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Abstract

This article presents a new distance for measuring shape dissimilarity between objects. Recent 

publications introduced the use of eigenvalues of the Laplace operator as compact shape 

descriptors. Here, we revisit the eigenvalues to define a proper distance, called Weighted Spectral 

Distance (WESD), for quantifying shape dissimilarity. The definition of WESD is derived through 

analysing the heat-trace. This analysis provides the proposed distance an intuitive meaning and 

mathematically links it to the intrinsic geometry of objects. We analyse the resulting distance 

definition, present and prove its important theoretical properties. Some of these properties include: 

i) WESD is defined over the entire sequence of eigenvalues yet it is guaranteed to converge, ii) it is 

a pseudometric, iii) it is accurately approximated with a finite number of eigenvalues, and iv) it 

can be mapped to the [0, 1) interval. Lastly, experiments conducted on synthetic and real objects 

are presented. These experiments highlight the practical benefits of WESD for applications in 

vision and medical image analysis.

Index Terms

Shape Distance; Spectral Distance; Laplace Operator; Laplace Spectrum; Segmentations; Label 
Maps; Medical Images

I. Introduction

Quantifying shape differences between objects is an important task for various areas in 

computer science, medical imaging and engineering. In manufacturing, for example, one 

may wish to characterize the difference in shape of two fabricated tools. In radiology, a 

doctor frequently diagnoses a disease based on anatomical and pathological shape changes 
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over time. In computer vision, discriminative shape models are used for automated object 

recognition, [1], [2].

In order to define measurements of shape dissimilarity, scientists rely on descriptors of 

objects that capture information on their geometry [1]. These descriptors can be in the form 

of parametrized models (e.g. point clouds, surface patches, space curves, medial axis 

transforms) or in the form of geometric properties (e.g. volume, surface area to volume ratio, 

curvature maps). Once a descriptor is formulated the distance between two shapes can be 

defined as the difference between the associated descriptors. The exact definition of the 

distance however, is a critical issue. In order to define an intuitive and theoretically sound 

distance, one should ensure that it takes into account the nature of the descriptor. For 

instance, the descriptor might be an infinite sequence of positive values, in which case we 

should be careful not to define a distance that diverges for every non-identical pair of shapes.

Shape descriptors based on the eigensystems of Laplace and Laplace-Beltrami operators, 

called spectral signatures, have recently gained popularity in computational shape analysis 

[3], [4], [5], [6], [7], [8]. These descriptors leverage the fact that the eigenvalues and the 

eigenfunctions of Laplace operators contain information on the intrinsic geometry of objects 

[9], [10], [11]. A visual analogy useful for an intuitive understanding is to think of an object 

(e.g. in 2D) as the membrane of a drum. In this case the eigenvalues correspond to the 

fundamental frequencies of vibration of the membrane during percussion, and the 

eigenfunctions correspond to its fundamental patterns of vibration. Both the eigenvalues and 

the eigenfunctions depend on the shape of the drum head and thus can be used as shape 

descriptors for the object.

Despite recent progress by [3], [4], [5], [6], [7], [8], designing meaningful shape distances 

based on spectral signatures remains challenging. Difficulties arise from the nature of the 

eigensystems. The eigenfunctions of a shape mostly provide localized information on the 

geometry of small neighborhoods. Aggregating such local information into an overall shape 

dissimilarity measure is non-trivial. On the other hand, the eigenvalues provide information 

about the overall shape, so they are ideal for defining global distances. However, they form a 

diverging sequence making it difficult to define a theoretically sound metric. Here, we tackle 

this latter problem and propose a new shape distance based on the eigenvalues, which is 

technically sound, intuitive and practically useful.

In the remainder of this section, we first review in further detail the literature on spectral 

signatures and shape distances related to eigenfunctions and eigenvalues. Then, we provide a 

brief overview of our new shape distance.

A. Eigenfunctions

The eigenfunctions of an object constitute an infinite set of functions. Each function depends 

on the shape of the object and is different than the rest of the set. Figure 1 illustrates this for 

two example objects where a few eigenfunctions are shown. The values these functions 

attain at each point capture the local geometry around the point, i.e. of its neighborhood. 

Inspired from this geometric information, methods define local shape signatures [4], [5], [6], 

[12] for each point on an object by evaluating a subset of eigenfunctions at that specific 
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location. Global shape distances are then defined using such local signatures. Such distance 

definitions rely on correspondences. These correspondences should hold both in terms of 

points and the subset of eigenfunctions used in the signatures, a condition hard to satisfy in 

practice [12]. Explicitly searching for such correspondences leads to expensive algorithms 

[12], [13], [14], [15], [16]. On the other hand, computing distances between distributions of 

local signatures obtained by aggregating all the points, as in [5], [6], [17], might implicitly 

construct false correspondences. In summary, defining a global distance based on local 

signatures is not an easy task.

Instead of extracting local information from an eigenfunction, one can also think of 

capturing its global pattern by looking at regions where its values are all positive or all 

negative. Such regions are called nodal domains. Different eigenfunctions induce different 

patterns and, in turn, have different number of nodal domains, called nodal counts [11]. For 

a given object, the ordered sequence of nodal counts contain information on its overall 

geometry [18], [19]. Inspired by these observations, authors in [20] used this sequence as a 

global shape signature. They further defined the associated shape distance between two 

objects as the Euclidean norm of the vector difference between their nodal count sequences. 

However, it is not intuitively clear what the nodal counts represent. Furthermore, the entire 

sequence is diverging so that, in practice, one first chooses a finite subset and then computes 

the distance for that subset. These difficulties make it hard to define an intuitive and sound 

shape distance based on nodal counts.

B. Eigenvalues

Signatures based on eigenvalues, on the other hand, have a clearer geometric interpretation. 

The set of eigenvalues contains information on the overall geometry of the object. 

Specifically, the ordered sequence is analytically related to the intrinsic geometry by the 

heat-trace, [21], [22], [23], [24], [25]. Hence, more intuitive distances can be constructed 

using the eigenvalues. However, similar to the sequence of nodal counts, the eigenvalue 

sequence is also divergent. This makes the distance definition theoretically challenging. 

Inspired by the sequence’s link to the geometry, Reuter et al. in [3], used the smallest N 
eigenvalues as a shape signature, called shape-DNA. As the associated shape distance, the 

authors proposed the Euclidean norm of the vector difference between the shape-DNAs of 

objects. Although this is a very good first attempt, the divergent nature of eigenvalue 

sequence results in important theoretical limitations for this distance, as also pointed out in 

[14]. The main problems are i) defining a distance on the entire sequence does not yield a 

proper metric, ii) the differences between the higher components of two sequences dominate 

the final distance value, even though these components do not necessarily provide more 

information on the geometry, and iii) the distance value is sensitive to the choice of the 

signature size N. These theoretical problems also cause practical drawbacks as we 

demonstrate later.

