, also utilized
glutamine and amino acids for energy
generation using oxidative
phosphorylation and citric acid cycle
(supernatant)

MEL-2
(hESC)

HPLC [44]

Lipid and
nutrient
availability

Metabolic rewiring takes place depending
on nutrient availability and in addition to
glycolysis, hPSCs also utilize oxidative
phosphorylation
(intracellular)

HUES9, H9
(hESCs),
iPS(IMR90)-
c4

GC-MS [43••]
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Effect
studied

Metabolites/pathways affected
(Sample type)

PSC lines Analytical
technique

Ref.

2D vs. 3D Higher lactate-glucose ratios in small
hESC colonies than large colonies
(supernatant)

H9 (hESC) Biochemistry
Analyzer

[46]

Passaging
methods

Enzymatic passaging led to reduction of
lipogenesis and glucose utilization
(intracellular)

H9 (hESC) GC-MS [47]
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