This article proposes a new shape distance, called Weighted Spectral Distance (WESD), 

using the sequence of eigenvalues of the Laplace operator. We derive WESD from the 

functional relationship between the eigenvalues and the geometric invariants as given by the 

heat-trace. This derivation provides WESD a clear geometric intuition as a shape distance. It 
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also links WESD to the distance defined by Reuter et al. in [3] as well as to the local 

signature defined in [5]. The resulting formulation of WESD differs from other previously 

proposed scores based on eigenvalues, whether in shape analysis or other fields [26], both in 

its formulation and in the fact that it is defined over the entire sequence. As we will show 

later, the latter point alleviates the critical importance of the choice of the signature. We 

furthermore analyse and prove theoretical properties of WESD showing that it does not 

share some of the fundamental problems the shape distance proposed in [3] has. Specifically, 

we prove that WESD: i) converges despite the fact that it is defined over the entire 

eigenvalue sequence, ii) can be mapped to the [0, 1) interval, iii) is accurately approximated 

with a finite number of eigenvalues and the truncation error has an analytical upper bound 

and iv) is a pseudometric. These theoretical properties also yield important practical 

advantages such as being less sensitive to the signature size (truncation parameter) N, 

providing a principled way of choosing this parameter, providing more stable low-

dimensional shape embedding and simplicity in combining with other distances as WESD 

can be normalised. Applying to synthetic and real objects, we further demonstrate the 

benefits of WESD in comparison to the other eigenvalue-based distance defined in [3].

The remainder of this article is structured as follows. Section II presents a brief overview of 

the Laplace operator, the eigenvalue sequence and its role in shape analysis. In Section III 

we define WESD and derive its theoretical properties. Section IV presents an extensive set 

of experimental analysis on 2D objects extracted from synthetic binary maps, shape-based 

retrieval results for 3D objects using the SHREC dataset [27], low dimensional embeddings 

of real 3D data such as subcortical structures in brain scans and 4D analysis of binary maps 

extracted from cardiac images.

II. Spectrum of Laplace Operator

This section provides a brief background on the Laplace operator, its eigenvalue sequence, 

called spectrum, and its role in shape analysis. We first relate an object’s intrinsic geometry 

to the spectrum of the corresponding Laplace operator. We then provide some details on the 

previously proposed shape-DNA [3] and discuss the associated issues. For further details we 

refer the reader to [11], [24], [25] and [3].

We denote an object as a closed bounded domain Ω ⊂ ℝd with piecewise smooth 

boundaries. In the case of binary maps, Ω would correspond to the foreground representing 

the object. For a given Ω, the Laplace operator on this object is defined with respect to a 

twice differentiable real-valued function f as

where x = [x1, …, xd] is the spatial coordinate. The eigenvalues and the eigenfunctions of ΔΩ 
are defined as the solutions of the Helmholtz equation with Dirichlet type boundary 

conditions1, [11],
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where ∂Ω denotes the boundary of the object and λ ∈ ℝ is a scalar. There are infinitely 

many pairs  satisfying this equation and they form the set of eigenvalues and 

eigenfunctions respectively. The ordered set of eigenvalues is a positive diverging sequence 

such that 0 < λ1 ≤ λ2 ≤ ⋯≤ λn ≤ …. This infinite sequence is called the Dirichlet spectrum 

of ΔΩ, which we simply refer as the “spectrum”. In addition, each component of the 

spectrum is called a “mode”, e.g. λn is the called nth mode of the spectrum

The spectrum contains information on the intrinsic geometry of objects. Weyl in [9] showed 

the first spectrum-geometry link by proving that the asymptotic behavior of the eigenvalues 

is given as

where VΩ is the volume of Ω and Bd is the volume of the unit ball in ℝd. Later works, as 

[21], [22], [23], [24], extended this result by studying the properties of the Green’s function 

of the Laplace operator, and showed that a more accurate spectrum-geometry link is given 

by the heat-trace, which in ℝd is given as

(1)

The coefficients of the polynomial expansion, as/2, are the components carrying the 

geometric information. These coefficients are given as sums of volume and boundary 

integrals of some local invariants of the shape, [22], [23], [25]. For instance, as given in [22], 

the first three coefficients are:

1Other boundary conditions yield different eigensystems. Here we are only interested in the Dirichlet type. Please refer to [11] for the 
other types.
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where SΩ is the surface area (circumference in 2D) and κ is the mean (geodesic) curvature 

on the boundary of Ω. The functional relationship between the eigenvalue sequence and the 

coefficients as/2 can be seen in Equation (1). This connection relates the spectrum to the 

intrinsic geometry, which is the reason why Laplace spectrum is important for the 

computational study of shapes.

In addition to the spectrum-geometry link, the eigenvalues of the Laplace operator have two 

other properties which make them useful for shape analysis, [11]. These are: 1) the Laplace 

operator is invariant to isometric transformations and 2) the spectrum depends continuously 

on the deformations applied to the boundary of the object. The advantage of the first 

property is obvious since isometric transformations do not alter the shape. In addition to this, 

the second property states that there is a continuous link between the differences in 

eigenvalues and the difference in shape, which makes eigenvalues ideal for measuring shape 

differences.

Unfortunately, it has also been shown that there exists isospectral non-congruent objects, i.e. 

objects with different shape but the same spectrum [28]. Therefore, theoretically the Laplace 

spectrum does not uniquely identify shapes. However, as stated in [3], practically this does 

not cause a problem mostly because the constructed isospectral non-congruent objects in 2D 

and 3D are rather extreme examples with nonsmooth boundaries.

The spectral signature, shape-DNA, proposed in [3] is inspired from the properties given 

above. For a given shape Ω, its shape-DNA is the first N modes of the spectrum of the 

Laplace operator defined on Ω: [λ1, λ2, …, λN]. In addition to the properties the shape-

DNA inherits from the eigenvalues, the authors also proposed several normalisations to 

obtain almost scale invariance2. The normalisations used in the experiments in [3], [7], [27], 

[29] are given as  and λn → λn/λ1.

In [3], the authors also defined a shape distance based on shape-DNA. Either using the 

original or its scale invariant version, this distance is given as

(2)

where Ωξ denotes the object with the spectrum . Using , the authors 

were able to distinguish between distinct shapes [27], construct shape manifolds based on 

the pairwise distances and perform statistical comparisons [7], [29].

However, as also pointed out in [14], due to the diverging nature of the spectrum,  suffers 

from three essential drawbacks limiting its usability: i) differences at higher modes of the 

spectrum have higher impacts on the final distance value even though they are not 

2We use the term “almost” because scale invariance is an application dependent concept and the definition of scale difference between 
arbitrary objects is a mathematically vague notion. A further discussion of scale invariance is outside the scope of this article and we 
refer the reader to [3].
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necessarily more informative about the intrinsic geometry, ii) the distance is extremely 

sensitive to the signature size N, while the choice of this parameter is arbitrary, and iii) the 

distance cannot be defined over the entire spectrum because it does not yield a proper metric 

in that case. Therefore, defining a sound and intuitive distance based on the spectrum is still 

an open question for which we propose a solution in the next section.

III. Weighted Spectral Distance - WESD

This section presents the proposed spectral distance, WESD, the analysis of the heat-trace 

leading to its definition and its theoretical properties. The structure of presentation aims to 

separate the definition of the distance, which is essential for its practical implementation, 

from the details related to its derivation and theoretical properties. In this light, we first 

present the definitions and mention the associated properties with appropriate references to 

the following subsections, which contain further details.

We define the Weighted Spectral Distance - WESD - for two closed bounded domains with 

piecewise smooth boundaries, Ωλ, Ωξ ⊂ ℝd as

(3)

with p ∈ ℝ and p > d/2. Unlike the distance given in Equation (2), WESD is defined over 

the entire eigenvalue sequence and the factor p is not fixed to 2. In addition, the difference at 

each mode contributes to the overall distance proportional to |λn − ξn|/λnξn instead of |λn − 

ξn|. The additional λnξn factor (seeming like a simple addition to Equation 2) actually arises 

from analysing the relation between the nth mode of the spectrum and the heat-trace, which 

will be presented in Section III-A. This analysis also provides WESD with a geometric 

intuition. Furthermore, for p > d/2 the infinite sum in the definition is guaranteed to converge 

to a finite value for any pair of shapes. Hence, WESD exists. In addition to its existence, 

WESD also satisfies the triangular inequality making it a pseudometric. These points are 

proven in Section III-B. Moreover, the pseudometric WESD has a multi-scale aspect with 

respect to p. In Section III-C we show that adjusting p controls the sensitivity of WESD with 

respect shape differences at finer scales, i.e. with respect to geometric differences at local 

level such as thin protrusions or small bumps. Thus, for higher values of p the distance 

becomes less sensitive to finer scale differences.

In addition to WESD, we define the normalised score for shape dissimilarity nWESD as

(4)

which maps ρ(Ωλ, Ωξ) to the [0, 1) interval using the shape-dependent normalisation factor
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The factors C and K are the shape based coefficients defined in Corollary 1, and ζ(·) is the 

Riemann zeta function [30]. Being confined to [0, 1), nWESD allows us to i) compare 

dissimilarities of different pairs of shapes and ii) easily use the shape dissimilarity in 

combination with scores quantifying other type of differences between objects such as 

volume overlap in case of matching or Jacard’s index in case of accuracy assessment.

One important issue in defining a distance or a score using the entire eigenvalue sequence is 

computational limits. In practice we can only compute a finite number of eigenvalues and 

therefore, can only approximate such distances. Considering this, here we define the finite 

approximations of WESD and nWESD using the smallest N eigenvalues as

(5)

(6)

where N is a truncation parameter. Previous works, such as [3], [5], [17], [20], [26], also 

define distances based on finite number of modes. However, their view on the distance 

definition was first to construct finite shape signatures and then to define a distance on the 

signatures. Therefore, the signature size was a critical component of the definition itself. 

Furthermore, the effects of the choice of the signature size on the distance values have not 

been carefully analysed in these works. The view presented here defines the distance directly 

using the entire sequence without constructing a finite signature. This alleviates the 

importance of the signature size on the distance. The finite computation given in Equations 5 

and 6 are viewed as approximations to the distance and N as the truncation parameter. In this 

conceptually different setting, unlike previous works, we provide in Section III-D a careful 

analysis of the choice of N on the spectral distance. Specifically, we prove that limN→∞ |

ρ(Ωλ, Ωξ) − ρN(Ωλ, Ωξ)| = 0 and limN→∞ |ρ̄(Ωλ, Ωξ) − ρ̄N(Ωλ, Ωξ)| = 0. Furthermore, we 

provide a theoretical upper bound for these errors that shows how fast they decrease in the 

worst case leading to a principled strategy for choosing N.

Section III-E ends the section by focusing on the invariance of WESD and nWESD to global 

scale (relative size) differences between objects. Specifically, we discuss how an 

“approximate” scale invariance can be attained for WESD and nWESD by following the 

same strategy proposed in [3].
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A. Analysis of the Heat-Trace and Derivation of WESD

We derive WESD by analysing the mathematical link between the spectrum of an object and 

its geometry. This link is given by the heat-trace defined in Equation (1). Let us consider the 

heat-trace as a function of both t and the spectrum, Z(t, λ1, λ2, …). The main question we 

answer is how much the Z(t, ·) function changes when we change the nth mode of the 

spectrum from λn to ξn. Considering the polynomial expansion equivalent to Z(t, ·) given in 

Equation (1), one can see that the change in the value Z(t, ·) is directly related to the changes 

in the coefficients as/2 and so to changes in the integrals over the local invariants. By 

analysing the influence of the change in the nth mode on Z(t, ·), we actually analyse the 

influence of this change on the integrals over local geometric invariants. Following this line 

of thought, we quantify the influence of the change from λn to ξn on Z(t, ·) in terms of λn 

and ξn. This can be done by defining

which is simply the L1-norm of the difference between the functions that is linked to the 

difference between λn and ξn. Replacing Z(t, ·) with its definition leads to

(7)

Without loss of generality let us assume ξn ≥ λn. Then

We can then evaluate the integral in Equation (7) as

 captures the influence of the difference at the nth mode on Z(t, ·). Now, aggregating these 

influences across all modes leads to the definition of WESD

Surprisingly, the formulation of WESD, which results from the analysis presented above, 

also has very beneficial properties that makes it theoretically sound and useful in practical 

applications. These properties will be analysed in the following.

Before delving into this analysis though let us make two remarks. The first relates ρSD(·, ·) 

(Equation (2)) to the analysis of the heat-trace presented above.

Remark 1. Let us define
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One can see that . Evaluating this integral yields . By 
setting m = 2 ρSD(·, ·) can be derived as follows

This relationship not only relates WESD to ρSD(·, ·) but also provides the link between 
ρSD(·, ·) and the heat-trace. One notices that the functional difference definition used in this 
remark differs from the previous one used to derive WESD, see Equation 7. This is because 
ρSD cannot be derived from the L1-distance definition used previously but can be derived 
from the less ideal definition used in this remark. The existence of an alternative derivation 
of ρSD that would start from an appropriate functional difference is an open question.

The second remark notes the link between WESD and Global Point Signatures (GPS), a 

local shape descriptor, presented in [5].

Remark 2. GPS, as presented in [5], is defined for each point in an object Ωλ as the infinite 

series , where x ∈ Ωλ and fn(x) is the nth 

eigenfunction. GPS has a connection to WESD arising from the following element-wise 
integrals

where the equality arises from the fact that eigenfunctions form an orthonormal basis in Ωλ 
[11], i.e. ∫Ωλ fn(x)fm(x)dx = δ(n − m) with δ(·) being the Dirac’s delta. Considering this 
integral, WESD can also be regarded as a distance between GPS’ of two objects as

This link also provides an alternative view on the normalisation factor  used in GPS. In 
[5] author justifies this normalisation factor by noting that for an object the Green’s function 

can be written as an inner product in the GPS domain, see Section 4 in [5]. This is later used 
to argue the geometric meaning of GPS as authors point out the use of Green’s function in 
different shape processing tasks. Our link between GPS and WESD provides an alternative 
view on the normalisation factor as it connects this local signature to the heat-trace Z(t).
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B. Existence of the Pseudometric WESD

WESD is defined as the limit of an infinite series as given in Equation (3). For such a 

distance to be a proper one, actually a pseudometric in this case, the limit of the infinite 

series should exist for any two spectra. In the case of WESD, this is not evident because it is 

defined over the entire spectra and each spectrum is a divergent sequence. The first corollary 

presented below proves that when p > d/2 WESD indeed satisfies this condition, i.e. the 

infinite series converges. The corollary further provides an upper bound for this limit, which 

is used to construct nWESD. We would like to note that for the ease of presentation, the 

proofs for all the following corollaries and lemmas are given in Appendix B in the 

supplemental material.

Corollary 1. Let Ωλ ⊂ ℝd and Ωξ ⊂ ℝd be any two closed domains with piecewise smooth 

boundaries and  be their Laplace spectrum. Then the weighted spectral 
distance

converges for . Furthermore,

(8)

where ζ(·) is the Riemann zeta function and the coefficients C and K are given as

where V (·) denotes the volume (or area in 2D) of an object.

The Inequality (8) states that WESD has a shape-dependent upper bound. We thus can map 

the WESD to the [0, 1) interval through normalising it with this upper bound. The nWESD 

score, given in Equation 4 is constructed based on this strategy. Since its existence is 
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established next we prove that WESD is a pseudometric, i.e. satisfies the other criteria to be 

a pseudometric, such as the triangle inequality.

Corollary 2. ρ(Ωλ, Ωξ) is a pseudometric for d ≥ 2.

We note that WESD is not a metric because the spectrum is invariant to isometries, which is 

a desirable property for shape analysis. However, in addition to this, the spectrum is also 

invariant to isospectral non-congruent shapes. This is not desirable but does not cause 

problems in practice as discussed in Section II and also confirmed in our experiments.

C. On the multi-scale aspect of WESD

The previous section highlighted the role of p on the convergence properties of WESD and 

therefore on its existence. We now demonstrate that p also provides WESD a multi-scale 

characteristic. The sensitivity of WESD to the shape differences at finer scales depends on 

the value of p. Specifically, we show that the higher the value p the less sensitive WESD is 

to finer scale details and its sensitivity increases as p gets lower.

The multi-scale aspect of WESD arises from the relationship between the Laplace operators 

and heat diffusion processes [31]. We first present an intuitive summary of this relationship, 

which is about the multi-scale aspect of Z(t) and t in particular. For a more mathematical 

treatment we refer the reader to [6]. As stated in [6] and [14], t can be interpreted as the time 

variable in a heat diffusion process within an object. A useful visual analogy to consider 

here is the Laplacian smoothing of a surface where t would correspond to the amount of 

smoothing. Similar to the surface smoothing, as t increases, the local geometric details of an 

object, such as sharp ridges or steep valleys, lose further their influence on the Z(t) value. As 

a result Z(t) becomes somewhat insensitive to these local geometric details, i.e. shape details 

at finer scales. From an alternative view, the value of Z(t) loses its information content with 

regards to local geometric details. This effect intuitively summarizes the multi-scale 

characteristic of the heat-trace with respect to t.

Having explained the multi-scale aspect of Z(t), we now analyse how this aspect is reflected 

upon the eigenvalues. To do so let us define the influence ratio . This ratio 

captures the influence of the nth mode on the heat-trace. In other words, the higher the ratio, 

the higher the influence of λn on the value of Z(t) at that specific t. The following lemma 

compares the influence ratios of different modes and how this comparison depends on t.

Lemma 1. Let Ωλ ⊂ ℝd represent an object with piecewise smooth boundary and 

 be the corresponding influence ratio of mode l at t. Then for any two 
spectral indices m > n > 0

and particularly for two t values such that t1 > t2
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The first inequality of the lemma indicates that the lower modes in the spectrum have more 

influence on the value of Z(t) than the higher modes. The second inequality shows that the 

influence of the higher modes become more prominent as t decreases. Considering that for 

lower t values Z(t) is more informative with regards to shape details at finer scales, Lemma 1 

suggests that the higher modes are more important for finer scales than for coarser scales. 

We illustrate this observation on a synthetic example shown in Figure 2 with the pair (a) + 

(b) being an example showing coarser shape differences and the pair (a) + (c) showing finer 

differences. The plots given in Figure 2 (d) and (e) show the corresponding spectral 

differences observed at modes between 1 and 150. Between (a) and (b) the shape differences 

are at the coarse level. According to Lemma 1 these differences should show up at the very 

first modes. On the other hand, between (a) and (c) the differences are at a finer scale and 

furthermore the objects are very similar at the coarse level. Lemma 1 states that these 

differences therefore, should show up at higher modes and the differences at the lower 

modes should be low. Satisfying these expectations, the differences at the first few modes 

shown in plot (d) have relatively large values compared to the ones in plot (e). Furthermore, 

the amplitude of the differences at higher modes are generally larger in plot (e) than in 

plot(d), especially after 100.

In order now to connect these findings to WESD and p let us present the following corollary, 

which studies the influence of p on the components inside the infinite sum defining the 

distance.

Corollary 3. Let Ωλ and Ωξ be two objects with piecewise smooth boundaries. Then for any 
two scalars with with p > d/2, q > d/2, p ≥ q and for all n with |λn − ξn| > 0 there exists a M 
> n so that ∀m ≥ M

Thus, the relative contributions of the higher spectral modes on ρ(Ωλ, Ωξ) with respect to the 

contributions of the lower modes depend on the value of p. Specifically, the higher spectral 

modes become more influential as p decreases. Combining this finding with the result of 

Lemma 1, we follow that as p increases WESD gives less importance to differences at higher 

spectral modes and therefore becomes less sensitive to the shape differences at finer scales. 

This provides WESD with a multi-scale aspect with respect to p and also provides us the 

intuition for choosing a proper value for p.

D. Finite Approximations of WESD and nWESD

One of the important practical questions regarding spectral distances is the number of modes 

to be included in the calculation of the distance. The computation of eigenvalues and 
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eigenfunctions can be expensive and inaccurate especially for the higher modes. Therefore, 

spectral distances require the user to set a finite number of modes to be used. This parameter 

is often referred to as the signature size. Having defined the distance over the entire 

sequence, we refer to it as the truncation parameter. This actually provides a different 

perspective on the number of modes used to compute the distance. In previous works, such 

as [3], [5], [20], the value of this parameter, viewed as the signature size, is often set 

arbitrarily and its effect on the distances have not been carefully analysed. Here, viewing it 

as a truncation parameter, we study its influence. Specifically, we formulate the difference 

between using the entire spectra to only using a finite number of modes as an 

approximation/truncation error. So we analyse how this error changes with respect to the 

truncation parameter. We specifically show in the next corollary that the errors in 

approximating WESD and nWESD by the first N modes converges to zero as N increases. 

Furthermore, we provide an upper bound for both errors as a function of N.

Corollary 4. Let ρN(Ωλ, Ωξ) be the truncated approximation of ρ(Ωλ, Ωξ) based on the first 
N modes and ρ̄N(Ωλ, Ωξ) of ρ̄(Ωλ, Ωξ). Then ∀p > d/2

and

Furthermore, for a given N ≥ 3 the truncation errors |ρ−ρN| and |ρ̄ − ρ̄N| can be bounded by

(9)

(10)

The above corollary has important practical implications. First of all, the sensitivities of ρN 

and ρ̄N with respect to N decreases as N increases. For any application relying on the shape 

distances, such as constructing low dimensional embeddings, this reduced sensitivity is 

particularly important as it provides stability with respect to N both for the distance and for 

the application using the distance. We note that the opposite is true for , which is one of 

the main disadvantages of this distance.
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In addition, Corollary 4 can guide the choice for the number of modes N and the norm type 

p. Specifically, the error upper bounds given in Equations 9 and 10 provide the worst case 

errors for a given pair of shapes without the need to compute the eigenvalues. So for 

instance, once a number of modes are computed then based on the distance value obtained 

so far and the worst case error computed using the upper bounds, one can decide whether to 

compute more modes or not. Furthermore. these upper bounds are shape-specific as they 

depend on C and K. One can go one step further and define a shape-independent residual 
ratio for N ≥ 3 and p > d/2 as

(11)

that satisfies R(N, p) > ρ̄−ρ̄N, for which the proof is given in Proposition 1 in Appendix B. 

R(N, p) can be used to select the parameters N and p as it quantifies the quality of the 

approximation for a given pair of (N, p) in terms of the error upper bounds.

In Figure 3, we plot R(N, p) versus N for different settings of p and d = 2, 3. Besides the 

obvious point that the error upper bound decreases for increasing N we also notice that i) the 

behavior in 2D and 3D are similar and ii) the rate of decrease of the error upper bound is 

much faster for higher p. Considering the multi-scale aspect of WESD captured in p, this 

behavior is interesting. It demonstrates that the choice of p and N are correlated and suggests 

a trade-off between the rate of decrease of the truncation error and the sensitivity of WESD 

to shape differences at finer scales. In theory, the choice of these parameters depends on the 

application and the expected shape differences. If one expects coarse scale differences then 

choosing a large p and small N might be sufficient. However, if one is interested in finer 

scale differences then a small p value will be required, which in turn will require a large N 
value to have a decent approximation. The important aspect of R(N, p) is that it is universal, 

i.e. it does not depend on the objects. So it can be used in any type of application to choose 

the parameter pair N, p and to have a rough estimate of the computational costs for 

computing the distance WESD. We note once again, the specific values should be chosen 

based on the application and the shapes at hand.

E. Invariance to global scale differences

We end this section studying the impact of global scale differences on WESD and how 

invariance to such differences can be attained. We would like to note that the notion of 

global scale in this section refers to the relative size of an object, which is not to be confused 

with the notion of multi-scale discussed in Section III-C. The spectrum of an object depends 

on the object’s size, i.e. a global scale change alters all the eigenvalues by a constant 

multiplicative factor [11]. As a result, the global scale difference between two objects 

contributes to the spectral shape distance WESD. In some applications this contribution 

might not be desirable, for instance in an object recognition task, where objects in the same 

category have varying sizes. Therefore, it is a useful property of a shape distance to allow 

invariance to global scale differences.
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Reuter et al. [3] proposed different approximations for normalising the effects of scale 

differences on the spectrum. In particular, the authors use two different normalisations in 

their experiments in [7], [27], [29]. Both normalisations directly act on the eigenvalues. The 

first one normalises the eigenvalues with respect to the volume (area in 2D or surface area 

for Riemannian manifolds) and is given as . The second one normalises the 

eigenvalue with respect to the first eigenvalue in the sequence as λn → λn/λ1. Both of these 

strategies can be used when computing distances with WESD. Furthermore, since these 

strategies do not alter the mathematical characteristics of the entire spectrum the theoretical 

properties of WESD and nWESD hold either way. For our experiments we adopt the first 

strategy, volume normalisation, using the volume as defined in Euclidean geometry. When 

using the volume normalised eigenvalues, the only change that applies to the technical 

details presented so far is V̂ in Equation 8 becomes V̂ = 1. The rest applies directly without 

any modification.

We would also like to note that estimating the global scale difference between two arbitrary 

objects is not always a well-posed problem. It is especially hard when the objects are of 

different category, e.g. an octopus and a submarine. Furthermore, the scale normalisation is 

application dependent and it might not be desirable for all applications. In Section IV-C2 we 

present such an example where we analyse the temporal change of the left ventricle shape 

during a heart cycle. In this case, the volume change is essential for analysing the heart of 

the same patient so that scale invariance is not appropriate.

IV. Experiments

This section presents a variety of experiments on synthetic and real data highlighting the 

strengths and weaknesses of WESD and nWESD. We start by briefly explaining the details 

of the numerical implementation of WESD used in the experiments presented here. Then in 

Section IV-B, the proposed distances are applied to synthetically generated objects 

demonstrating that

i. Ordering objects with respect to their shapes using nWESD results in a visually 

coherent series (Section IV-B1),

ii. WESD is useful for constructing low dimensional embeddings, in particular it 

yields stable embeddings with respect to the signature size N, (Section IV-B2) 

and

iii. WESD is a suitable distance for shape retrieval, which is shown through 

experiments on the SHREC dataset [27] (Section IV-B3).

Lastly, in Section IV-C WESD is applied to real objects extracted from 3D medical images. 

We focus on two examples from a wide variety of applications WESD and nWESD can be 

beneficial to: population studies of brain structures and analysis of 4D cardiac images.

A. Implementation Details

There are two different aspects in the implementation of WESD: the numerical computation 

of the Laplace spectra and the parameter settings. First, any numerical method tailored 
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towards computing the eigenvalues of the Laplace operator can be used to compute WESD. 

Examples of such method are listed in [3], [32]. Our specific implementation represents 

objects simply as binary images with the foreground defining Ω. Using the Cartesian grid of 

the image, it discretizes ΔΩ through finite difference scheme (see also Chapter 2 of [32]). 

This step yields a sparse matrix of which we compute the eigenvalues via Arnoldi’s method 

presented in [33] and implemented in MATLAB®. We choose this specific implementation 

as 1) it is simple 2) it does not introduce any additional parameters and 3) when working 

with images it avoids any extra preprocessing steps, such as surface extraction or mesh 

construction.

With regards to the second implementation aspect, we set the parameters N and p 
empirically. Based on Section III-D, we set p = 1.5 or p = 2.0 in 2D and p = 2.0 in 3D. These 

values result in a relatively fast diminishing upper bound of the truncation error with respect 

to N (see Figure 3) while being sensitive to shape differences at finer scales. In both 2D and 

3D, we chose N = 200 for the number of modes as the truncation error seemed to vanish at 

that point. Furthermore, in addition to the theoretical considerations on the effects of N and 

p on WESD given in Section III-D, in Sections IV-B2 and IV-B3 we experimentally study 

the effects of these parameters on applications using WESD, specifically on constructing 

low dimensional embeddings and shape retrieval.

B. Synthetic Data

We conduct three experiments: first two are on 2D objects and the last one is on 3D objects. 

For all of the experiments, we use the scale invariant versions of the spectra obtained by 

normalising the eigenvalues with the object’s volume as described in Section III-E. As a 

result the distances WESD and nWESD become “almost” invariant to global scale 

differences.

1) Ordering of Shapes—For the first experiment we created two synthetic datasets. Each 

dataset consists of a reference object and random deformations of this reference. These 

deformed versions are generated by transforming the reference via random deformations of 

varying magnitude and amount of nonlinearity. As a result the datasets contain objects that 

are very similar to the reference ones and objects that are substantially different. Figures 4(a) 

and (b) show some examples from these datasets where the binary images to the very left 

show the reference objects. In the first dataset, the reference object is a disc. There are a total 

of 500 random deformations of this reference disc. The first 400 are generated via non-linear 

deformations while the last 100 are isometric transformations. In the second dataset, the 

reference is a slightly more complicated object (see Figure 4(b)) and in total there are 400 

random transformations of this reference. The first 300 are generated by non-linear 

deformations and the last 100 produced via isometric transformations. All objects are 

discretized as binary maps with a size of 200×200 pixels. The numerical computations are 

performed on these image grids as discussed earlier.

We computed the nWESD scores (ρ̄N with p = 1.5 and N = 200) between the reference and 

the deformed objects in each dataset. Based on these scores, we then ordered the deformed 

objects according to their similarity in shape to the reference. Figures 4 (c) and (d) show 
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examples of the resulting orderings. We notice that the orderings are visually meaningful, 

i.e. the further the deformed objects visually deviate from the references, the higher their 

nWESD score is. Furthermore, all the objects generated via isometric transformations 

yielded scores close to zero as a result of the invariance of the proposed scores to this type of 

transformation.

2) Low Dimensional Embeddings—In the second experiment we focus on creating low 

dimensional embeddings. We compare the embeddings constructed by WESD with the ones 

constructed using  (Equation (2)), the distance proposed in [3]. We do so based on the 

TOSCA dataset (toolbox for surface comparison and analysis), [34], [35]. This dataset 

contains binary segmentations of 5 human, 5 centaurs and 5 horses as shown in Figure 5(a). 

We compute the pairwise affinity matrices between objects via  and WESD (ρN with p = 

2.0). We then apply the ISOMAP algorithm [36] to these matrices, which maps the 15 

objects to a 2D plane based on the pairwise shape distances. We repeat this experiment for 

affinity matrices computed using different number of spectral modes, i.e. N = 50, 100, 200, 

to demonstrate the effect of the signature size (truncation parameter) on both distances.

The plots in Figures 5(b),(d) and (f) present the resulting 2D embeddings of the dataset 

using . The embeddings are substantially different for different N. This variation arises 

due to high sensitivity of  towards the signature size N. Moreover, the embeddings 

obtained using higher N are less satisfactory in terms of separating the three different object 

classes. This is actually expected since the spectral modes with higher indices dominate the 

value of  even though they are not informative with regards to the overall geometry and 

thus, negatively impact the outcome. The plots in Figures 5(c), (e) and (g) present the 

embeddings obtained using WESD. The embeddings obtained at different N are very similar. 

This shows that the construction of the low dimensional embedding is stable with respect to 

N when WESD is used. This is a direct consequence of the convergent behavior of WESD 

discussed in Sections III-B and III-D. As illustrated by this experiment, this property has 

very important practical implications.

The experimental analysis presented above requires computing a high number of eigenvalues 

in advance. Besides this option, through Corollary 4, WESD provides us the opportunity to 

perform the same analysis without the need to compute eigenvalues in advance. Once N 
modes are computed, one can use Equation 9 to analyse the stability of the embedding with 

respect to N and ultimately use this analysis to decide whether N is enough. In the following 

we perform such an analysis for this experiment.

At three different N = (100, 150, 200), we computed the error upper bounds for each 

element of the affinity matrix using Equation 9. Let us refer to these bounds as EN(Ω1, Ω2), 

so we can write ρ(·, ·) ∈ [ρN(·, ·), ρN(·, ·) + EN(·, ·)). For the analysis we assume ρ(·, ·) can 

lie anywhere in this range, i.e. uniformly distributed. By randomly sampling these ranges for 

each element, we generate 5000 different affinity matrices and build low-dimensional 

embeddings for each matrix. In Figure 6 we plot the embeddings obtained with ρN, with 

markers, along with the minimum and the maximum low-dimensional coordinates each 
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object attained during random sampling - indicated with a rectangle around each point. 

These rectangles show the maximum error on the low-dimensional embedding that we might 

be introducing by truncating the computation of WESD at N. Observing these graphs: i) one 

can provide a guarantee that adding more modes after N = 200 will not change the 

embedding much, ii) at N = 150 one could have stopped computing more modes because the 

embedding cannot change substantially and iii) at N = 100 the embedding theoretically can 

change so more modes might be necessary. An important point to note is that our 

experimental findings suggest that the theoretical upper bounds given in Corollary 4 are very 

conservative. In this experiment, for instance, the embedding does not change much between 

using N = 100 and N = 200, i.e. the maximum absolute coordinate change vector for all the 

objects is (0.24×10−4, 0.22×10−4).

3) Shape-based Retrieval of 3D Objects—In this last experiment with synthetic data, 

we focus on the application of shape-based object retrieval, i.e. given a test object 

identifying other “similar” objects within a dataset using shape information. Similarity in 

this context can be defined in various ways but the definition used here is semantic 

similarity, meaning that objects that are of the same semantic category (e.g. human bodies, 

aeroplanes, etc) are similar and objects of different categories are not. Shapes of similar 

objects have similar traits and properties. Shape distances used for retrieval purposes should 

be able to capture these traits yielding the lowest values between similar object pairs. Here, 

WESD’s value for shape-based retrieval is evaluated using the publicly available dataset 

SHREC presented in [27] 3.

SHREC dataset consists of 600 3D non-rigid objects from 30 different categories, i.e. 20 

objects per category. Objects from the same category differ with substantial non-linear 

deformations, which makes retrieval in this dataset challenging. To evaluate the retrieval 

accuracy of WESD, first each object was converted from its original watertight surface mesh 

discretization to a 3D binary image using the Iso2mesh software package4. Then pairwise 

shape distances across the entire dataset were computed using WESD and the 600 × 600 

affinity matrix was constructed, where each entry is a pairwise distance. This affinity matrix 

was then evaluated using the software provided with the dataset 3. The evaluation consists of 

a variety of retrieval accuracy scores such as Nearest Neighbor (NN), First-Tier (FT), 

Second-Tier (ST), E-Measure (E), Discounted Cumulative Gain (DCG) and Precision-Recall 

curve. The first two rows of the table in Figure 7(a) list these scores obtained using WESD 

for two different settings of the p and N values. Additionally, the next three rows of the same 

table show the results obtained using  (Equation 2, [3]), as listed in [27]5, using two 

different types of scale normalisation (norm1: normalising with respect to the first 

eigenvalue, normA: area normalisation, see Section III-E for further details). These accuracy 

scores show that WESD and  perform very similar in retrieval from the SHREC dataset. 

The plot given in Figure 7(b) shows the precision-recall curve of WESD (p = 3.15 and N = 

3Available at http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
4http://iso2mesh.sourceforge.net/cgi-bin/index.cgi
5We note that for these latter results a slightly different notation is used here than in [27] to conform to the overall notation of this 
article.
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100) for the entire dataset. The curve is very similar to the best curve obtained using 

shown in [27]. Once again, this confirms that both distances perform similarly.

For a complete comparison, the table given in Figure 7(a) also reports the results of the two 

methods that achieved the highest retrieval scores in the SHREC challenge: MDS-CM-BOF 

( [37]) and SD-GDM-meshSIFT ( [38], [39]). Both of these methods construct multi-step 

pipelines that provide powerful tools for retrieval. However, one has to note that these 

methods also have added complexities in contrast to WESD and ρSD, such as: i) the need for 

a training dataset, ii) the correspondence requirements and the resulting need for remeshing, 

iii) computation of local key-points for feature computation, iv) high computational cost of 

geodesic distance matrix, and iv) local feature or point matching to compute a global 

distance using local features. Nevertheless, their high accuracies demonstrate the advantage 

of combining different fundamental components to achieve powerful retrieval tools.

Lastly, the graphs shown in Figure 7(c) and (d) provide an analysis of the retrieval results 

with respect to the parameters N and p. Graphs in Figure 7(c) plot the change of different 

retrieval scores with respect to the number of modes used N, i.e. signature size, keeping p 
fixed at 3.15. Graphs in Figure 7(d) plot the changes with respect to the norm type p keeping 

N fixed at 100. These graphs show that as N increases the scores seem to increase slowly 

and then converge. On the other hand, p has a stronger effect on the results than N, 

particularly on FT, ST and E scores. However, the changes in the scores with respect to 

changes in N or p are rather small especially compared to the relatively larger fluctuation of 

the FT score of  with respect to the two sample N values provided in the table in Figure 

7(a).

The experiment presented above showed that the retrieval power of WESD is similar to that 

of the distance  proposed by Reuter et al. [3]. The soundness and theoretical properties of 

WESD do not come at the expense of lower retrieval power. On the contrary, WESD is able 

to leverage the descriptive power of the spectra while its properties guarantee that it does not 

suffer from similar drawbacks as other distances, such as sensitivity to signature size.

C. Real Data

The experiments on real data are conducted on segmentations of 3D structures obtained 

from magnetic resonance images (MRI). First, we apply WESD to subcortical brain 

structures. The experiment demonstrates WESD’s capabilities to differentiate categories of 

objects even in the presence of high intra-class variability. In the second experiment, we 

focus on temporal analysis of cardiac images. We apply nWESD to delineations of the blood 

pool of the left ventricle obtained from 3D + time cardiac MRI. The experiment shows that 

the shape dissimilarity measurements between time points correlates with the dynamic 

processes of the beating heart.

1) Clustering Sub-Cortical Structures—Medical research frequently relies on 

morphometric studies analysing anatomical shapes from medical images [40]. In this 

experiment we construct a low dimensional embedding of subcortical structures extracted 
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from Magnetic Resonance Image (MRI) scans of different individuals based on WESD as 

well as shape-DNA based distance, , as proposed in [3].

For this experiment, we use the publicly available LPBA40 dataset [41]6. The dataset 

contains manual segmentations of various subcortical structures from MRI brain scans of 40 

healthy subjects. Figures 8(a), (b) and (c) show some examples from these structures. The 

are two main difficulties associated with such datasets. First, the structures have very large 

intra-class (inter-subject) variability, i.e. the shape of an anatomical structure is often very 

different across subjects. Second, the segmentations were obtained by manually delineating 

the 3D objects on successive 2D slices. This creates inconsistencies between segmentations 

in two successive slices. Such inconsistencies in the end manifest themselves as local 

artefacts on the object. The protrusion that can be seen on the top of the second 

hippocampus in Figure 8(a) is an example of such an artefact. These artefacts can influence 

shape distances negatively.

We select six structures for each patient: left/right caudate nucleus, left/right putamen and 

left/right hippocampus, resulting in 240 structures in total. We then create pairwise affinity 

matrices of the 240 structures first using  with N = 200, as proposed in [3], and then 

WESD (ρN with p = 2 and N = 200). Finally, we use the ISOMAP algorithm [36] to 

construct 2D embeddings of the structures. Figures 8(d) and (e) show the resulting 

embeddings. We observe that the embedding obtained via WESD well clusters the data with 

respect to the anatomical structures. The separation of the clusters for the SD case, however, 

is more ambiguous, especially between putamen and hippocampus.

The embeddings presented above were obtained by directly using the manual segmentations 

without any preprocessing. A natural question is how do these embeddings change if the 

effects of various artefacts are reduced say via surface smoothing. To answer this question, 

we smooth the surface of the anatomical 3D models and recomputed the embeddings, which 

are shown in Figures 8(f) and (g). The embedding obtained with , although to a lesser 

extent, still suffers from similar ambiguity as in Figure 8(d). The new embedding based on 

WESD on the other hand, compared to Figure 8(e), even more clearly separates different 

anatomical structures. However, we also note that this type of preprocessing can also 

produce undesirable artefacts such as altering the topology of the anatomical object. This is 

the case for one caudate in Figures 8(f) and (g), which ends up as an outlier that is clearly 

separated from the other data points. Considering this, the fact that WESD is able to produce 

visually pleasing embeddings without the need of preprocessing is an advantage.

2) Analysing Heart Function in 4D MRI—Four-dimensional imaging of patient 

anatomy is gaining interest in the medical community. The temporal analysis of anatomical 

structures is used to extract the characteristics of related dynamic processes, which often 

indicate certain pathologies [42]. Furthermore, in the recent work [43] authors show that 

shape information, in addition to volumetric measurements, improve the accuracy of 

pathology related classification tasks in such dynamical analyses. In this section, we apply 

6website: http://www.loni.ucla.edu/Atlases/LPBA40
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nWESD to the shapes of the hearts extracted from four dimensional cardiac images of five 

different patients. The scan of each patient captures a full cycle of one heartbeat as a series 

of 20 3D images. Each image shows the left ventricle (LV) at a specific point in the cycle, 

from which we manually segment the corresponding blood pool. Our reference is the blood 

pool extracted from the first frame (diastole). We compute the nWESD scores between this 

reference and all other shapes extracted from the series of images. Here, we do not 

normalise the eigenvalues with respect to the global scale since size change is an important 

aspect of the heartbeat dynamics. The graph given in Figure 9 shows the results of these 

measurements over time across the five patients. The figure also shows some exemplary 

images and shapes. We observe that the symmetry of the heartbeat along the systolic (as the 

blood pumps out of the LV pool) and the diastolic phases (as the blood fills in the pool) is 

well captured with the nWESD score. Furthermore, the end-systolic phase (the time point 

with the largest distance w.r.t. the reference) is at different time points for different patients, 

which is to be expected since the different patient scans are not synchronized in time. In 

summary, WESD well captures the dynamics of the beating heart, which is to be expected 

given the continuous link between the differences in eigenvalues and the difference in shape 

(see Section II).

V. Conclusion

This article proposed WESD, a new spectral shape distance defined over the eigenvalues of 

the Laplace operator. WESD is a theoretically sound shape metric that is derived from the 

heat-trace. The theoretical analysis given in this article presented and proved the properties 

of WESD related to its existence, computability and multi-scale aspect. The presented 

experiments showed that the theoretical properties of WESD have many practical advantages 

over previous works. These experiments further highlighted that WESD is beneficial for 

various applications.
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Fig. 1. 
Starfish and tarantula. The objects represented as binary maps are shown on the left, 

followed by the 1st, 2nd, 5th, 20th, and 100th eigenfunction. The values increase from blue 

(negative) to red (positive) with green being zero.
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Fig. 2. 
Multi-scale characteristics of different spectral modes:(a), (b) and (c) show three synthetic 

shapes. In (d) we plot the absolute differences between the corresponding modes of (a) and 

(b) with respect to the spectral index. In (e) we plot the same difference for the shapes in (a) 

and (c). The shape difference between (a) and (b), which is at a coarser level, is already 

captured at the lower spectral modes. The difference between (a) and (c) results in lower 

differences in lower spectral modes because these objects are more similar at a coarser level. 

At the higher spectral modes though, the difference between (a) and (c) becomes more 

prominent since these objects differ more substantially at the finer scales. The plots in (d) 

and (e) demonstrate that the higher modes for a given object are more important for finer 

scale shape details.
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Fig. 3. 
Choosing N: The figures plot the residual ratio R(N, p) versus N for different p values in 2D 

(left) and in 3D (right). As expected the error upper bound drops with increasing N. The rate 

of decrease also becomes faster with increasing p. This inverse relation suggests the trade-

off between N and the sensitivity of WESD to finer scale shape differences since WESD 

becomes less sensitive as p increases, see Section III-C.
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Fig. 4. 
Shape-based ordering of objects: We generate two artificial datasets each consisting of a 

reference object and its random deformations. Samples from the datasets are shown in (a) 

and (b). The binary images to the very left show the reference objects for each dataset. We 

then ordered all the deformed objects with respect to the nWESD scores between the object 

and the reference. The graphs in (c) and (d) plot these orderings. Based on visual inspection 

the ordering is quite reasonable.
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Fig. 5. 
Low dimensional embeddings: (a) The 15 objects used in this experiment. The graphs plot 

the 2D embeddings of the objects based on the affinity matrices constructed by  and 

WESD (ρN). Each row presents the results based on different N: 50, 100 and 200 from top to 

bottom respectively. The structures of the 2D embedding based on  are quite different for 

different N. WESD however, produces embeddings that are similar. This demonstrates the 

stability of the embedding with respect to N when WESD is used.
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Fig. 6. 
The theoretical analysis of the effects of truncating the computation of WESD at N modes 

on the low-dimensional embeddings: Points (markers) indicate the low-dimensional 

embeddings obtained by using ρN(·, ·). The rectangle around a point denotes the theoretical 

maximum extent that point might move to if infinite number of modes were used to compute 

the distance, i.e. if ρ(·, ·) were used. These bounds are computed using using Equation 9 

without the need to compute more eigenvalues than N.
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Fig. 7. 
Shape-based Object Retrieval Results on SHREC Dataset. a) Retrieval scores obtained by 

WESD for two different sets of N and p values along with the scores obtained by the 

distance proposed in [3] (values taken from [27].) b) Precision-Recall curves obtained for 

shape retrieval via WESD for the entire dataset. c) Effect of the signature size N on the 

retrieval scores obtained by WESD for a fixed p = 3.15. d) Effect of the norm type p on the 

same scores for a fixed N = 100.
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Fig. 8. 
2D embedding of subcortical structures: 240 structures (80 caudate nucleus, 80 putamen and 

80 hippocampus) are extracted from MR scans of 40 different individuals. (a),(b) and (c) 

show some example structures from this dataset. Note the high intra-class variability and the 

artefacts due to finite resolution and manual segmentations. (d) and (e) plot 2D embeddings 

of these 240 structures obtained based on the affinity matrices computed via  and WESD 

respectively. These embeddings are computed without any preprocessing applied to the 

structures. The embedding obtained with WESD distinctly clusters the objects with respect 

to the anatomical structures. The embedding in (d) however, shows some ambiguities in the 

separation. Graphs in (f) and (g) plot the similar embeddings obtained after smoothing the 

surfaces of the structures to remove artefacts. The embedding obtained by , although 

better than (d), still suffer from similar problems. The embedding based on WESD on the 

other hand, now even between better separates the groups.
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Fig. 9. 
Analysing 3D + time (4D) cardiac images: First column shows corresponding 2D slices of a 

4D MRI dataset at time points t = {0, 6, 12}. The second column, 3D shapes extracted at 

each of the time points. For five patients, we compute the nWESD shape dissimilarity score 

of the LV blood pool at each time point with respect to its shape at t = 0. The graph plots 

these scores. We note that the proposed shape distance is able to capture the dynamic 

process of the LV shape changes and furthermore, the symmetry between the two phases of 

an heart beat: diastole and systole.
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